請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68160
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 黃耀輝(Yaw-Huei Hwang) | |
dc.contributor.author | Guan-Han Huang | en |
dc.contributor.author | 黃冠涵 | zh_TW |
dc.date.accessioned | 2021-06-17T02:13:45Z | - |
dc.date.available | 2018-02-22 | |
dc.date.copyright | 2018-02-22 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-11-27 | |
dc.identifier.citation | 朱怡盈、黃于飛: 適用於不同尺寸顯示器之自動立體視差調整。[碩士論文] 國立宜蘭大學資訊工程學系研究所,台南,2015。
江致霖、陸定邦: 振動環境中顯像裝置之適視化模式。[碩士論文]國立成功大學工業設計研究所,台南,2010。 李明哲、鄭世岳: 以生理回饋評估不同照度環境電腦終端機作業視覺疲勞之研究。[碩士論文] 嘉南藥理大學職業安全衛生系研究所,台南,2017。 卓委樞、林彥輝: VDT作業眼睛疲勞預防之人因工程介入評估研究。[碩士論文] 中山醫學大學職業安全衛生學系研究所,台中,2015。 林書慨、陳賢堂: 視覺疲勞與眼睛調節系統之相關研究。[碩士論文] 中山醫學大學生物醫學科學學系研究所,台中,2015 林智祥、陳一平: 3D影像之立體感與舒適度探討。[博士論文] 國立交通大學應用藝術研究所,新竹,2014。 邱惟湘、郭峰淵: 大學生網路使用行為與熬夜現象之研究。[碩士論文] 國立中山大學資訊管理學系研究所,高雄,2013。 張群、林伯鴻: 3D影片類型、觀看時間和環境照度對使用者視覺疲勞的影響。[碩士論文] 華梵大學工業工程與經營資訊學系研究所,新北,2014。 陳忠助、謝光進: 螢幕類型與作業特性對視覺績效及視覺疲勞影響之研究。[碩士論文]國立台灣科技大學管理技術研究所,台北,1996。 陳明德、謝光進: 螢幕文字/背景色彩組與相關作業特性對視覺績效與視覺疲勞影響研究。[博士論文] 國立台灣科技大學管理技術研究所,台北,1997 陳翊翔、歐陽盟: 顯示器色彩之視覺疲勞研究。[碩士論文] 國立中央大學光電科學研究所,桃園,2007。 陶冠亨、歐陽盟: 利用立體顯示器探討視調節微顫動與眼壓對於視覺疲勞之研究。[碩士論文] 國立交通大學電控工程研究所,新竹,2013。 彭家瑋、吳欣潔: 面板技術與刺激型態對視覺疲勞出現時間之影響。[碩士論文]朝陽科技大學工業工程與管理系研究所,台中,2011。 湯禹舜、歐陽盟: 利用3D顯示平台探討視調節微動與視覺疲勞之研究。[碩士論文] 國立交通大學電控工程研究所,新竹,2012。 馮文陽、林久翔: 照明因子對視覺績效與視覺疲勞之影響。[碩士論文] 中原大學工業工程研究所,桃園,2001。 黃登傑、盧銘勳: 抗藍光眼鏡對視覺疲勞度影響。[碩士論文]逢甲大學工業工程與系統管理學系研究所,台中,2015。 黃歆如、洪一平: 利用運動視差和遮蔽加強深度知覺及其在互動顯示之應用。[碩士論文] 國立臺灣大學資訊網路與多媒體研究所,台北,2015。 楊媛茹、林晃巖: 凹凸面式視差障壁型裸眼式立體顯示器設計之研究。[碩士論文] 國立臺灣大學光電工程學研究所,台北,2016。 葉士豪、陳一平: 作業範圍大小對視覺注意力影響。[碩士論文]國立交通大學應用藝術研究所,新竹, 2004。 劉仲瑄、趙金榮: 3D顯示器與照明情境對裝配作業績效、視覺疲勞與生理訊號之影響。[碩士論文] 中原大學工業與系統工程研究所,桃園,2016。 簡鈞豪、吳欣潔: 四種眼睛疲勞恢復方法的評估。[碩士論文] 朝陽科技大學工業工程與管理系研究所,台中,2012。 魏健宏、何志宏、林佐鼎、蔡瓊宜、洪嘉亨:汽車駕駛模擬器運用於交通安全之探討。道路交通安全與執法研討會, 2002。 羅羽辰、吳欣潔: 視距與顯示器型態對視覺績效與疲勞之影響。[碩士論文]朝陽科技大學工業工程與管理系研究所,台中,2010。 Aggarwal R, Grantcharov T, Moorthy K, Hance J, Darzi A. A competency-based virtual reality training curriculum for the acquisition of laparoscopic psychomotor skill. The American Journal of Surgery 2006;191(1):128-133. Alaraj A, Luciano CJ, Bailey DP, Elsenousi A, Roitberg BZ, Bernardo A, Charbel FT. Virtual reality cerebral aneurysm clipping simulation with real-time haptic feedback. Operative Neurosurgery 2015;11(1):52-58. Aravind G, Darekar A, Fung J, Lamontagne A. Virtual reality-based navigation task to reveal obstacle avoidance performance in individuals with visuospatial neglect. Transactions on Neural Systems and Rehabilitation Engineering. IEEE Communications Magazine 2015;23(2):179-188. Atherton S, Antley A, Evans N, Cernis E, Lister R, Dunn G, Freeman D. Self-confidence and paranoia: an experimental study using an immersive virtual reality social situation. Behavioural and Cognitive Psychotherapy 2016;44(1):56-64. Barnes J, Burns J, Nesbitt C, Hawkinsa H, Horgana A. Home virtual reality simulation training: the effect on trainee ability and confidence with laparoscopic surgery. Journal of Surgical Simulation 2015;2:53-59. Bastug E, Bennis M, Médard M, Debbah M. Toward interconnected virtual reality: opportunities, challenges, and enablers. IEEE