Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 生化科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68192
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡明道
dc.contributor.author"Liang Hin, Lim"en
dc.contributor.author林良興zh_TW
dc.date.accessioned2021-06-17T02:14:28Z-
dc.date.available2021-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-11-13
dc.identifier.citation1. Willis, N. and N. Rhind, Regulation of DNA replication by the S-phase DNA damage checkpoint. Cell Div, 2009. 4: p. 13.
2. Hoeijmakers, J.H., DNA damage, aging, and cancer. N Engl J Med, 2009. 361(15): p. 1475-85.
3. Boland, C.R., et al., Infection, inflammation, and gastrointestinal cancer. Gut, 2005. 54(9): p. 1321-31.
4. Altieri, F., et al., DNA damage and repair: from molecular mechanisms to health implications. Antioxid Redox Signal, 2008. 10(5): p. 891-937.
5. Krokan, H.E. and M. Bjoras, Base excision repair. Cold Spring Harb Perspect Biol, 2013. 5(4): p. a012583.
6. Fortini, P., et al., Different DNA polymerases are involved in the short- and long-patch base excision repair in mammalian cells. Biochemistry, 1998. 37(11): p. 3575-80.
7. Doetsch, P.W. and R.P. Cunningham, The enzymology of apurinic/apyrimidinic endonucleases. Mutat Res, 1990. 236(2-3): p. 173-201.
8. Mosbaugh, D.W. and S.E. Bennett, Uracil-excision DNA repair. Prog Nucleic Acid Res Mol Biol, 1994. 48: p. 315-70.
9. Piersen, C.E., et al., Evidence for an imino intermediate in the DNA polymerase beta deoxyribose phosphate excision reaction. J Biol Chem, 1996. 271(30): p. 17811-5.
10. Kubota, Y., et al., Reconstitution of DNA base excision-repair with purified human proteins: interaction between DNA polymerase beta and the XRCC1 protein. EMBO J, 1996. 15(23): p. 6662-70.
11. Houtgraaf, J.H., J. Versmissen, and W.J. van der Giessen, A concise review of DNA damage checkpoints and repair in mammalian cells. Cardiovasc Revasc Med, 2006. 7(3): p. 165-72.
12. Dianov, G.L., et al., Replication protein A stimulates proliferating cell nuclear antigen-dependent repair of abasic sites in DNA by human cell extracts. Biochemistry, 1999. 38(34): p. 11021-5.
13. Ramadan, K., I. Shevelev, and U. Hubscher, The DNA-polymerase-X family: controllers of DNA quality? Nat Rev Mol Cell Biol, 2004. 5(12): p. 1038-43.
14. Prasad, R., et al., Specific interaction of DNA polymerase beta and DNA ligase I in a multiprotein base excision repair complex from bovine testis. J Biol Chem, 1996. 271(27): p. 16000-7.
15. Kumar, A., et al., Studies of the domain structure of mammalian DNA polymerase beta. Identification of a discrete template binding domain. J Biol Chem, 1990. 265(4): p. 2124-31.
16. Beard, W.A. and S.H. Wilson, Purification and domain-mapping of mammalian DNA polymerase beta. Methods Enzymol, 1995. 262: p. 98-107.
17. Beard, W.A. and S.H. Wilson, Structure and mechanism of DNA polymerase Beta. Chem Rev, 2006. 106(2): p. 361-82.
18. Matsumoto, Y. and K. Kim, Excision of deoxyribose phosphate residues by DNA polymerase beta during DNA repair. Science, 1995. 269(5224): p. 699-702.
19. Pelletier, H., et al., Structures of ternary complexes of rat DNA polymerase beta, a DNA template-primer, and ddCTP. Science, 1994. 264(5167): p. 1891-903.
20. Kelman, Z. and M. O'Donnell, Structural and functional similarities of prokaryotic and eukaryotic DNA polymerase sliding clamps. Nucleic Acids Res, 1995. 23(18): p. 3613-20.
21. Wyman, C. and M. Botchan, DNA replication. A familiar ring to DNA polymerase processivity. Curr Biol, 1995. 5(4): p. 334-7.
22. Moldovan, G.L., B. Pfander, and S. Jentsch, PCNA, the maestro of the replication fork. Cell, 2007. 129(4): p. 665-79.
23. Punchihewa, C., et al., Identification of small molecule proliferating cell nuclear antigen (PCNA) inhibitor that disrupts interactions with PIP-box proteins and inhibits DNA replication. J Biol Chem, 2012. 287(17): p. 14289-300.
24. Klungland, A. and T. Lindahl, Second pathway for completion of human DNA base excision-repair: reconstitution with purified proteins and requirement for DNase IV (FEN1). EMBO J, 1997. 16(11): p. 3341-8.
25. Kedar, P.S., et al., Direct interaction between mammalian DNA polymerase beta and proliferating cell nuclear antigen. J Biol Chem, 2002. 277(34): p. 31115-23.
26. Nichols, A.F. and A. Sancar, Purification of PCNA as a nucleotide excision repair protein. Nucleic Acids Res, 1992. 20(13): p. 2441-6.
27. Shivji, K.K., M.K. Kenny, and R.D. Wood, Proliferating cell nuclear antigen is required for DNA excision repair. Cell, 1992. 69(2): p. 367-74.
28. Scott, M., et al., UV-induced binding of ING1 to PCNA regulates the induction of apoptosis. J Cell Sci, 2001. 114(Pt 19): p. 3455-62.
29. Hasan, S., et al., Transcription coactivator p300 binds PCNA and may have a role in DNA repair synthesis. Nature, 2001. 410(6826): p. 387-91.
30. Park, S.Y., et al., Structural and Functional Insight into Proliferating Cell Nuclear Antigen. J Microbiol Biotechnol, 2016. 26(4): p. 637-47.
31. Krishna, T.S., et al., Crystal structure of the eukaryotic DNA polymerase processivity factor PCNA. Cell, 1994. 79(7): p. 1233-43.
32. Ivanov, I., et al., Proliferating cell nuclear antigen loaded onto double-stranded DNA: dynamics, minor groove interactions and functional implications. Nucleic Acids Res, 2006. 34(20): p. 6023-33.
33. Warbrick, E., The puzzle of PCNA's many partners. Bioessays, 2000. 22(11): p. 997-1006.
34. Hingorani, M.M. and M. O'Donnell, Sliding clamps: a (tail)ored fit. Curr Biol, 2000. 10(1): p. R25-9.
35. Jonsson, Z.O., R. Hindges, and U. Hubscher, Regulation of DNA replication and repair proteins through interaction with the front side of proliferating cell nuclear antigen. EMBO J, 1998. 17(8): p. 2412-25.
36. Naryzhny, S.N., Proliferating cell nuclear antigen: a proteomics view. Cell Mol Life Sci, 2008. 65(23): p. 3789-808.
37. Winter, J.A. and K.A. Bunting, Rings in the extreme: PCNA interactions and adaptations in the archaea. Archaea, 2012. 2012: p. 951010.
38. Maga, G. and U. Hubscher, Proliferating cell nuclear antigen (PCNA): a dancer with many partners. J Cell Sci, 2003. 116(Pt 15): p. 3051-60.
39. Sims, R.J., 3rd, et al., The C-terminal domain of RNA polymerase II is modified by site-specific methylation. Science, 2011. 332(6025): p. 99-103.
40. Yu, Z., et al., A mouse PRMT1 null allele defines an essential role for arginine methylation in genome maintenance and cell proliferation. Mol Cell Biol, 2009. 29(11): p. 2982-96.
41. El-Andaloussi, N., et al., Arginine methylation regulates DNA polymerase beta. Mol Cell, 2006. 22(1): p. 51-62.
42. Pahlich, S., R.P. Zakaryan, and H. Gehring, Protein arginine methylation: Cellular functions and methods of analysis. Biochim Biophys Acta, 2006. 1764(12): p. 1890-903.
43. Yang, Y. and M.T. Bedford, Protein arginine methyltransferases and cancer. Nat Rev Cancer, 2013. 13(1): p. 37-50.
44. Bedford, M.T., Arginine methylation at a glance. J Cell Sci, 2007. 120(Pt 24): p. 4243-6.
45. Wei, H., et al., Protein arginine methylation of non-histone proteins and its role in diseases. Cell Cycle, 2014. 13(1): p. 32-41.
46. Boffa, L.C., et al., Distribution of NG, NG,-dimethylarginine in nuclear protein fractions. Biochem Biophys Res Commun, 1977. 74(3): p. 969-76.
47. Tripsianes, K., et al., Structural basis for dimethylarginine recognition by the Tudor domains of human SMN and SPF30 proteins. Nat Struct Mol Biol, 2011. 18(12): p. 1414-20.
48. Frankel, A., et al., The novel human protein arginine N-methyltransferase PRMT6 is a nuclear enzyme displaying unique substrate specificity. J Biol Chem, 2002. 277(5): p. 3537-43.
49. Kleinschmidt, M.A., et al., Cell cycle regulation by the PRMT6 arginine methyltransferase through repression of cyclin-dependent kinase inhibitors. PLoS One, 2012. 7(8): p. e41446.
50. Phalke, S., et al., p53-Independent regulation of p21Waf1/Cip1 expression and senescence by PRMT6. Nucleic Acids Res, 2012. 40(19): p. 9534-42.
51. Stein, C., et al., The arginine methyltransferase PRMT6 regulates cell proliferation and senescence through transcriptional repression of tumor suppressor genes. Nucleic Acids Res, 2012. 40(19): p. 9522-33.
52. Yoshimatsu, M., et al., Dysregulation of PRMT1 and PRMT6, Type I arginine methyltransferases, is involved in various types of human cancers. Int J Cancer, 2011. 128(3): p. 562-73.
53. Bonnefond, L., et al., Functional insights from high resolution structures of mouse protein arginine methyltransferase 6. J Struct Biol, 2015. 191(2): p. 175-83.
54. Watson, A.A. and C.A. O'Callaghan, Crystallization and X-ray diffraction analysis of human CLEC-2. Acta Crystallogr Sect F Struct Biol Cryst Commun, 2005. 61(Pt 12): p. 1094-6.
55. Kundrot, C.E., Which strategy for a protein crystallization project? Cell Mol Life Sci, 2004. 61(5): p. 525-536.
56. Cudney, R., et al., Screening and optimization strategies for macromolecular crystal growth. Acta Crystallogr D Biol Crystallogr, 1994. 50(Pt 4): p. 414-23.
57. Sousa, R., Use of glycerol, polyols and other protein structure stabilizing agents in protein crystallization. Acta Crystallogr D Biol Crystallogr, 1995. 51(Pt 3): p. 271-7.
58. Trakhanov, S. and F.A. Quiocho, Influence of divalent cations in protein crystallization. Protein Sci, 1995. 4(9): p. 1914-9.
59. Bergfors, T., Seeds to crystals. J Struct Biol, 2003. 142(1): p. 66-76.
60. Heras, B., et al., Dehydration converts DsbG crystal diffraction from low to high resolution. Structure, 2003. 11(2): p. 139-45.
61. Abergel, C., Spectacular improvement of X-ray diffraction through fast desiccation of protein crystals. Acta Crystallogr D Biol Crystallogr, 2004. 60(Pt 8): p. 1413-6.
62. Heras, B. and J.L. Martin, Post-crystallization treatments for improving diffraction quality of protein crystals. Acta Crystallogr D Biol Crystallogr, 2005. 61(Pt 9): p. 1173-80.
63. Quiocho, F.A. and F.M. Richards, Intermolecular Cross Linking of a Protein in the Crystalline State: Carboxypeptidase-A. Proc Natl Acad Sci U S A, 1964. 52: p. 833-9.
64. Otwinowski, Z. and W. Minor, Processing of X-ray diffraction data collected in oscillation mode. Methods Enzymol, 1997. 276: p. 307-26.
65. Matthews, B.W., Solvent content of protein crystals. J Mol Biol, 1968. 33(2): p. 491-7.
66. Kantardjieff, K.A. and B. Rupp, Matthews coefficient probabilities: Improved estimates for unit cell contents of proteins, DNA, and protein-nucleic acid complex crystals. Protein Sci, 2003. 12(9): p. 1865-71.
67. Adams, P.D., et al., PHENIX: a comprehensive Python-based system for macromolecular structure solution. Acta Crystallogr D Biol Crystallogr, 2010. 66(Pt 2): p. 213-21.
68. Gulbis, J.M., et al., Structure of the C-terminal region of p21(WAF1/CIP1) complexed with human PCNA. Cell, 1996. 87(2): p. 297-306.
69. Sawaya, M.R., et al., Crystal structure of rat DNA polymerase beta: evidence for a common polymerase mechanism. Science, 1994. 264(5167): p. 1930-5.
70. Battye, T.G., et al., iMOSFLM: a new graphical interface for diffraction-image processing with MOSFLM. Acta Crystallogr D Biol Crystallogr, 2011. 67(Pt 4): p. 271-81.
71. Schuck, P., Size-distribution analysis of macromolecules by sedimentation velocity ultracentrifugation and lamm equation modeling. Biophys J, 2000. 78(3): p. 1606-19.
72. Sakurai, S., et al., Structural basis for recruitment of human flap endonuclease 1 to PCNA. EMBO J, 2005. 24(4): p. 683-93.
73. Mayanagi, K., et al., Architecture of the DNA polymerase B-proliferating cell nuclear antigen (PCNA)-DNA ternary complex. Proc Natl Acad Sci U S A, 2011. 108(5): p. 1845-9.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68192-
dc.description.abstractDNA polymerase beta (Pol beta) is a key enzyme involved in base excision repair and other DNA metabolism pathway involving gap-filling DNA synthesis. Recently, numerous of biochemical studies illustrated that Pol beta interacts with various proteins and the properties of the enzyme changed during the interaction event. However, there is no any structural and mechanism study about Pol beta with interacting partners has been solved and published until now. In the first part of the present study, we aim to understand the binding mechanism of Pol beta with proliferating cell nuclear antigen (PCNA) by determining the crystal structures of Pol beta/PCNA complex and the Pol beta/PCNA/DNA ternary complex. We have succeeded to obtain the of Pol beta/PCNA complex crystals and the Pol beta/PCNA/DNA ternary complex crystals and both of the complexes only diffracted to 4.5 Å resolution. The diffraction analysis indicated that Pol beta/PCNA complex belonged to space group P222, with unit-cell parameters a = 63, b = 155, c = 185 Å and the Pol beta/PCNA/DNA ternary complex belonged to space group P1, with unit-cell parameters a = 74, b = 111, c = 113 Å. We will further to optimize the crystallization conditions as well as the cryo-protection conditions to facilitate structural determination.

The second part of this study, we focus on the binding mechanism of Pol beta with protein arginine methyltransferase 6 (PRMT6) by determining the crystal structure. Our result showed that Pol beta binds to PRMT6 tightly with a Kd value of 16.8 ± 2.7 μM. However, we failed to crystallize the Pol beta/PRMT6 complex and we only crystallized PRMT6 alone at the crystallization experiments. We will also continue to screen for the optimized conditions and also the additive that can stabilize and crystalize the Pol beta/ PRMT6 complex for the structure determination.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:14:28Z (GMT). No. of bitstreams: 1
ntu-106-R01b46012-1.pdf: 4280957 bytes, checksum: cff33f444e7d15d1cf815ee8877829bb (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents論文口試委員審定書 i
謝誌 ii
中文摘要 iii
Abstract iv
Table of contents vi
List of Figures viii
List of Tables x
Chapter 1 Introduction 1
1-1 DNA Damage and Repair 1
1-2 Base Excision Repair (BER) 2
1-3 DNA Polymerase Beta ( Pol beta) 4
1-4 Proliferating Cell Nuclear Antigen (PCNA) 6
1-5 The Interaction of Pol beta and PCNA 8
1-6 Protein Arginine Methyltransferases(PRMTs) 9
1-7 Protein Arginine Methyltransferase 6(PRMT6) 11
1-8 The Interaction of Pol beta and PRMT6 13
1-9 The Scope of This Thesis 14
Chapter 2 Materials and Methods 15
2-1 The Structural Study of Pol Beta/PCNA/DNA Complex 15
2-1-1 Overexpression and Purification of Pol beta 15
2-1-2 Overexpression and Purification of PCNA 17
2-1-3 DNA Annealing 18
2-1-4 The Preparation of Pol beta/PCNA Complex 20
2-1-5 The Preparation of Pol Beta/PCNA/DNA Complex 20
2-1-6 The Crystallization of Pol beta/PCNA Complex 22
2-1-7 The Crystallization of Pol Beta/PCNA/DNA Complex 26

2-1-8 Data Collection and Processing 31
2-2 The Structural Study of Pol Beta/PRMT6 Complex 33
2-2-1 Overexpression and Purification of Human PRMT6 33
2-2-2 Overexpression and Purification of Mouse PRMT6 35
2-2-3 The Preparation of Pol Beta/Mouse PRMT6 Complex 36
2-2-4 Characterizing Pol Beta/Mouse PRMT6 by Analytical Ultracentrifugation (AUC)
2-2-5 The Biolayer Interferometry Study of Pol Beta and Mouse PRMT6 38
2-2-6 The Crystallization of Pol Beta/Mouse PRMT6 Complex 38
2-2-7 Data Collection and Processing 41
Chapter 3 Results and Discussions 42
3-1 The Structural Study of Pol Beta/PCNA/DNA Complex 42
3-1-1 The Characteristic of Pol Beta/PCNA Complex in Solution 42
3-1-2 The Crystallization of Pol Beta/PCNA Complex 44
3-1-3 The Characteristic of Pol Beta/PCNA/DNA Complex in Solution 48
3-1-4 The Crystallization of Pol Beta/PCNA/DNA Complex 50
3-2 The Structural Study of Pol Beta/PRMT6 Complex 52
3-2-1 The Characteristic of Human PRMT6 and Mouse PRMT6 52
3-2-2 The Characteristic of Pol beta/mouse PRMT6 Complex in Solution. 52
3-2-3 The Crystallization of Pol Beta/ Mouse PRMT6 Complex 55
References 56
Appendixes 61
dc.language.isoen
dc.subjectPRMT6zh_TW
dc.subject甲基移??zh_TW
dc.subject鹼基切除修復zh_TW
dc.subjectPCNAzh_TW
dc.subjectDNA聚合?βzh_TW
dc.subjectX-ray繞射zh_TW
dc.subjectX-rayen
dc.subjectPCNAen
dc.subjectBERen
dc.subjectMethyltransferaseen
dc.subjectPRMT6en
dc.subjectDNA polymerase betaen
dc.titleDNA 聚合酶 β與其交互作用蛋白之結構機制探討zh_TW
dc.titleStructural Studies of DNA Polymerase Beta with Interacting Partnersen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee張震東,張茂山
dc.subject.keywordDNA聚合?β,PCNA,鹼基切除修復,甲基移??,PRMT6,X-ray繞射,zh_TW
dc.subject.keywordDNA polymerase beta,PCNA,BER,Methyltransferase,PRMT6,X-ray,en
dc.relation.page90
dc.identifier.doi10.6342/NTU201704361
dc.rights.note有償授權
dc.date.accepted2017-11-13
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept生化科學研究所zh_TW
顯示於系所單位:生化科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved