Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生命科學院
  3. 植物科學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68163
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor金洛仁(Laurent Zimmerli)
dc.contributor.authorYu-Hung Yehen
dc.contributor.author葉鈺鴻zh_TW
dc.date.accessioned2021-06-17T02:13:49Z-
dc.date.available2023-03-01
dc.date.copyright2018-03-01
dc.date.issued2017
dc.date.submitted2017-11-27
dc.identifier.citationAcharya, B.R., Raina, S., Maqbool, S.B., Jagadeeswaran, G., Mosher, S.L., Appel, H.M., Schultz, J.C., Klessig, D.F., and Raina, R. (2007). Overexpression of CRK13, an Arabidopsis cysteine-rich receptor-like kinase, results in enhanced resistance to Pseudomonas syringae. Plant J. 50: 488-499.
Albrecht, C., Boutrot, F., Segonzac, C., Schwessinger, B., Gimenez-Ibanez, S., Chinchilla, D., Rathjen, J.P., de Vries, S.C., and Zipfel, C. (2012). Brassinosteroids inhibit pathogen-associated molecular pattern-triggered immune signaling independent of the receptor kinase BAK1. Proc. Natl. Acad. Sci. USA 109: 303-308.
Apel, K., and Hirt, H. (2004). Reactive oxygen species: Metabolism, oxidative stress, and signal transduction. Annu. Rev. Plant Biol. 55: 373-399.
Belkhadir, Y., Jaillais, Y., Epple, P., Balsemao-Pires, E., Dangl, J.L., and Chory, J. (2012). Brassinosteroids modulate the efficiency of plant immune responses to microbe-associated molecular patterns. Proc. Natl. Acad. Sci. USA 109: 297-302.
Bourdais, G., Burdiak, P., Gauthier, A., Nitsch, L., Salojarvi, J., Rayapuram, C., Idanheimo, N., Hunter, K., Kimura, S., Merilo, E., Vaattovaara, A., Oracz, K., Kaufholdt, D., Pallon, A., Anggoro, D.T., Glow, D., Lowe, J., Zhou, J., Mohammadi, O., Puukko, T., Albert, A., Lang, H., Ernst, D., Kollist, H., Brosche, M., Durner, J., Borst, J.W., Collinge, D.B., Karpinski, S., Lyngkjaer, M.F., Robatzek, S., Wrzaczek, M., Kangasjarvi, J., and Consortium, C. (2015). Large-scale phenomics identifies primary and fine-tuning roles for CRKs in responses related to oxidative stress. Plos Genet. 11: e1005373
Chen, K., Du, L., and Chen, Z. (2003). Sensitization of defense responses and activation of programmed cell death by a pathogen-induced receptor-like protein kinase in Arabidopsis. Plant Mol. Biol. 53: 61-74.
Chen, K., Fan, B., Du, L., and Chen, Z. (2004). Activation of hypersensitive cell death by pathogen-induced receptor-like protein kinases from Arabidopsis. Plant Mol. Biol. 56: 271-283.
Chen, Z.X. (2001). A superfamily of proteins with novel cysteine-rich repeats. Plant Physiol. 126: 473-476.
Chinchilla, D., Shan, L., He, P., de Vries, S., and Kemmerling, B. (2009). One for all: the receptor-associated kinase BAK1. Trends Plant Sci. 14: 535-541.
Chinchilla, D., Zipfel, C., Robatzek, S., Kemmerling, B., Nurnberger, T., Jones, J.D., Felix, G., and Boller, T. (2007). A flagellin-induced complex of the receptor FLS2 and BAK1 initiates plant defence. Nature 448: 497-500.
Chory, J., Nagpal, P., and Peto, C.A. (1991). phenotypic and genetic-analysis of det2, a new mutant that affects light-regulated seedling development in Arabidopsis. Plant Cell 3: 445-459.
Couto, D., and Zipfel, C. (2016). Regulation of pattern recognition receptor signalling in plants. Nat. Rev. Immunol. 16: 537-552.
Clark, S.E., Jacobsen, S.E., Levin, J.Z., and Meyerowitz, E.M. (1996). The CLAVATA and SHOOT MERISTEMLESS loci competitively regulate meristem activity in Arabidopsis. Development 122: 1567-1575.