Communications Magazine 2017;55(6):110-117. Becker W, Fuchs AF. Prediction in the oculomotor system: smooth pursuit during transient disappearance of a visual target. Experimental Brain Research 1985;57(3):562-575. Bouchard S, St-Jacques J, Renaud P, Wiederhold BK. Side effects of immersions in virtual reality for people suffering from anxiety disorders. Journal of CyberTherapy and Rehabilitation 2009;2(2):127-137. Bouville R, Gouranton V, Arnaldi B. Virtual reality rehearsals for acting with visual effects. In: International Conference on Computer Graphics and Interactive Techniques. Victoria-BC, Canada 2016;1-8. Burkhardt JM. Immersion, représentation et coopération: discussion et perspectives de recherches empiriques pour l’ergonomie cognitive de la réalité virtuelle. Intellectica 2007;45(1):59-87. Burns E, Razzaque S, Panter AT, Whitton MC, McCallus MR, Brooks FP. The hand is slower than the eye: A quantitative exploration of visual dominance over proprioception. In Virtual Reality. IEEE Communications Magazine 2005;3-10. Buxbaum LJ, Klimchuk D, Mitura R. Virtual reality lateralized attention test VRLAT examiner’s manual. Stroke 2012;26(4):430-441. Chia A, Jaurigue A, Gazzard G, Wang Y, Tan D, Stone RA, Saw SM. Ocular dominance, laterality, and refraction in singaporean children. Investigative Ophthalmology and Visual Science 2007;48(8):3533-3536. Cho C, Hwang W, Hwang S, Chung Y. Treadmill training with virtual reality improves gait, balance, and muscle strength in children with cerebral palsy. The Tohoku Journal of Experimental Medicine 2016;238(3):213-218. Dawson D, Reid K. Fatigue, alcohol and performance impairment. Nature 1997;388.6639:235. DiZio P, Lackner JR. Spatial orientation, adaptation, and motion sickness in real and virtual environments. Presence: Teleoperators and Virtual Environments 1992;1(3):319-328. Desai PR, Desai PN, Ajmera KD, Mehta K. A review paper on oculus rift-a virtual reality headset. ArXiv Preprint 2014;1408.1173. Dougherty BE, Flom RE, Bullimore MA. An evaluation of the Mars letter contrast sensitivity test. Optometry and Vision Science 2005;82(11):970-975. Eklund NH, Boyce PR. The development of a reliable, valid, and simple office lighting survey. Journal of the Illuminating Engineering Society 1996;25(2):25-40. Febretti A, Nishimoto A, Mateevitsi V, Renambot L, Johnson A, Leigh J. Omegalib: A multi-view application framework for hybrid reality display environments. In: Virtual Reality. IEEE Communications Magazine 2014;9-14. Fernandes AS, Feiner SK. Combating VR sickness through subtle dynamic field-of-view modification. In: 3D user interfaces. IEEE Communications Magazine 2016;201-210. Firth N. First wave of virtual reality games will let you live the dream. New Scientist 2013;pp.19-20. Gerardi M, Rothbaum BO, Ressler K, Heekin M, Rizzo A. Virtual reality exposure therapy using a virtual Iraq: case report. Journal of Traumatic Stress 2008;21(2):209-213. Goulding J, Nadim W, Petridis P, Alshawi M. Construction industry offsite production: A virtual reality interactive training environment prototype. Advanced Engineering Informatics 