請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68211完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 林宗賢(Tsung-Hsien Lin) | |
| dc.contributor.author | Sheng-Ying Lin | en |
| dc.contributor.author | 林聖穎 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:14:52Z | - |
| dc.date.available | 2027-06-02 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-11-01 | |
| dc.identifier.citation | [1] D. Linden and T. B. Reddy, Handbook of Batteries. New York: Mc-Graw-Hill, 2002.
[2] S. Dearborn, “Charging Li-ion batteries for maximum run times,” Power Electronics Technology Magazine, pp. 40-49, Apr. 2005. [3] C. Cai, D. Du, and Z. Liu, “Advanced traction rechargeable battery system for cableless mobile robot,” IEEE/ASME International Conference on Advanced Intelligent Mechanics, vol. 1, pp. 234-239, Jul. 2003. [4] M. Chen and G. A. Rincón-Mora, “Accurate, compact, and power-efficient Li-Ion battery charger circuit,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 53, pp. 1180-1184, Nov. 2006. [5] C.-H. Lin, H.-W. Huang, and K.-H. Chen, “Built-in resistance compensation technique for fast charging Li-Ion battery charger,” IEEE Custom Integrated Circuits Conference, pp. 33-36, Sep. 2008. [6] C.-H. Lin, C.-Y. Hsieh, and K.-H. Chen, “A Li-ion battery charger with smooth control circuit and built-in resistance compensator for achieving stable and fast charging,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 57, pp. 506-517, Feb. 2010. [7] S.-H. Yang, J.-W. Liu, Y.-H. Wu, D.-S. Wang, and C.-C. Wang, 'A high voltage battery charger with smooth charge mode transition in BCD process', IEEE International Symposium of Circuits and Systems, pp. 813-816, May 2011. [8] S.-H. Yang, J. Liu, and C. Wang, “A single-chip 60-V bulk charger for series Li-Ion batteries with smooth charge-mode transition,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 59, pp.1588-1597, Jul. 2012. [9] K. Chung, S.-K. Hong, and O.-K. Kwon, “A fast and compact charger for an Li-Ion battery using successive built-in resistance detection,” IEEE Transactions on Circuits and Systems II: Express Briefs, vol. 64, pp. 161-165, Feb. 2017. [10] R. Pagano, M. Baker, and R. E. Radke, “A 0.18-µm monolithic Li-Ion battery charger for wireless devices based on partial current sensing and adaptive reference voltage,” IEEE Journal of Solid-State Circuits, vol. 47, pp. 1355-1368, Jun. 2012. [11] T.-W. Tsai, R.-H. Peng, Y.-P. Su, Y.-P. Chen, K.-H. Chen, S.-M. Wang, M.-W. Lee, and H.-Y. Luo, “Automatic power monitor (APM) in switching charger with smooth transition loop selector (STLS) for high-energy throughput system,” IEEE Energy Conversion Congress and Exposition, pp. 3182-3186, Nov. 2012. [12] R.-H. Peng, T.-W. Tsai, K.-H. Chen, Z.-H. Tai, Y.-H. Cheng, C.-C. Tsai, H.-Y. Luo, S.-M. Wang, L.-D. Chen, C.-C. Yang, and J.-L. Chen, “Switching-based charger with continuously built-in resistor detector (CBIRD) and analog multiplication-division unit (AMDU) for fast charging in Li-ion battery,” Proceedings of the ESSCIRC (ESSCIRC), pp. 157-160, Sep. 2013. [13] T.-C. Huang, R.-H. Peng, T.-W. Tsai, K.-H. Chen, and C.-L. Wey, “Fast charging and high efficiency switching-based charger with continuous built-in resistance detection and automatic energy deliver control for portable electronics,” IEEE Journal of Solid-State Circuits, vol. 49, pp. 1580-1594, Jul. 2014. [14] Y.-S. Hwang, S.-C. Wang, F.-C. Yang, and J.-J. Chen, “New compact CMOS Li-Ion battery charger using charge-pump technique for portable applications,” IEEE Transactions on Circuits and Systems I: Regular Papers, vol. 54, pp. 705-712, Apr. 2007. [15] L.-R. Chen, “PLL-based battery charge circuit topology,” IEEE Transactions on Industrial Electronics, vol. 51, pp. 1344-1346, Dec. 2004. [16] L.-R. Chen, J.-Y. Han, J.-L. Jaw, C.-P. Chou, and C.-S. Liu, “A resistance-compensated phase-locked battery charger,” IEEE International Conference on Industrial Electronics and Applications, pp. 1087-1092, May 2006. [17] L.-R. Chen, C.-S. Liu, and J.-J. Chen, “Improving phase-locked battery charger speed by using resistance-compensated technique,” IEEE Transactions on Industrial Electronics, vol. 56, pp.1205-1211, Apr. 2009. [18] S. Jung, Y.-J. Woo, N.-I. Kim, and G.-H. Cho, “Analog-digital switching mixed mode low ripple-high energy Li-ion battery charger,” IEEE Industry Applications Conference Annual Meeting, vol. 4, pp. 2473-2477, Oct. 2001. [19] L. Gao, S. Liu, and R. A. Dougal, “Dynamic lithium-ion battery model for system simulation,” IEEE Transactions on Components and Packaging Technologies, vol. 25, pp. 495-505, Sep. 2002. [20] C.-C. Tsai, C.-Y. Lin, Y.-S. Hwang, W.-T. Lee, and T.-Y. Lee, “A multi-mode LDO-based Li-Ion battery charger in 0.35μm CMOS technology,” IEEE Asia-Pacific Conference on Circuits and Systems, vol. l, pp. 49-52, Dec. 2004. [21] B. D. Valle, C. T. Wentz, and R. Sarpeshkar, “An area and power-efficient analog Li-ion battery charger circuit,” IEEE Transactions on Biomedical Circuits and Systems, vol. 5, pp. 131-137, Apr. 2011. [22] C. F. Lee and P. K. T. Mok, “A monolithic current-mode CMOS DC-DC converter with on-chip current-sensing technique,” IEEE Journal of Solid-State Circuits, vol. 39, pp. 3-14, Jan. 2004. [23] S. Buller, M. Thele, R. W. De Doncker, and E. Karden, “Impedance-based simulation models of supercapacitors and Li-ion batteries for power electronic applications,” IEEE Transactions on Industry Applications, vol. 41, pp. 742-747, May 2005. [24] S. Gold, “A PSPICE macromodel for lithium-ion batteries,” The Twelfth Annual Battery Conference on Applications and Advances, pp. 215-222, Jan. 1997. [25] B. Razavi, “The strong-arm latch,” IEEE Solid-State Circuits Magazine, vol. 7, pp. 12-17, Feb. 2015. [26] A. Yoo, M. Chang, O. Trescases, and W. T. Ng, “High performance low-voltage power MOSFETs with hybrid waffle layout structure in a 0.25um standard CMOS process,” International Symposium on Power Semiconductor Devices and IC's, pp.95-98, May 2008. [27] A. Hastings, The art of analog layout, New Jersey: Prentice-Hall 2000. [28] Y.-J. Lee, W. Qu, S. Singh, D.-Y. Kim, K.-H. Kim, S.-H. Kim, J.-J. Park, and G.-H. Cho, “A 200-mA digital low drop-out regulator with coarse-fine dual loop in mobile application processor,” IEEE Journal of Solid-State Circuits, vol. 52, pp. 64-76, Jan. 2017. [29] L. G. Salem, J. Warchall, and P. P. Mercier, “A 100nA-to-2mA successive-approximation digital LDO with PD compensation and sub-LSB duty control achieving a 15.1ns response time at 0.5V,” IEEE International Solid-State Circuits Conference, pp. 340-341, Feb. 2017. [30] W. Xu, P. Upadhyaya, X. Wang, R. Tsang, and L. Lin, “A 1A LDO regulator driven by a 0.0013mm2 Class-D controller,” IEEE International Solid-State Circuits Conference, pp. 104-105, Feb. 2017. [31] C. Pillot, “The rechargeable battery market and main trends 2016-2025,” Avicenne Energy: 33rd International Battery Seminar & Exhibit, Mar. 2017. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68211 | - |
| dc.description.abstract | 鋰電池具備了高能量密度、高循環壽命、高電壓、以及不具記憶效應,因此在攜帶式裝置上,鋰電池是最好的選擇。然而,鋰電池的安全性相當重要,過度充電會損毀鋰電池之物理結構,甚至會導致爆炸。本論文實現兩種不同架構之鋰電池充電器,並提供定電流充電及定電壓充電之功能。
第一個作品為一個以類比低壓降穩壓器為基礎的鋰電池充電器。其具有簡單的電路架構及達到很小的電流漣漪,並且利用二極體形式的NMOS確保定電流和定電壓充電模式轉換時之穩定度。本作品以台積電0.35μm CMOS製程實現,輸入電源為5 V,最後輸出電壓穩在4.2 V,定電流充電之電流為600 mA而晶片面積為1.94 mm^(2)。 第二個作品提出全新數位控制架構,實現一個小面積無放大器之數位控制鋰電池充電器。由於使用數位控制技巧,此充電器省去所有類比電路,並減少高功率電晶體的大小,由此達到小面積且設計簡單化的效果。此外,數位控制之架構也讓此作品擁有更好的製程擴展性。此設計以台積電0.35μm CMOS製程實現,輸入電源為5 V,最後輸出電壓穩在4.2 V,定電流充電電流為600 mA而晶片面積僅0.768 mm^(2)。 | zh_TW |
| dc.description.abstract | Lithium-ion (Li-Ion) batteries have high energy density, high cycle life, and no memory effect. Therefore, Li-Ion batteries are the most suitable battery for portable devices. However, the safety of Li-Ion battery is very important. Over discharging and over charging may damage the physical structure of Li-Ion batteries, resulting in reduced battery life or even explosion. In this thesis, two compact Li-Ion battery chargers are proposed with different topologies, and provide essential charging operations including constant-current (CC) and constant-voltage (CV) modes.
The first work is an analog LDO-based Li-Ion battery charger. This work features a simple circuit structure and achieves low current ripple. A diode-connected NMOS is used to ensure the stability during the transition from the CC to CV modes. This work is fabricated in TSMC 0.35-µm CMOS process with a 5-V power supply. The output voltage is 4.2 V, and the current in the CC mode is 600 mA with an area of 1.94 mm^(2). In the second work, an area-efficient, amplifier-less Li-Ion battery charger with a novel digitally-controlled architecture is proposed. Owing to the digitally-controlled technique, the proposed charger eliminates all analog circuits and reduces the size of the power transistor. Hence, the proposed charger features a simple circuit structure and a small chip area. Additionally, the nature of digital control suggests that the proposed charger has better process scalability. This work is implemented in the TSMC 0.35-µm CMOS process with a 5-V power supply. The output voltage is 4.2 V, and the charging current in the CC mode is 600 mA with an area of only 0.768 mm^(2). | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:14:52Z (GMT). No. of bitstreams: 1 ntu-106-R04943021-1.pdf: 5547569 bytes, checksum: 8eacb87c3499d091907576212ee2e130 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Motivation 1 1.2 Thesis Overview 3 Chapter 2 Fundamentals of Li-Ion Battery Charger 5 2.1 Li-Ion Battery 5 2.1.1 Basic Electrochemistry 7 2.1.2 Constant-Current Constant-Voltage (CC-CV) Charging Method 9 2.1.3 Equivalent Circuit of Li-Ion Battery in Simulation 10 2.2 Li-Ion Battery Charger 11 2.3 Conventional Topologies of Li-Ion Battery Charger 12 2.3.1 LDO-Based Li-Ion Battery Charger 12 2.3.2 Inductor-Based Li-Ion Battery Charger 16 2.3.3 Charge-Pump-Based Li-Ion Battery Charger 18 2.3.4 PLL-Based Li-Ion Battery Charger 20 2.4 Summary 22 Chapter 3 Design of an Analog LDO-Based Li-Ion Battery Charger 25 3.1 Motivation 25 3.2 System Design 26 3.2.1 Constant-Current (CC) Mode 27 3.2.1 Constant-Voltage (CV) Mode 27 3.3 Circuit Implementation 28 3.3.1 Gm & AV 28 3.3.2 Level Shifter 30 3.3.3 AMirror 30 3.4 Power Transistor Layout 31 3.5 Simulation Results 33 3.6 Experimental Results 36 3.6.1 Chip Layout 36 3.6.2 Testing Setup 37 3.6.3 Measurement Results 40 3.7 Summary 44 Chapter 4 Proposed Digitally-Controlled Li-Ion Battery Charger 45 4.1 Motivation 45 4.2 System Design 47 4.2.1 Operation in Constant-Current (CC) Mode 48 4.2.2 Operation in Constant-Voltage (CV) Mode 52 4.3 Circuit Implementation 53 4.3.1 Dynamic Latched Comparator 53 4.3.2 Shift Register 55 4.4 Power Transistor Layout 56 4.5 Design Consideration - Operating Frequency 58 4.6 Simulation Results 60 4.7 Experimental Results 65 4.7.1 Chip Layout 65 4.7.2 Testing Setup 66 4.7.3 Measurement Results 69 4.8 Summary 74 Chapter 5 Conclusions and Future Works 75 5.1 Conclusions 75 5.2 Future Works 76 References 78 | |
| dc.language.iso | en | |
| dc.subject | 數位控制 | zh_TW |
| dc.subject | 鋰電池充電器 | zh_TW |
| dc.subject | 定電流模式 | zh_TW |
| dc.subject | 定電壓模式 | zh_TW |
| dc.subject | digitally-controlled | en |
| dc.subject | constant-current mode | en |
| dc.subject | constant-voltage mode | en |
| dc.subject | Li-Ion battery charger | en |
| dc.title | 小面積無放大器之數位控制鋰電池充電器 | zh_TW |
| dc.title | An Area-Efficient Amplifier-Less Digitally-Controlled
Li-Ion Battery Charger | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳信樹(Hsin-Shu Chen),劉深淵(Shen-Iuan Liu),林永裕(Yung-Yu Lin) | |
| dc.subject.keyword | 鋰電池充電器,數位控制,定電流模式,定電壓模式, | zh_TW |
| dc.subject.keyword | Li-Ion battery charger,digitally-controlled,constant-current mode,constant-voltage mode, | en |
| dc.relation.page | 82 | |
| dc.identifier.doi | 10.6342/NTU201704333 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-11-02 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 5.42 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