Clouse, S.D., and Sasse, J.M. (1998). Brassinosteroids: Essential regulators of plant growth and development. Annu. Rev. Plant Phys. 49: 427-451
Cutler, S.R., Ehrhardt, D.W., Griffitts, J.S., and Somerville, C.R. (2000). Random GFP :: cDNA fusions enable visualization of subcellular structures in cells of Arabidopsis at a high frequency. Proc. Natl. Acad. Sci. USA 97: 3718-3723.
de Oliveira, M.V., Xu, G., Li, B., de Souza Vespoli, L., Meng, X., Chen, X., Yu, X., de Souza, S.A., Intorne, A.C., de, A.M.A.M., Musinsky, A.L., Koiwa, H., de Souza Filho, G.A., Shan, L., and He, P. (2016). Specific control of Arabidopsis BAK1/SERK4-regulated cell death by protein glycosylation. Nat. Plants 2: 15218.
De Smet, I., Voss, U., Jurgens, G., and Beeckman, T. (2009). Receptor-like kinases shape the plant. Nat. Cell Biol. 11: 1166-1173.
Desclos-Theveniau, M., Arnaud, D., Huang, T.Y., Lin, G.J.C., Chen, W.Y., Lin, Y.C., and Zimmerli, L. (2012). The Arabidopsis lectin receptor kinase LecRK-V.5 represses stomatal immunity induced by Pseudomonassyringae pv. tomato DC3000. Plos Pathog. 8: e1002513
Dievart, A., Dalal, M., Tax, F.E., Lacey, A.D., Huttly, A., Li, J.M., and Clark, S.E. (2003). CLAVATA1 dominant-negative alleles reveal functional overlap between multiple receptor kinases that regulate meristem and organ development. Plant Cell 15: 1198-1211.

Ederli, L., Madeo, L., Calderini, O., Gehring, C., Moretti, C., Buonaurio, R., Paolocci, F., and Pasqualini, S. (2011). The Arabidopsis thaliana cysteine-rich receptor-like kinase CRK20 modulates host responses to Pseudomonas syringae pv. tomato DC3000 infection. J. Plant Physiol. 168: 1784-1794.
Fan, M., Bai, M.Y., Kim, J.G., Wang, T.N., Oh, E., Chen, L., Park, C.H., Son, S.H., Kim, S.K., Mudgett, M.B., and Wang, Z.Y. (2014). The bHLH transcription factor hbi1 mediates the trade-off between growth and pathogen-associated molecular pattern-triggered immunity in Arabidopsis. Plant Cell 26: 828-841.
Gomez-Gomez, L., and Boller, T. (2000). FLS2: an LRR receptor-like kinase involved in the perception of the bacterial elicitor flagellin in Arabidopsis. Mol. Cell 5: 1003-1011.
Halter, T., Imkampe, J., Blaum, B.S., Stehle, T., and Kemmerling, B. (2014a). BIR2 affects complex formation of BAK1 with ligand binding receptors in plant defense. Plant Signal Behav. 9: e28944
Halter, T., Imkampe, J., Mazzotta, S., Wierzba, M., Postel, S., Bucherl, C., Kiefer, C., Stahl, M., Chinchilla, D., Wang, X.F., Nurnberger, T., Zipfel, C., Clouse, S., Borst, J.W., Boeren, S., de Vries, S.C., Tax, F., and Kemmerling, B. (2014b). The leucine-rich repeat receptor kinase BIR2 is a negative regulator of BAK1 in plant immunity. Curr. Biol. 24: 134-143.
Huang, P.Y., Yeh, Y.H., Liu, A.C., Cheng, C.P., and Zimmerli, L. (2014). The Arabidopsis LecRK-VI.2 associates with the pattern-recognition receptor FLS2 and primes Nicotiana benthamiana pattern-triggered immunity. Plant J. 79: 243-255.
Huot, B., Yao, J., Montgomery, B.L., and He, S.Y. (2014). Growth-defense tradeoffs in plants: a balancing act to optimize fitness. Mol. Plant 7: 1267-1287.
Jimenez-Gongora, T., Kim, S.K., Lozano-Duran, R., and Zipfel, C. (2015). Flg22-triggered immunity negatively regulates key BR biosynthetic genes. Front. Plant Sci. 6: 981.
Jones, J.D., and Dangl, J.L. (2006). The plant immune system. Nature 444: 323-329.

Lee, L.Y., and Gelvin, S.B. (2014). Bimolecular fluorescence complementation for imaging protein interactions in plant hosts of microbial pathogens. Methods Mol. Biol. 1197: 185-208.
Lozano-Duran, R., and Zipfel, C. (2015). Trade-off between growth and immunity: role of brassinosteroids. Trends Plant Sci. 20: 12-19.
Lozano-Duran, R., Macho, A.P., Boutrot, F., Segonzac, C., Somssich, I.E., and Zipfel, C. (2013). The transcriptional regulator BZR1 mediates trade-off between plant innate immunity and growth. elife 2: e00983.
Lu, D., Lin, W., Gao, X., Wu, S., Cheng, C., Avila, J., Heese, A., Devarenne, T.P., He, P., and Shan, L. (2011). Direct ubiquitination of pattern recognition receptor FLS2 attenuates plant innate immunity. Science 332: 1439-1442.
Lu, D.P., Wu, S.J., Gao, X.Q., Zhang, Y.L., Shan, L.B., and He, P. (2010). A receptor-like cytoplasmic kinase, BIK1, associates with a flagellin receptor complex to initiate plant innate immunity. Proc. Natl. Acad. Sci. USA 107: 496-501.
Luna, E., Pastor, V., Robert, J., Flors, V., Mauch-Mani, B., and Ton, J. (2011). Callose deposition: a multifaceted plant defense response. Mol. Plant Microbe In. 24: 183-193.
Malinovsky, F.G., Batoux, M., Schwessinger, B., Youn, J.H., Stransfeld, L., Win, J., Kim, S.K., and Zipfel, C. (2014). Antagonistic regulation of growth and immunity by the Arabidopsis basic helix-loop-helix transcription factor homolog of brassinosteroid enhanced expression2 interacting with increased leaf inclination1 binding bHLH1. Plant Physiol. 164: 1443-1455.
Martinez-Trujillo, M., Limones-Briones, V., Cabrera-Ponce, J.L., and Herrera-Estrella, L. (2004). Improving transformation efficiency of Arabidopsis thaliana by modifying the floral dip method. Plant Mol. Biol. Rep. 22: 63-70.
Melotto, M., Underwood, W., Koczan, J., Nomura, K., and He, S.Y. (2006). Plant stomata function in innate immunity against bacterial invasion. Cell 126: 969-980.
Monaghan, J., and Zipfel, C. (2012). Plant pattern recognition receptor complexes at the plasma membrane. Curr. Opin. Plant Biol. 15: 349-357.

Monaghan, J., Matschi, S., Shorinola, O., Rovenich, H., Matei, A., Segonzac, C., Malinovsky, F.G., Rathjen, J.P., MacLean, D., Romeis, T., and Zipfel, C. (2014). The calcium-dependent protein kinase CPK28 buffers plant immunity and regulates BIK1 turnover. Cell Host Microbe 16: 605-615.
Nam, K.H., and Li, J.M. (2002). BRI1/BAK1, a receptor kinase pair mediating brassinosteroid signaling. Cell 110: 203-212.
Nemhauser, J.L., Hong, F.X., and Chory, J. (2006). Different plant hormones regulate similar processes through largely nonoverlapping transcriptional responses. Cell 126: 467-475.
Ogawa, M. (2008). Arabidopsis CLV3 peptide directly binds CLV1 ectodomain. Science 319: 901-901.
Pieterse, C.M., Leon-Reyes, A., Van der Ent, S., and Van Wees, S.C. (2009). Networking by small-molecule hormones in plant immunity. Nat. Chem. Biol. 5: 308-316.
Shiu, S.H., and Bleecker, A.B. (2001). Plant receptor-like kinase gene family: diversity, function, and signaling. Sci. STKE 2001: re22.
Shiu, S.H., Karlowski, W.M., Pan, R.S., Tzeng, Y.H., Mayer, K.F.X., and Li, W.H. (2004). Comparative analysis of the receptor-like kinase family in Arabidopsis and rice. Plant Cell 16: 1220-1234.