2012;26(1):103-116. Griffin T, Giberson J, Lee SHM, Guttentag D, Kandaurova M, Sergueeva K, Dimanche F. virtual reality and implications for destination marketing. Tourism Travel and Research Association: Advancing Tourism Research Globally 2017;29 Heuer H, Owens DA. Vertical gaze direction and the resting posture of the eyes. Perception 1989;18(3):363-377. Hill KJ, Howarth PA. Habituation to the side effects of immersion in a virtual environment. Displays 2000;21(1):25-30. Hubel DH, Wiesel TN. Cortical and callosal connections concerned with the vertical meridian of visual fields in the cat. Journal of Neurophysiology 1967;30(6):1561-1573. Johansson B, Rönnbäck L. Evaluation of the mental fatigue scale and its relation to cognitive and emotional functioning after traumatic brain injury or stroke. Int J Phys Med Rehabil 2014;2.182:2. Jonikaitis D, Belopolsky AV. Target–distractor competition in the oculomotor system is spatiotopic. Journal of Neuroscience 2014;34(19):6687-6691. Kemeny A. From driving simulation to virtual reality. In: Proceedings of the 2014 Virtual Reality International Conference. ACM 2014;32. Kennedy RS, Stanney KM. Postural instability induced by virtual reality exposure: Development of a certification protocol. International Journal of Human‐Computer Interaction 1996;8(1):25-47. Kennedy RS, Drexler JM, Compton DE, Stanney KM, Lanham DS, Harm DL. Configural scoring of simulator sickness, cybersickness and space adaptation syndrome: Similarities and differences. Virtual and Adaptive Environments: Applications, Implications, and Human Performance Issues 2003;247. Kenyon A, Van Rosendale J, Fulcomer S, Laidlaw D. The design of a retinal resolution fully immersive VR display. In Virtual Reality. IEEE Communications Magazine 2014;89-90. Kim GJ. A SWOT analysis of the field of virtual reality rehabilitation and therapy. Presence: Teleoperators and Virtual Environments 2005;14(2):119-146. Kooi FL, Toet A. Visual comfort of binocular and 3D displays. Displays 2004;25(2):99-108. Krueger MW. Artificial reality. 2 nd ed. Reading, MA: Addison-Wesley 1991. Larsen CR, Soerensen JL, Grantcharov TP, Dalsgaard T, Schouenborg L, Ottosen C, Ottesen BS. Effect of virtual reality training on laparoscopic surgery: randomised controlled trial. BMJ 2009;338:b1802. Laver KE, George S, Thomas S, Deutsch JE, Crotty M. Virtual reality for stroke rehabilitation. Stroke 2015;43(2):e20-e21. Le QT, Pedro A, Park CS. A social virtual reality based construction safety education system for experiential learning. Journal of Intelligent and Robotic Systems 2015;79(3-4):487. Lee Y, Jang I, Lee D. Enlarging just noticeable differences of visual-proprioceptive conflict in VR using haptic feedback. In World Haptics Conference (WHC). IEEE Communications Magazine 2015;19-24. Lendvay TS, Brand TC, White L, Kowalewski T, Jonnadula S, Mercer LD, Satava RM. Virtual reality robotic surgery warm-up improves task performance in a dry laboratory environment: a prospective randomized controlled study. Journal of the American College of Surgeons 2013;216(6):1181-1192. Lentz EJ, Bruenn SW, Hix WR, Mezzacappa A, Messer OB, Endeve E, Yakunin KN. Three-dimensional core-collapse supernova simulated using a 15 M progenitor. The Astrophysical Journal Letters 2015;807(2):L31. Lin JW, Duh HBL, Parker DE, Abi-Rached H, and Furness TA. Effects of field of view on presence, enjoyment, memory, and simulator sickness in a virtual environment. In Virtual Reality. IEEE Communications Magazine 2002;164-171. Luck SJ, Vogel EK. Visual working memory capacity: from psychophysics and neurobiology to individual differences. Trends in Cognitive Sciences 2013;17(8):391-400. Mainster MA. Violet and blue light blocking intraocular lenses: photoprotection versus photoreception. British Journal of Ophthalmology 2006;90(6):784-792. McComas J, MacKay M, Pivik J. Effectiveness of virtual reality for teaching pedestrian safety. CyberPsychology and Behavior 2002;5(3):185-190. Mine M. Towards virtual reality for the masses: 10 years of research at Disney's VR studio. In Proceedings of the Workshop on Virtual Environments. ACM 2003;pp.11-17. Mirelman A, Bonato P, Deutsch JE. Effects of training with a robot-virtual reality system compared with a robot alone on the gait of individuals after stroke. Stroke 2009;40(1):169-174. Mowafty L, Pollack J.Train to travel. Ability 1995;15:18-20. Munafo J, Diedrick M, Stoffregen TA. The virtual reality head-mounted display Oculus Rift induces motion sickness and is sexist in its effects. Experimental Brain Research 2017;235(3):889-901. Nakagawa H, Mizukoshi K, Watanabe Y, Ohashi N, Asai M. Clinical observations on elderly patients with vertigo and/or dizziness. 3rd ed. Equilibrium Research 1988;47(3):319-322. Neira C, Sandin DJ, DeFanti TA. (1993, September). Surround-screen projection-based virtual reality: the design and implementation of the CAVE. In: Proceedings of the 20th Annual Conference on Computer Graphics and Interactive Techniques. ACM 1993;135-142. Nilsson NC, Serafin S, Nordahl R. The effect of head mounted display weight and locomotion method on the perceived naturalness of virtual walking speeds. In: Virtual Reality. IEEE Communications Magazine 2015;249-250. Noton D, Stark L. Scanpaths in saccadic eye movements while viewing and recognizing patterns. Vision Research 1971;11(9):929-IN8. Park J, Lee S, Bovik AC. 3D visual discomfort prediction: vergence, foveation, and the physiological optics of accommodation. IEEE Journal of Selected Topics in Signal Processing 2014;8(3):415-427. Pfeiffer T, Memili C. Model-based real-time visualization of realistic three-dimensional heat maps for mobile eye tracking and eye tracking in virtual reality. In: Proceedings of the Ninth Biennial Symposium on Eye Tracking Research and Applications. ACM 2016;95-102. Pinker S. Visual cognition: An introduction. Cognition 1984;18(1):1-63. Qiao H, Hu L. Modeling of visual cognition, body sense, motor control and their integrations. Frontiers in Computational Neuroscience 2016;10. Radu I. Augmented reality in education: a meta-review and cross-media analysis. Personal and Ubiquitous Computing 2014;18(6):1533-1543. Ragan ED, Bowman DA, Kopper R, Stinson C, Scerbo S, McMahan RP. Effects of field of view and visual complexity on virtual reality training effectiveness for a visual scanning task. Transactions on Visualization and Computer Graphics. IEEE Communications Magazine 2015;21(7):794-807. Regan M, Pose R. Priority rendering with a virtual reality address recalculation pipeline. In: Proceedings of the 21st Annual Conference on Computer Graphics and Interactive Techniques. ACM 1994;155-162. Riva G, Mantovani F, Capideville CS, Preziosa A, Morganti F, Villani D, Alcañiz M. Affective interactions using virtual reality: the link between presence and emotions. CyberPsychology and Behavior 2007;10(1):45-56. Rolland-Cachera MF, Deheeger M, Akrout M, Bellisle F. Influence of macronutrients on adiposity development: a follow up study of nutrition and growth from 10 months to 8 years of age. International Journal of Obesity and Related Metabolic Disorders 1995;19(8), 573-578. Rose D, Brooks BM, Attree EA. Virtual reality in vocational training of people with learning disabilities. In: Proceedings of the Third ICDVRAT 2000;pp.129-136. Rowe F. Visual fields via the visual pathway. 2nd CRC Press 2016. Rubin GS, West SK, Munoz B, Bandeen-Roche K, Zeger S, Schein O, Fried LP. A comprehensive assessment of visual impairment in a population of older Americans. The SEE Study. Salisbury Eye Evaluation Project. Investigative Ophthalmology and Visual Science 1997;38(3):557-568. Scheiman M. Understanding and managing vision deficits: A guide for occupational therapists. 3 th ed. Slack Incorporated 2011;28-30. Schultheis MT, Garay E, Deluca J. The influence of cognitive impairment on driving performance in multiple sclerosis. Neurology 2001;56(8):1089-1094. Shanker R, Vrat P. Some design issues in cellular manufacturing using the fuzzy programming approach. International Journal of Production Research 1999;37(11):2545-2563. Silva AR, Valente L, Clua E, Feijó B. An indoor navigation system for live-action virtual reality games. In: Computer Games and Digital Entertainment (SBGames). IEEE Communications Magazine 2015;1-10. Slater M. A note on presence terminology. Presence Connect 2003;3(3):1-5. Strickland D, Marcus LM, Mesibov GB, Hogan K. Brief report: Two case studies using virtual reality as a learning tool for autistic children. Journal of Autism and Developmental Disorders 1996;26(6):651-659. Strickland DS. Early intervention for African American children considered to be at risk. Handbook of Early Literacy Research 2001;1:322-332. Tanaka N, Takagi H. Virtual reality environment design of managing both presence and virtual reality sickness. Journal of Physiological Anthropology and Applied Human Science 2004;23(6):313-317. Taylor HR, West S, Muñoz B, Rosenthal FS, Bressler SB, Bressler NM. The long-term effects of visible light on the eye. Archives of Ophthalmology 1992;110(1):99-104. Urvoy M, Barkowsky M, Le Callet P. How visual fatigue and discomfort impact 3D-TV quality of experience: a comprehensive review of technological, psychophysical, and psychological factors. Annals of Telecommunications-annales des Telecommunications 2013;68(11-12):641-655. Wang B, Rau PLP, Dong L. (2017). F3-1 Effects of controller and body posture on simulator sickness and visual fatigue in virtual reality. The Japanese Journal of Ergonomics 2017;53(2):S442-S445. Wang H. How will different control/display ratios influence muscle fatigue and game experience in virtual reality games? Degree Project in Computer Science and Engineering, Second Cycle, 30 Credits Stockholm, Sweden 2016. Warren M. A hierarchical model for evaluation and treatment of visual perceptual dysfunction in adult acquired brain injury, part 1. American Journal of Occupational Therapy 1993;47(1):42-54. Wesemann W. Visual acuity measured via the freiburg visual acuity test (FVT), bailey lovie chart and landolt ring chart. Klinische Monatsblatter fur Augenheilkunde 2002;219(9):660-667. West KE, Jablonski MR, Warfield B, Cecil KS, James M, Ayers MA, Hanifin JP. Blue light from light-emitting diodes elicits a dose-dependent suppression of melatonin in humans. Journal of Applied Physiology 2011;110(3):619-626. Wloka MM. Lag in multiprocessor virtual reality. Presence: Teleoperators & Virtual Environments 1995;4(1):50-63. Yap HJ, Taha Z, Dawal SZM, Chang SW. Virtual reality based support system for layout planning and programming of an industrial robotic work cell. PloS One 2014;9(10):e109692. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68160 | - |
dc.description.abstract | 近幾年由於虛擬實境技術發展的突破,虛擬實境技術應用開始蓬勃發展。大家也開始探討使用虛擬實境技術可能造成的負面影響。已有研究顯示配戴虛擬實境眼鏡進行模擬體驗容易造成頭部暈眩與眼睛疲勞。本研究目的欲了解長時間使用虛擬實境眼鏡觀看影片是否會對視覺敏銳度、視覺認知記憶力,以及視覺舒適與疲勞程度造成影響。
本研究招募20-35歲的36位志願者參加試驗,其中男性20位、女性16位。受試者必需沒有心臟病、精神疾病或其他重大眼疾,但矯正後視力正常者不在此限。所有受試者均安排在中午12點至下午6點間進行實驗,受試者需分別接受長時間與短時間觀看虛擬實境影片之實驗,並在實驗前後進行視覺表現與眼睛疲勞測驗,兩次實驗之間至少間隔一個禮拜,且參與長時間或短時間測驗的先後順序以隨機分派方式分組。本研究視覺表現與眼睛疲勞測驗項目包含三大面向: (1)視覺敏銳度: 使用紙本的視力表以及視覺對比度表來測試、(2)視覺認知記憶力:使用色棋以及維也納追蹤系統檢測、 (3)視覺疲勞舒適程度: 使用閃光融合閾值儀以及兩份主觀評量問卷來評估。 本研究結果發現: (1)觀看虛擬實境短時間影片之受試者的右眼視力在前後測之間達顯著增加 (p=0.001);(2)受試者的視覺對比度在前後測之間並無顯著差異;(3)受試者色棋測驗所需時間在前後測之間達到統計上的顯著減少 (p=0.003);(4)受試者維也納視覺追蹤測驗分數在前後測之間達到統計上的顯著增加 (p=0.019);(5)受試者閃光融合閾值與受試者年齡(p<0.001)、每週平均電腦使用時間(p=0.002)、每日最長使用電腦時間(p<0.001)有顯著負相關;(6)受試者主觀視覺疲勞度問卷調查結果在前後測之間有顯著增加(p=0.001~0.032),長時間觀看虛擬實境組別受試者比短時間組的視覺疲勞程度較為明顯;(7)視覺舒適程度問卷調查結果顯示受試者在短時間觀看虛擬實境影片後會造成視覺不適度有顯著增加(p=0.012~0.043) ,但在長時間組別卻未造成顯著差異。 綜合文獻回顧與本研究結果顯示,觀看虛擬實境影片會造成視覺認知記憶力、視覺疲勞與舒適程度之影響,其中以視覺不適與疲勞最為明顯。使用虛擬實境影片作業可能會對視覺認知表現造成負面影響,使用者應了解其潛在的視覺負荷風險。使用虛擬實境設備對於眼睛不適症狀與視覺表現的潛在風險值得更進一步的關注與研究,以保障使用者的安全與健康。 | zh_TW |
dc.description.abstract | In recent years, virtual reality technology has had a breakthrough, and has begun to successfully develop and is being widely applied. As people begin to explore new virtual reality technologies that can be applied at a practical level, scholars have begun to focus on visual performance, and some are exploring the potential negative impact of the use of virtual reality. Previous studies reported that wearing virtual reality device for film-watching might cause dizziness and visual fatigue. The purpose of this study was to clarify whether the use of virtual reality to watch a film for a period of time will affect visual acuity, visual cognitive memory, visual comfort, and fatigue.
In this study, 36 participants (20 males and 16 females) aged 20–35 years were invited to participate, excluding those with heart disease, mental illness, or severe eye disease but not those with corrected-to-normal vision. All participants were arranged for experiments in the afternoon between 12:00 and 18:00 hours. Participants were randomly assigned to watch long and short virtual reality films, respectively, with at least one week intermittence between these two film-watchings. All participants were examined for their comprehensive visual performance before and after virtual reality film-watching, including (1) visual acuity: measured by the visual acuity scale and visual contrast table, (2) visual cognitive memory: by the color chess test and Vienna tracking system, and (3) visual fatigue comfort: by flicker fusion threshold and two subjective assessment questionnaires. The results of this study were as follows: (1) significant difference was found in the right visual acuity of the participants between before and after the test of watching a short virtual reality film (p=0.001), (2) there was no significant difference in visual contrast of the participants between before and after tests, (3) time required for color chess test was statistically significantly correlated between before and after tests (p=0.003), (4) there was a statistically significant correlation between before and after tests for the Vienna visual tracking scores of the study participants(p=0.019), (5) the participants’ flicker fusion threshold was associated with the participants’ ages(p<0.001), the average computer-use time per week(p=0.002), and the longest daily computer use time(p<0.001), (6) the participants’ visual fatigue significantly differed between before and after tests (p=0.001~0.032), with visual fatigue more obvious after watching long virtual reality film as compared to watching short film, (7) visual discomfort was observed for the group watching short film but not for the group watching long film. (p=0.012~0.043). In summary, the results of this study show that watching virtual reality film would affect visual cognitive memory, visual fatigue, and comfort, with visual discomfort and fatigue most obvious. Watching virtual reality film might impose negative impact on visual cognitive performance, and users should be aware of its potential risk. It’s deserved to pay more attention to the impact of using virtual reality device on eye discomfort and visual performance in order to protect users’ safety and health. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:13:45Z (GMT). No. of bitstreams: 1 ntu-106-R04841010-1.pdf: 27326503 bytes, checksum: 2a0f9fe008c3f4c80d113b06d0583f53 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員審定書 1
致謝 2 中文摘要 3 Abstract 5 第一章 前言 12 1.1研究背景 12 1.2研究動機 12 1.3研究目的 12 1.4研究假設 13 第二章 文獻回顧 14 2.1 VR的發展 14 2.2 VR的功能與角色介紹 14 2.3 VR的目前應用與未來趨勢 17 2.3.1遊戲 17 2.3.2安全教育訓練 17 2.3.3復健治療 17 2.3.4建築營建安全模擬 18 2.3.5駕駛模擬 18 2.3.6醫學手術 19 2.3.7注意力訓練 19 2.3.8改善視覺表現 19 2.3.9未來趨勢 20 2.3.9.1 VR旅遊 20 2.3.9.2 VR電影 20 2.4 VR使用的優點 21 2.5 VR使用的缺點 23 2.5.1肌肉疲勞 25 2.5.2視覺不適與視覺疲勞 26 2.6 視覺認知表現的指標 26 2.6.1視覺敏銳度(visual acuity) 27 2.6.2眼球動作(oculomotor) 27 2.6.3視野(visual fields) 28 2.6.4視覺注意力(visual attention) 28 2.6.5視覺搜索(scanning) 28 2.6.6視覺辨識(visual recognition) 29 2.6.7視覺記憶力(visual memory) 30 2.6.8視覺認知(visual cognition) 30 2.7 VR對視覺的健康負荷 30 2.7.1 VR造成不適症狀 30 2.7.2 VR造成視覺調幅衝突 31 2.7.3 VR造成視覺與本體覺衝突 32 2.7.4 VR的觀看時間限制 32 2.7.5 VR光線對眼睛的影響 33 2.7.6 VR影像的更新延遲 34 2.8 VR相關之各種視覺疲勞影響因子 34 第三章 研究方法 38 3.1研究架構 38 3.2 研究流程 39 3.2.1影片選擇 39 3.2.2時間長短決定 39 3.2.3受試者參與規則 40 3.2.4執行流程 41 3.2.5研究人力及相關設備 41 3.2.6研究地點 41 3.2.6.1工作區與測驗區的空間配置 42 3.2.6.2虛擬實境眼鏡配置 42 3.3 問卷資料介紹 44 3.4 研究工具介紹 44 3.4.1 視覺敏銳度評估 44 3.4.1.1視銳視度(Visual Acuity) 44 3.4.1.2對比敏銳度(Contrast Sensitivity) 45 3.4.2視覺認知記憶表現評估 47 3.4.2.1色棋測驗 47 3.4.2.2視覺追蹤測驗(Visual Pursuit Test) 48 3.4.3 視覺疲勞與舒適程度評估 49 3.4.3.1閃光融合閾值 49 3.4.3.2視覺疲勞程度問卷 50 3.4.3.3視覺舒適度問卷 50 3.5 統計分析 51 第四章 研究結果 52 4.1受試者基本人口學資料 52 4.2受試者虛擬實境影片觀看作業之視覺敏銳度測驗結果 55 4.2.1視銳度 55 4.2.2對比敏銳度 55 4.3 受試者虛擬實境影片觀看作業之視覺認知記憶力測驗結果 57 4.3.1 色棋測驗 57 4.3.2 視覺追蹤測驗分數 57 4.3.3視覺追蹤測驗時間 58 4.4 視覺疲勞、舒適程度結果探討 59 4.4.1 閃光融合閾值 59 4.4.2 主觀舒適度問卷 59 4.4.3 主觀疲勞度問卷 60 4.5受試者電腦使用情形與虛擬實境影片觀看作業之相關性分析 74 4.5.1 13分鐘長時間虛擬實境影片觀看作業 74 4.5.2 5分鐘短時間虛擬實境影片觀看作業 74 4.6廣義線性模式(GLM)進行多因子變異數分析(MANOVA) 84 4.6.1 右眼視銳度影響因子之廣義線性模式多因子變異數分析 84 4.6.2 左眼視銳度影響因子之廣義線性模式的多因子變異數分析 84 4.6.3對比敏銳度影響因子之廣義線性模式的多因子變異數分析 84 4.6.4色棋錯誤分數影響因子之廣義線性模式的多因子變異數分析 85 4.6.5色棋時間差影響因子之廣義線性模式的多因子變異數分析 85 4.6.6視覺追蹤測驗分數影響因子之廣義線性模式的多因子變異數分析 85 4.6.7視覺追蹤測驗正確率影響因子之廣義線性模式的多因子變異數分析 85 4.6.8視覺追蹤測驗時間影響因子之廣義線性模式的多因子變異數分析 86 4.6.9 閃光融合閾值影響因子之廣義線性模式的多因子變異數分析 86 第五章 討論 96 5.1 主要研究觀察結果 96 5.2本研究觀察結果與其他研究結果之比較 98 5.3 影響本研究視覺疲勞與視覺表現因素之探討 101 5.3.1 視覺調幅衝突造成不適症狀之探討 101 5.3.2電腦使用時間與視覺疲勞關係之探討 101 5.3.3 觀看虛擬實境影片時間長短造成視覺疲勞與不適程度之探討 102 5.3.4 視覺適應能力之探討 103 5.3.5 雙眼視差(parallaxis)與虛擬實境顯示器規格影響視覺表現之探討 104 5.4研究限制 106 5.5 總結 107 第六章 參考文獻 108 臨床試驗/研究受試者說明暨同意書 116 附錄一 基本資料問卷 127 附錄二 視覺疲勞問卷 129 附錄三 視覺舒適度問卷 130 | |
dc.language.iso | zh-TW | |
dc.title | 使用虛擬實境眼鏡對於視覺敏銳度、認知記憶力以及疲勞、舒適程度的影響 | zh_TW |
dc.title | Effects of Using Virtual Reality Display on Visual Sensitivity,Cognition Memory Performance, Fatigue and Comfort | en |
dc.type | Thesis | |
dc.date.schoolyear | 106-1 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳佳?(Jia-Kun Chen) | |
dc.contributor.oralexamcommittee | 林意凡(Yi-Fan Lin) | |
dc.subject.keyword | 虛擬實境,視覺認知表現,視覺疲勞,視覺舒適度, | zh_TW |
dc.subject.keyword | virtual reality,visual cognitive performance,visual fatigue,visual comfort, | en |
dc.relation.page | 131 | |
dc.identifier.doi | 10.6342/NTU201704355 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-11-27 | |
dc.contributor.author-college | 公共衛生學院 | zh_TW |
dc.contributor.author-dept | 職業醫學與工業衛生研究所 | zh_TW |
顯示於系所單位: | 職業醫學與工業衛生研究所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 26.69 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。