Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68200
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳文章(Wen-Chang Chen)
dc.contributor.authorChin-Jung Changen
dc.contributor.author張晉榮zh_TW
dc.date.accessioned2021-06-17T02:14:38Z-
dc.date.available2023-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-11-09
dc.identifier.citation[1] S. Kiya, K. Morizane, Y. Uchita, M. Kouchi, SEI Tech. Rev. 2015, 80, 12.
[2] T. Sakurai, IEEE Trans. Adv. Pack. 1993, 40, 118.
[3] M. T. Bohr, Solid State Technol. 1996, 39, 105.
[4] S. J. Martin, J. P. Godschalx, M. E. Mills, E. O. Shaffer II, P. H. Townsend, Adv. Mater. 2000, 12, 1769.
[5] Analog Devices Inc., H. Zumbahlen, “Linear Circuit Design Handbook”, Elsevier Science, 2011.
[6] G. Brist, G. Long, “Materials for Advanced Packaging” 2009, 273.
[7] C. K. Cheng, J. Lillis, S. Lin, N. Chang, “Interconnect Analysis and Synthesis”, Wiley, 1999.
[8] Z. Ahmad, “Dielectric Material” 2012, 3.
[9] G. Oliver, “The PCB Magazine” 2014, 90.
[10] J. Nunoshige, “Development of Copper Clad Laminate with Low Dielectric Loss Materials for High Frequency Devices” Hitachi Ltd., 2009.
[11] G. Oliver, J. Coonrod, in DesignCon 2014.
[12] N. H. Hendricks, Solid State Technol. 1995, 38, 117.
[13] K. Mukai, A. Saiki, K. Yamanaka, S. Harada, S. Shoji, IEEE J. Solid-St. Circ. 1978, 13, 462.
[14] J. M. Steigerwald, S. P. Murarka, R. J. Gutmann, “Chemical Mechanical Planarization of Microelectronic Materials”, Wiley, 2007.
[15] S. Banerjee, M. K. Madhra, A. K. Salunke, D. K. Jaiswal, Polymer 2003, 44, 613.
[16] M. K. Madhra, A. K. Salunke, S. Banerjee, S. Prabha, Macromol. Chem. Phys. 2002, 203, 1238.
[17] V. Kute, S. Banerjee, Macromol. Chem. Phys. 2003, 204, 2105.
[18] S. Banerjee, M. K. Madhra, V. Kute, J. Appl. Polym. Sci 2004, 93, 821.
[19] P. E. Cassidy, T. M. Aminabhavi, J. M. Farley, J. Macromol. Sci. R. M. C. 1989, 29, 365.
[20] F. W. Mercer, T. D. Goodman, A. N. K. Lau, L. P. Vo, R. C. Sovish, U.S. Patent, 5,114,780, 1992.
[21] F. W. Mercer, R. C. Sovish, 5,115,082, 1992.
[22] J. A. Irvin, C. J. Neef, K. M. Kane, P. E. Cassidy, G. Tullos, A. K. St Clair, J. Polym. Sci. A1 1992, 30, 1675.
[23] S. Banerjee, G. Maier, M. Burger, Macromolecules 1999, 32, 4279.
[24] S. Banerjee, G. Maier, Chem. Mater. 1999, 11, 2179.
[25] S. Banerjee, G. Maier, A. Salunke, M. Madhra, J. Appl. Polym. Sci. 2001, 82, 3149.
[26] A. K. Salunke, A. Ghosh, S. Banerjee, J. Appl. Polym. Sci. 2007, 106, 664.
[27] M. Aggarwal, S. Maji, S. Kumar Sen, B. Dasgupta, S. Chatterjee, A. Ghosh, S. Banerjee, J. Appl. Polym. Sci. 2009, 112, 1226.
[28] A. K. Mohanty, S. K. Sen, A. Ghosh, S. Maji, S. Banerjee, Polym. Advan. Technol. 2010, 21, 767.
[29] A. S. Hay, H. S. Blanchard, G. F. Endres, J. W. Eustance, J. Am. Chem. Soc. 1959, 81, 6335.
[30] A. S. Hay, U.S. Patent, 3,306,875, 1967.
[31] A. F. Yee, Polym. Eng. Sci 1977, 17, 213.
[32] J. Stoelting, F. E. Karasz, W. J. Macknight, Polym. Eng. Sci. 1970, 10, 133.