Singh, P., Kuo, Y.C., Mishra, S., Tsai, C.H., Chien, C.C., Chen, C.W., Desclos-Theveniau, M., Chu, P.W., Schulze, B., Chinchilla, D., Boller, T., and Zimmerli, L. (2012). The Lectin Receptor Kinase-VI.2 is required for priming and positively regulates Arabidopsis pattern-triggered immunity. Plant Cell 24: 1256-1270.
Smith, J.M., Salamango, D.J., Leslie, M.E., Collins, C.A., and Heese, A. (2014). Sensitivity to flg22 is modulated by ligand-induced degradation and de novo synthesis of the endogenous flagellin-receptor FLAGELLIN-SENSING2. Plant Physiol. 164: 440-454.
Tanaka, H., Osakabe, Y., Katsura, S., Mizuno, S., Maruyama, K., Kusakabe, K., Mizoi, J., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2012). Abiotic stress-inducible receptor-like kinases negatively control ABA signaling in Arabidopsis. Plant J. 70: 599-613.
Walker, J.C. (1994). Structure and function of the receptor-like protein-kinases of higher-plants. Plant MolBiol26: 1599-1609.
Walter, M., Chaban, C., Schutze, K., Batistic, O., Weckermann, K., Nake, C., Blazevic, D., Grefen, C., Schumacher, K., Oecking, C., Harter, K., and Kudla, J. (2004). Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 40: 428-438.
Wang, Z.Y. (2012). Brassinosteroids modulate plant immunity at multiple levels. Proc. Natl. Acad. Sci. USA 109: 7-8.
Wang, Z.Y., Seto, H., Fujioka, S., Yoshida, S., and Chory, J. (2001). BRI1 is a critical component of a plasma-membrane receptor for plant steroids. Nature 411: 219-219.
Wang, Z.Y., Nakano, T., Gendron, J., He, J., Chen, M., Vafeados, D., Yang, Y., Fujioka, S., Yoshida, S., Asami, T., and Chory, J. (2002). Nuclear-localized BZR1 mediates brassinosteroid-induced growth and feedback suppression of brassinosteroid biosynthesis. Dev. Cell 2: 505-513.
Wrzaczek, M., Brosche, M., Salojarvi, J., Kangasjarvi, S., Idanheimo, N., Mersmann, S., Robatzek, S., Karpinski, S., Karpinska, B., and Kangasjarvi, J. (2010). Transcriptional regulation of the CRK/DUF26 group of Receptor-like protein kinases by ozone and plant hormones in Arabidopsis. Bmc Plant Biol10.
Wu, G., Wang, X., Li, X., Kamiya, Y., Otegui, M.S., and Chory, J. (2011). Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci. Signal. 4: ra29.
Yadeta, K.A., Elmore, J.M., Creer, A.Y., Feng, B., Franco, J.Y., Rufian, J.S., He, P., Phinney, B., and Coaker, G. (2017). A cysteine-rich protein kinase associates with a membrane immune complex and the cysteine residues are required for cell death. Plant Physiol. 173: 771-787.
Yeh, Y.H., Chang, Y.H., Huang, P.Y., Huang, J.B., and Zimmerli, L. (2015). Enhanced Arabidopsis pattern-triggered immunity by overexpression of cysteine-rich receptor-like kinases. Front. Plant Sci. 6: 322.
Yeh, Y.H., Panzeri, D., Kadota, Y., Huang, Y.C., Huang, P.Y., Tao, C.N., Roux, M., Chien, H.C., Chin, T.C., Chu, P.W., Zipfel, C., and Zimmerli, L. (2016). The Arabidopsis malectin-like/LRR-RLK IOS1 is critical for BAK1-dependent and BAK1-independent pattern-triggered immunity. Plant Cell 28: 1701-1721.
Yin, Y., Wang, Z.Y., Mora-Garcia, S., Li, J., Yoshida, S., Asami, T., and Chory, J. (2002). BES1 accumulates in the nucleus in response to brassinosteroids to regulate gene expression and promote stem elongation. Cell 109: 181-191.
Yoo, S.D., Cho, Y.H., and Sheen, J. (2007). Arabidopsis mesophyll protoplasts: a versatile cell system for transient gene expression analysis. Nat. Protoc. 2: 1565-1572.
Zhang, X.J., Han, X.M., Shi, R., Yang, G.Y., Qi, L.W., Wang, R.G., and Li, G.J. (2013). Arabidopsis cysteine-rich receptor-like kinase 45 positively regulates disease resistance to Pseudomonas syringae. Plant PhysiolBioch73: 383-391.
Zimmerli, L., Jakab, G., Metraux, J.P., and Mauch-Mani, B. (2000). Potentiation of pathogen-specific defense mechanisms in Arabidopsis by beta -aminobutyric acid. Proc. Natl. Acad. Sci. USA 97: 12920-12925.
Zipfel, C., Robatzek, S., Navarro, L., Oakeley, E.J., Jones, J.D., Felix, G., and Boller, T. (2004). Bacterial disease resistance in Arabidopsis through flagellin perception. Nature 428: 764-767.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68163-
dc.description.abstract在阿拉伯芥細胞膜上的受體激酶蛋白質,可以辨識微生物或病原菌相關分子模式,進而啟動植物抗病反應。例如,模式辨識受體FLS2可以辨識病原菌的鞭毛,進而啟動植物初級免疫反應。由於,FLS2是透過與一群輔助受體蛋白質在生理上的結合,達成調控下游的初級免疫反應。因此,細胞膜上的受體激酶蛋白質,在植物誘發相對應抗病反應,以對抗病原菌的入侵扮演重要的角色。值得注意的是,我發現受體激酶蛋白質CRK4,CRK6,和CRK36也是FLS2 complex 中的一員,並且能強化初級免疫反應(Appendix 1)。另一方面,我也發現受體激酶蛋白質IOS1,可以促進FLS2與其的輔助受體蛋白質BAK1的結合,進而加速啟動初級免疫反應(Appendix 2)。在我第三個研究,我著重於植物的抗病反應與生長發育間的交互作。由於能量的限制,抗病反應與生長發育的交互作用是一個雙向的負調控作用。因此,植物也可透過消耗生長發育所需的能量,進而啟動初級免疫反應反應。在此研究中,我分析植物是如何透過受體激酶蛋白質CRK18,達成調控初級免疫反應和油菜素類固醇所誘導植物生長發育。結果顯示,CRK18可以透過和FLS2的結合以及維持FLS2蛋白質的含量,進而強化初級免疫反應。我也發現CRK18參與在初級免疫反應所誘發植物生長發育的負向調控。更進一步的研究成果顯示,初級免疫反應透過CRK18負向調控油菜素類固醇訊號傳遞,進而弱化了植物生長發育反應。因此,我們的研究指出,CRK18在植物的抗病反應與生長發育間的交互作扮演一個重要的角色,結果顯示CRK18參與在植物初級免疫反應與油菜素類固醇油菜素類固醇所誘導植物生長發育之間雙向的負調控作用。zh_TW
dc.description.abstractIn Arabidopsis, cell-surface receptor-like kinases (RLKs) such as the pattern recognition receptor (PRR) FLAGELLIN-SENSING 2 (FLS2) recognize bacterial microbe/pathogen-associated molecular patterns (MAMPs/PAMPs) such as flagellin (or its derived peptide flg22) to activate pattern-triggered immunity (PTI). Activation of PTI by FLS2 is performed through the physiological interaction with its co-receptors, such asBRI1-ASSOCIATION KINASE 1 (BAK1). Therefore, cell-surface RLKs play key roles in the activation of appropriate responses upon pathogen invasion. Notably, I showed that cysteine-rich RLK4 (CRK4), CRK6, and CRK36 are part of the PRR FLS2 complex and enhance PTI responses (Appendix 1). In addition, I also found that the RLK IMPAIRED OOMYCETE SUSCEPTIBILITY1 (IOS1) positively regulates PTI through the modulation of FLS2/BAK1 formation leading to a primed PTI response (Appendix 2). In my third project, I studied the crosstalk between defense and development. Notably, we know that due to resource restrictions, the crosstalk between defense and development is negative and bidirectional. Therefore, PTI could potentially promote defense at the expense of growth signaling. In this text, I focus on the crosstalk between PTI and growth-promoting brassinosteroids (BR) signaling through CRK18. I showed CRK18 enhances PTI responses through the association of FLS2 complex and maintenance of FLS2 protein levels. I also found CRK18 is involved in flg22-mediated plant growth inhibition. Further studies revealed that flg22-regulated CRK18 represses plant growth through the reduction of BR signaling. Thus, our results identify CRK18 as a key play in the tradeoff between immunity and development, revealing a negative and bidirectional crosstalk between PTI and BR signaling.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:13:49Z (GMT). No. of bitstreams: 1
ntu-106-D01b42002-1.pdf: 15972082 bytes, checksum: 7a20a8d66ec6d5980e86c875ef74a086 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract III
Summary 1
Introduction 3
Materials and methods 9
Biological materials and growth conditions 9
Generation of transgenic plants 9
Bacteria infection bioassay 10
Stomatal assay 10
ROS burst assay 11
Transcriptional activation analyses 12
Callose staining 12
In vitro pull-down assay 13
BiFC assay in Arabidopsis protoplast 14
Co-IP assay in Arabidopsis transgenic plant 14
Immunoblotting of FLS2 and BRI1 proteins 15
Plant growth inhibition assay 15
Hypocotyl length measurement 16
Results 17
CRK18 promotes disease resistance to bacterial pathogen 17
CRK18 is necessary for full PTI 18
CRK18 belongs to the FLS2/BAK1 PRR complex and maintains FLS2 protein levels 19
CRK18 restricts plant growth through PTI 22
CRK18 inhibits the BR transcriptional response and modulates the abundance of BRI1 23
Discussion 26
CRK18 is key for full PTI activation 26
CRK18 negatively regulates plant growth 28
CRK18 modulates the crosstalk between PTI and BR signaling 29
Conclusions and future perspectives 32
Figures 34
Figure 1. Structure of CRK18 genomic DNA and RT-PCR analysis in crk18 mutants. 34
Figure 2. Role of CRK18 in Arabidopsis disease resistance to Pst DC3000. 35
Figure 3. Flg22-induced up-regulation of CRK18 in Col-0 WT. 37
Figure 4. Role of CRK18 in PTI responses. 38
Figure 5. Role of CRK18 in callose deposition. 40
Figure 6. CRK18KD interaction with the FLS2KD and BAK1KD proteins. 41
Figure 7. CRK18 association with the FLS2/BAK1 PRR complex in a flg22-independent manner. 44
Figure 8. Flg22-reduced FLS2 protein levels. 45
Figure 9. Role of CRK18 in the maintenance of FLS2 protein. 46
Figure 10. Role of CRK18 in plant growth inhibition. 48
Figure 11. Expression of PTI marker genes in CRK18 OE lines. 50
Figure 12. CRK18 expression in bzr1-d and det2-1 mutants. 51
Figure 13. Hypocotyl length and BR-related gene expression in CRK18 OE lines. 52
Figure 14. BR-related gene expression in crk18 mutants. 54
Figure 15. Down-regulation of BRI1 abundance by CRK18. 56
Figure 16. A working model for CRK18 role in the crosstalk between PTI and BR signaling. 58
Table. 59
References 62
Appendix 69
Appendix 1 69
Appendix 2 81
dc.language.isoen
dc.title阿拉伯芥白胺酸重複受體激酶IOS1 與半胱胺酸重複受體激酶誘發初級免疫反應之功能性分析zh_TW
dc.titleFunctional Analysis of Arabidopsis Leucine-rich Repeat Receptor-like Kinase IOS1 and Cysteine-rich Receptor-like Kinases in Pattern-triggered Immunityen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee鄭秋萍,鄭貽生,張英?,王雅筠,林盈仲
dc.subject.keyword阿拉伯芥,模式辨識受體,初級免疫反應,油菜素類固醇訊號傳遞,zh_TW
dc.subject.keywordArabidopsis,pattern recognition receptor,pattern-triggered immunity,brassinosteroids signaling,en
dc.relation.page102
dc.identifier.doi10.6342/NTU201704412
dc.rights.note有償授權
dc.date.accepted2017-11-27
dc.contributor.author-college生命科學院zh_TW
dc.contributor.author-dept植物科學研究所zh_TW
顯示於系所單位:植物科學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
15.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved