請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68221完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江簡富(Jean-Fu Kiang) | |
| dc.contributor.author | Chien-Chang Chen | en |
| dc.contributor.author | 陳建彰 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:15:05Z | - |
| dc.date.available | 2020-01-04 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-10-26 | |
| dc.identifier.citation | [1] G. Hegyi, G. P. Szigeti and A. Sz´asz, “Hyperthermia versus oncothermia: Cellular effects in complementary cancer therapy,” Evidence-Based Complementary Alternative Medicine, vol. 2013, article 672873, Jan. 2013.
[2] T. Ohguri, K. Yahara, S. D. Moon, S. Yamaguchi, H. Imada, H. Terashima and Yukunori Korogi, “Deep regional hyperthermia for the whole thoracic region using 8 MHz radiofrequency-capacitive heating device: Relationship between the radiofrequencyoutput power and the intra-oesophageal temperature and predictive factors for a good heating in 59 patients,” Int. J. Hyperthermia, vol. 27, no. 1, pp.20-26, Feb. 2011. [3] M. Jamil and E. Y. K. Ng, “To optimize the efficacy of bioheat transfer in capacitive hyperthermia: A physical perspective,” J. Therm. Biol., vol. 38, no. 5, pp.272-279, July 2013. [4] Y. Kotsuka, H. Kayahara, K. Murano, H. Matsui and M. Hamuro, “Local inductive heating method using novel high-temperature implant for thermal treatment of luminal 26 organs,” IEEE Trans. Microwave Theory Tech., vol. 57, no. 10, pp.2574-2580, Oct. 2009. [5] M. E. Kowalski and J.-M. Jin, “Model-based optimization of phased arrays for electromagnetic hyperthermia,” IEEE Trans. Microwave Theory Tech., vol. 52, no. 8, pp.1964-1977, Aug. 2004. [6] R. Staruch, R. Chopra and K. Hynynen, “Hyperthermia in bone generated with MR imaging controlled focused ultrasound: Control strategies and drug delivery,” Radiology, vol. 263, no. 1, pp.117-127, Apr. 2012. [7] X. Chen, C. J. Diederich, J. H. Wootton, J. Pouliot and I-C. Hsu, “Optimisationbased thermal treatment planning for catheter-based ultrasound hyperthermia,” Int. J. Hyperthermia, vol. 26, no. 1, pp.39-55, Feb. 2010. [8] A. Szasz, O. Szasz and N. Szasz, “Physical background and technical realizations of hyperthermia,” in Hyperthermia in Cancer Treatment: A Primer, G. F. Baronzio and E. D. Hager, ed., Medical Intelligence Unit, 2006. [9] M. Hiraoka, M. Mitsumori, N. Hiroi, S. Ohno, Y. Tanaka, Y. Kotsuka and K. Sugimachi, “Development of RF and microwave heating equipment and clinical application to cancer treatment in Japan,” IEEE Trans. Microwave Theory Tech., vol. 48, no. 11, pp.1789- 1799, Nov. 2000. [10] Y.-H. Tao and G.Wang, “Conformal hyperthermia of superficial tumor with left-handed metamaterial lens applicator,” IEEE Trans. Biomed. Eng., vol. 59, no. 12, pp.3525-3530, Dec. 2012. [11] J. W. Hand, “Modelling the interaction of electromagnetic fields (10 MHz-10 GHz) with the human body: Methods and applications,” Phys. Med. Biol., vol. 53, pp.R243-286, 2008. [12] S. A. Aghayan, D. Sardari, S. R. M. Mahdavi and M. H. Zahmatkesh, “Estimation of overall heat transfer coefficient of cooling system in RF capacitive hyperthermia,” J. Biomed. Sci. Eng., vol. 6, no. 5, pp.509-517, 2013. [13] H. P. Kok, M. De Greef, N. Van Wieringen, D. Correia, M. C. C. M. Hulshof, P. J. Zum V¨oRde Sive V¨oRding, J. Sijbrands, A. Bel and J. Crezee, “Comparison of two different 70 MHz applicators for large extremity lesions: Simulation and application,” Int. J. Hyperthermia, vol. 26, no. 4, pp.376-388, June 2010. [14] H. Kato, M. Kondo, H. Imada, M. Kuroda, Y. Kamimura, K. Saito, K. Kuroda, K. Ito, H. Takahashi and H. Matsuki, “Quality assurance: Recommended guidelines for safe heating by capacitive-type heating technique to treat patients with metallic implants,” Int. J. Hyperthermia, vol. 29, no. 2, pp.99-105, Feb. 2013. [15] H. P. Kok, P.Wust, P. R. Stauffer, F. Bardati, G. C. van Rhoon and J. Crezee, “Current state of the art of regional hyperthermia treatment planning: A review,” Radiation Oncology, vol. 10, no. 196, Sep. 2015. [16] H. P. Kok, J. Gellermann, C. A. T. van den Berg, P. R. Stauffer, J. W. Hand and J. Crezee, “Thermal modelling using discrete vasculature for thermal therapy: A review,” Int. J. Hyperthermia, vol. 29, no. 4, pp.336-345, Jun. 2013. [17] K. Kim, T. Seo, K. Sim and Y. Kwon, “Magnetic nanoparticle-assisted microwave hyperthermia using an active integrated heat applicator,” IEEE Trans. Microwave Theory Tech., vol. 64, no. 7, pp.2184-2197, July 2016. [18] S. Hassanpour and A. Saboonchi, “Interstitial hyperthermia treatment of countercurrent vascular tissue: A comparison of Pennes, WJ and porous media bioheat models,” J. Therm. Biol., vol. 46, pp.47-55, Dec. 2014. [19] I. Astefanoaei, I. Dumitru, H. Chiriac and A. Stancu, “Use of the Fe-Cr-Nb-B systems with low Curie temperature as mediators in magnetic hyperthermia,” IEEE Trans. Magn., vol. 50, no. 11, article 7400904, Nov. 2014. [20] M. Jamil, E. Y. K. Ng, “The modelling of heating a tissue subjected to external electromagnetic field,” Acta Bioeng. Biomech., vol. 10, no. 2, pp.29-37, 2008. [21] Y.-G. Lv, Z.-S. Deng and J. Liu, “3-D numerical study on the induced heating effects of embedded micro/nanoparticles on human body subject to external medical electromagnetic field,” IEEE Trans. Nanobiosci., vol. 4, no. 4, pp.284-294, Dec. 2005. [22] J.-Q. Zhong, S. Liang, Y.-P. Yuan and Q. Y. Xiong, “Coupled electromagnetic and heat transfer ODE model for microwave heating with temperature-dependent permittivity,” IEEE Trans. Microwave Theory Tech., vol. 64, no. 8, pp.2467-2477, Aug. 2016. [23] N. Kawai, D. Kobayashi, T. Yasui, Y. Umemoto, K. Mizuno, A. Okada, K. Tozawa, T. Kobayashi and K. Kohri, “Evaluation of side effects of radiofrequency capacitive hyperthermia with magnetite on the blood vessel walls of tumor metastatic lesion surrounding the abdominal large vessels: An agar phantom study,” Vascular Cell, vol. 6, no. 15, July 2014. [24] Y.-L. Li, S. Sun, Q. I. Dai and W. C. Chew, “Finite element implementation of the generalized-Lorenz gauged A- formulation for low-frequency circuit modeling,” IEEE Trans. Antennas Propagat., vol. 64, no. 10, pp.4355-4364, July 2016. [25] Y. Zhu and A. C. Cangellaris, Multigrid Finite Element Methods for Electromagnetic Field Modeling, Wiley-IEEE Press, 2006. [26] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. M. Donato, J. Dongarra, V. Eijkhout, R. Pozo, C. Romine and H. van der Vorst, Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods, SIAM, Philadelphia, 1994. [27] N. Tsuda, K. Kuroda and Y. Suzuki, “An inverse method to optimize heating conditions in RF-capacitive hyperthermia,” IEEE Trans. Biomed. Eng., vol. 43, no. 10, pp.1029- 1037, 1996. [28] M. N. O. Sadiku, Numerical Techniques in Electromagnetics, 2nd ed., Ch.3, finite difference method, CRC Press, July 2000. [29] M. Abe, M. Hiraoka, M. Takahashi, S. Egawa, C. Matsuda, Y. Onoyama, K. Morita, M. Kakehi and T. Sugahara, “Multi-institutional studies on hyperthermia using an 8- MHz radiofrequency capacitive heating device (Thermotron RF-8) in combination with radiation for cancer therapy,” Cancer, vol. 58, no. 8, pp.1589-1595, Oct. 1986. [30] S. Gabriel, R. W. Lau and C. Gabriel, “The dielectric properties of biological tissues: II. Measurements in the frequency range 10 Hz to 20 GHz,” Phys. Med. Biol., vol. 41, no. 11, pp.2251-2269, Nov. 1996. [31] H.-X. Wang, J.-R. Wang, B.-Y. Sun, S. P., X. Xu and Q. Su, “Experimental study of dielectric properties of human lung tissue in vitro,” J. Med. Biol. Eng., vol. 34, no. 6, pp.598-604, 2014. [32] P. Bernardi, M. Cavagnaro, S. Pisa, and E. Piuzzi, “Specific absorption rate and temperature elevation in a subject exposed in the far-field of radio-frequency sources operating in the 10-900 MHz range,” IEEE Trans. Biomed. Eng., vol. 50, no. 3, pp.295-304, 2003. [33] R. J. Schweikert and R. G. Keanini, “A finite element and order of magnitude analysis of cryosurgery in the lung,” Int. Commun. Heat Mass Transf., vol. 26, no. 1, pp.1-12, Jan. 1999. [34] G. Zorbas and T. Samaras, “Simulation of radiofrequency ablation in real human anatomy,” Int. J. Hyperthermia, vol. 30, no. 8, pp.570-578, Dec. 2014. [35] J. C. Ye, J. H. Chang, Z. Q. Li, A. G. Wernicke, D. Nori and B. Parashar, “Tumor density, size, and histology in the outcome of stereotactic body radiation therapy for early-stage non-small-cell lung cancer: A single-institution experience,” Ann. Meeting Am. Radium Soc., Apr. 2015. [36] Q. S. Ng, V. Goh, E. Klotz, H. Fichte, M. I. Saunders, P. J. Hoskin1 and A. R. Padhani, “Quantitative assessment of lung cancer perfusion using MDCT: Does measurement reproducibility improve with greater tumor volume coverage?” Am. J. Roentgenol., vol. 187, no. 4, pp.1079-1084, Oct. 2006. [37] C. A. Ridge, S. B. Solomon and R. H. Thornton, “Thermal ablation of stage I non-small cell lung carcinoma,” Semin. Intervent. Radiol., vol. 31, no. 2, pp.118-124, Jun. 2014. [38] R. J. Gillies, P. A. Schornack, T. W. Secomb and N. Raghunand, “Causes and effects of heterogeneous perfusion in tumors,” Neoplasia, vol. 1, no. 3, pp.197-207, Aug. 1999. [39] G. Y. Ovali, A. Sakar, C. G¨oktan, P. C¸ elik, A. Yorgancı˘oglu, N. Nese and Y. Pabuscu, “Thorax perfusion CT in non-small cell lung cancer,” Comput. Med. Imaging Graph., vol. 31, no. 8, pp.686-691, Sep. 2007. [40] P. D. Sonntag, J. L. Hinshaw, M. G. Lubner, C. L. Brace and F. T. Lee Jr, “Thermal ablation of lung tumors,” Surg. Oncol. Clin. N. Am., vol. 20, no. 2, pp.369-ix, Apr. 2011. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68221 | - |
| dc.description.abstract | 本論文提出一種準靜態假設下的電容式微波熱療模型,並以肺癌腫瘤為加熱標的。在數值模擬過程中則以包覆著恆溫水袋的人體胸腔為基本構型,使用有限元素法計算胸腔內部的電場分布。再將微波加熱源與生物代謝熱納入考量後,求解生物熱傳導方程式以計算胸腔內部的溫度分布。計算所得之溫度變化趨勢,可用於評估個別病人適用之微波熱療參數。 | zh_TW |
| dc.description.abstract | An electroquasistatic model of RF capacitive hyperthermia for treating lung tumors is proposed.
A finite element method is applied to compute the electrical potential in a human thorax model, which is surrounded by a bolus maintained at a constant temperature. The temperature distribution in the thorax model is computed by solving a bio-heat equation, which includes the heat delivered by the RF field and the metabolic heat generated in the tissues. The time evolution of temperature distribution thus obtained can be used to customize a hyperthermia treatment plan for specific patient. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:15:05Z (GMT). No. of bitstreams: 1 ntu-106-R04942024-1.pdf: 13657697 bytes, checksum: 04ed811000585e4bd438fd26bdfe5070 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
Abstract i Table of Contents ii List of Figures iv Acknowledgment v 1 Introduction 1 2 Field Distribution in a Thorax Model 4 3 Temperature Distribution in a Thorax Model 9 3.1 Bio-Heat Equation 9 4 Simulations and Discussions 14 5 Conclusion 25 Bibliography 26 | |
| dc.language.iso | en | |
| dc.subject | 電容型熱療法 | zh_TW |
| dc.subject | 肺癌 | zh_TW |
| dc.subject | Capacitive Hyperthermia | en |
| dc.subject | Lung Cancer | en |
| dc.title | 以準靜電模式分析含熱對流機制之電容型微波熱療構想 | zh_TW |
| dc.title | Electroquasistatic Model of RF Capacitive Hyperthermia
with Heat Convection Mechanism | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 鍾孝文(Hsiao-Wen Chung),毛紹綱(Shau-Gang Mao) | |
| dc.subject.keyword | 電容型熱療法,肺癌, | zh_TW |
| dc.subject.keyword | Capacitive Hyperthermia,Lung Cancer, | en |
| dc.relation.page | 33 | |
| dc.identifier.doi | 10.6342/NTU201704311 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-10-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電信工程學研究所 | zh_TW |
| 顯示於系所單位: | 電信工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 13.34 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