[33] J. Jachowicz, M. Kryszewski, M. Mucha, Macromolecules 1984, 17, 1315.
[34] Y. Ishii, H. Oda, T. Arai, T. Katayose, “Microelectronics Technology” 1995, 485.
[35] Y. Kitai, H. Fujiwara, U.S. Patent, 2015/0218326, 2015.
[36] E. N. Peters, S. M. Fisher, U.S. Patent, 9,296,916, 2016.
[37] P. Edward, K. Alexey, D. Erik, G. Hua, C. Alvaro, R. Gerardo, “Annual Technical Conference” 2007, 2113.
[38] G. R. Almen, U.S. Patent, 9,051,465, 2015.
[39] E. N. Peters, S. M. Fisher, N. Jestel, M. Pietrafesa, H. Guo, “Annual Technical Conference” 2009, 611.
[40] H. J. Hwang, S. W. Hsu, C. S. Wang, J. Appl. Polym. Sci. 2008, 110, 1880.
[41] J. Liska, H. A. M. Van Aert, G. De Wit, U.S. Patent, 5,880,221, 1999.
[42] H. A. van Aert, M. H. van Genderen, G. J. van Steenpaal, L. Nelissen, E. Meijer, J. Liska, Macromolecules 1997, 30, 6056.
[43] T. Fukuhara, Y. Shibasaki, S. Ando, M. Ueda, Polymer 2004, 45, 843.
[44] J. Nunoshige, H. Akahoshi, Y. Shibasaki, M. Ueda, J. Polym. Sci. A1 2008, 46, 5278.
[45] J. Nunoshige, H. Akahoshi, M. Ueda, High Perform. Polym. 2010, 22, 458.
[46] 布重純, 天羽悟, エレクトロニクス実装学会誌 2009, 12, 333.
[47] P. H. Townsend, S. J. Martin, J. Godschalx, D. R. Romer, D. W. Smith, D. Castillo, R. DeVries, G. Buske, N. Rondan, S. Froelicher, J. Marshall, E. O. Shaffer, J-H. Im, MRS Proceedings 1997, 476.
[48] J. P. Godschalx, D. R. Romer, Y. H. So, Z. Lysenko, M. E. Mills, G. R. Buske, P. H. Townsend, D. W. Smith, Jr., S. J. Martin, R. A. Devries, U.S. Patent, 5,965,679, 1999.
[49] E. Sacher, 'Metallization of Polymers 2', Springer, 2002.
[50] J. Davis, J. D. Meindl, 'Interconnect Technology and Design for Gigascale Integration', Springer Science & Business Media, 2012.
[51] Y. Mizuno, Hitachi Ltd., IEEE ECTC, 2013.
[52] S. Hall, IEEE Trans. Microw. Theor. Tech. 2007, 55, 12.
[53] C. E. Sroog, Prog. Polym. Sci. 1991, 16, 561.
[54] E. Kobayashi, T. Obata, S. Aoshima, J. Furukawa, Polym. J. 1990, 22, 803.
[55] R. H. Baker, W. B. Martin, J. Org. Chem. 1960, 25, 1496.
[56] S. D. Bhagat, J. Chatterjee, B. Chen, A. E. Stiegman, Macromolecules 2012, 45, 1174.
[57] A. W. Williamson, Q. J. Chem. Soc. 1852, 4, 229-239.
[58] C. Kittel, “Introduction to Solid State Physics, 8th ed.”, Wiley, 2005.
[59] J. Nunoshige, H. Akahoshi, Y. Liao, S. Horiuchi, Y. Shibasaki, M. Ueda, Polym. J., 2007, 39 (8), 828.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68200-
dc.description.abstract近年來,在無線通訊設備的使用上,對於數據傳輸能力和速度的要求越來越高,在下一代的訊息傳輸系統,電子訊號的頻率已經增長到了GHz。由於高頻應用的需求,我們需要低介電常數和低消散因子的材料。同時,作為電子產品的基礎,軟性印刷電路板相較於一般硬板有可撓、配線密度高、重量輕、能妥善利用空間等優點,隨著對精密電子設備輕量化的要求提高,軟性印刷電路板的發展潛力極大。聚苯醚系列材料是一種被廣泛使用的工程塑膠,因其具有良好的機械性質、熱性質以及電氣性質。然而,聚苯醚對基材的黏著力不佳,並且其在工業應用上的熱性質及機械性質還需提高。
在論文的第一部份中,我們改質商品化的聚苯醚寡聚物OPE-2st,引入羥基或羧基來提高其接著力。另一方面,我們改質商品化的聯苯芳烷基樹酯GPH,引入雙鍵使其能行交聯反應。在此基礎下,我們混參工業界常用的材料如橡膠、環氧樹脂、硬化劑、阻燃劑、添加劑等等以製備適合的接著薄膜,經壓合銅箔後得到軟性層壓板。OPE系列的一最佳接著劑配方其抗撕強度可達1.21 N/mm,在10GHz下介電常數為2.67,消散因子為0.0132。
在論文的第二部份中,我們透過2,6-二甲基苯酚與2-烯丙基-6-甲基苯酚共聚得到聚苯醚Allyl-PPE,再引入羥基、羧基或環氧基來提高其接著力。藉著混參橡膠、環氧樹脂、阻燃劑、添加劑等材料並壓合,Allyl-PPE系列的一最佳接著劑配方其抗撕強度可達1.01 N/mm,在10GHz下介電常數為2.21,消散因子為0.0101。
在論文的第三部份中,我們在配方中添加1,2-雙(乙烯基苯基)乙烷BVPE藉以提升聚苯醚的交聯密度以改善其電氣性質。Allyl-PPE / BVPE系列的一最佳接著劑配方其抗撕強度可達1.33 N/mm, 在10GHz下介電常數為2.44,消散因子為0.0108。
上述研究結果顯示經由結構設計及配方最適化可發展高頻印刷電路板所需之低借電常數及低消散因子之接著劑。
zh_TW
dc.description.abstractLarge capacity and a high transmission speed are required in wireless communication devices in recent years. The frequency of electrical signals has reached the GHz bands for next generation communication systems. For such high frequency applications, materials with low dielectric constants (Dk) and dissipation factors (Df) are indispensable. Moreover, as a basic electronic device, flexible printed circuit (FPC) possesses better lightness, flexibility, high wiring density, and space utilization than rigid printed circuit board (PCB). As the demand for miniaturization of electronic devices increases, the FPC has a great potential to be developed. Poly (phenylene ether) (PPE) is one of the most widely used industrial materials due to its good mechanical and thermal properties. It also shows excellent electric properties for use in high frequency applications. However, PPE exhibits a poor adhesion to the copper foil and their thermal and mechanical properties need to be improved for industrial applications.
In the first part of this thesis, we modify the commercial oligo (phenylene ether)-styrene end-functionalized materials OPE-2st with hydroxyl or carboxyl groups to improve the adhesion. On the other hand, the commercial biphenyl aralkyl resin (GPH) with allyl groups is used to improve the crosslink reaction. By blending these materials with rubber, epoxy, hardener, flame retardant, and filler, an adhesive film is prepared. After hot pressing it with copper foil, a flexible laminate with the adhesive is well fabricated. The optimum OPE based adhesive possesses a peel strength of 1.21 N/mm, Dk of 2.67 and Df of 0.0132 at 10 GHz. Meanwhile, the optimum GPH based adhesive possesses a peel strength of 1.31 N/mm, Dk of 2.83 and Df of 0.0153 at 10 GHz.
In the second part of the thesis, we synthesize poly(2-allyl-6-methylphenol-co-2,6-dimethyl-phenol) (Allyl-PPE) through oxidative coupling polymerization. Next, we modify parts of the allyl groups with polar groups to improve the adhesion. A flexible adhesive laminate is also successfully prepared based on Allyl-PPE (and its derivatives) composites. The optimum Allyl-PPE based adhesive possesses a peel strength of 1.11 N/mm, Dk of 2.21 and Df of 0.0101 at 10 GHz.
In the third part of the thesis, we introduce commercial 1,2-bis(vinylphenyl) ethane (BVPE) into the formulation of Allyl-PPE adhesives to improve electrical properties. In the basis of Allyl-PPE / BVPE blend, a flexible adhesive laminate is successfully prepared. The optimum Allyl-PPE / BVPE based adhesive possesses a peel strength of 1.33 N/mm, Dk of 2.44 and Df of 0.0108 at 10 GHz.
The above results suggest that the structural modification and optimized formation could develop the adhesives with low Dk and Df for high frequency PCB application.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:14:38Z (GMT). No. of bitstreams: 1
ntu-106-R04524065-1.pdf: 4686692 bytes, checksum: 3b4209f253c43569c573b667de79538c (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsAbstract I
摘要 III
Table Captions X
Scheme Captions XIII
Figure Captions XIV
Chapter 1 Introduction 1
1.1 Introduction to High Frequency Microelectronics Application 1
1.2 Considerations for Dielectric Materials 3
1.3 Classifications of Low Dielectric Constant Polymers 6
1.3.1 Polyimides 7
1.3.2 Poly(aryl ethers) 8
1.3.3 Poly(phenylene ethers) 9
1.3.4 SiLK Polyarylenes 11
1.4 Research Objectives 12
Chapter 2 Novel Adhesives with Low Dielectric Loss Using OPE and GPH Based Materials 28
2.1 Introduction 28
2.2 Experimental Section 30
2.2.1 Materials 30
2.2.2 Synthesis of OPE-OH 31
2.2.3 Synthesis of OPE-COOH 32
2.2.4 Synthesis of GPH-allyl 33
2.2.5 Laminates Manufacturing Process 33
2.2.5.1 OPE based polymers 34
2.2.5.2 GPH-allyl 35
2.2.5.3 Peel strength sample 35
2.2.5.4 Dk Df sample 36
2.2.6 Characterization 36
2.3 Results and Discussion 37
2.3.1 Chemical Structure Characterization 37
2.3.2 Lamination Process 39
2.3.3 Peel Strength 40
2.3.3.1 Recipe I 40
2.3.3.2 Recipe II 41
2.3.2.3 Different substrates and Cu foil 43
2.3.4 Electrical Properties 44
2.3.4.1 Recipe I 44
2.3.4.2 Recipe II 45
2.4 Conclusion 47
Chapter 3 Novel Adhesive Materials through Oxidative Polymerization for Synthesis of Allyl-PPE and its Derivatives 61
3.1 Introduction 61
3.2 Experimental Section 63
3.2.1 Materials 63
3.2.2 Synthesis of Allyl25-PPE 64
3.2.3 Synthesis of Allyl25-PPE-OH 65
3.2.4 Synthesis of Allyl25-PPE-COOH 66
3.2.5 Synthesis of Allyl25-PPE-Epoxy 67
3.2.6 Laminates Manufacturing Process 68
3.2.6.1 Peel strength sample 69
3.2.6.2 Dk Df sample 70
3.2.7 Characterization 70
3.3 Results and Discussion 71
3.3.1 Chemical Structure Characterization 71
3.3.2 Thermal Properties 75
3.3.3 Lamination Process 77
3.3.4 Peel strength 78
3.3.4.1 Recipe III 78
3.3.4.2 Recipe IV 80
3.3.5 Electrical proerties 82
3.3.5.1 Allyl-PPE derivatives 82
3.3.5.2 Recipe III 83
3.3.5.3 Recipe IV 84
3.4 Conclusion 87
Chapter 4 Novel Adhesive Materials Using Allyl-PPE / BVPE Blend 111
4.1 Introduction 111
4.2 Experimental Section 113
4.2.1 Materials 113
4.2.2 Laminates Manufacturing Process 113
4.2.2.1 Peel strength sample 114
2.2.2.2 Dk Df sample 115
4.2.3 Characterization 115
4.3 Results and Discussion 116
4.3.1 Peel strength 116
4.3.1.1 Recipe V 116
4.3.2 Electrical proerties 117
4.3.2.1 Recipe V 117
4.4 Conclusion 119
Chapter 5 Conclusion and Prospective 124
Reference 127
dc.language.isoen
dc.title低介電常數與低消散因子聚苯醚接著劑之製備與鑑定zh_TW
dc.titleSynthesis and Characterization of PPE Based Adhesive Materials with Low Dielectric Constant and Dissipation Factoren
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee蘇鴻文(Hung-Wen Su),闕居振(Chu-Chen Chueh)
dc.subject.keyword高頻應用,可撓性,低介電常數,低消散因子,接著劑,聚苯醚高分子,氧化聚合,zh_TW
dc.subject.keywordhigh frequency,flexible,low dielectric constant,low dissipation factor,adhesive materials,poly (phenylene ether),oxidative polymerization,en
dc.relation.page131
dc.identifier.doi10.6342/NTU201702189
dc.rights.note有償授權
dc.date.accepted2017-11-10
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
4.58 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved