Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6815
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor何志浩
dc.contributor.authorCheng-Han Hoen
dc.contributor.author何政翰zh_TW
dc.date.accessioned2021-05-17T09:18:42Z-
dc.date.available2017-07-27
dc.date.available2021-05-17T09:18:42Z-
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-12
dc.identifier.citation§ 3-5 References
[1] K. Y. Lai, G. J. Lin, Y.-L. Lai, Y. F. Chen, J. H. He, Effect of indium fluctuation on the photovoltaic characteristics of InGaN/GaN multiple quantum well solar cells, Appl. Phys. Lett. 96 (2010) 081103.
[2] K. Y. Lai, G. J. Lin, Y.-L. Lai, J. H. He, Origin of hot carriers in InGaN-based quantum-well solar cells, IEEE Electron Dev. Lett. 32 (2011) 179–181.
[3] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, S. Kurtz, Superior radiation resistance of In1−xGaxN alloys: full-solar-spectrum photovoltaic material system, J. Appl. Phys. 94, (2003) 6477–6482.
[4] K. W. J. Barnham, G. Duggan, A new approach to high-efficiency multi-band-gap solar cells, J. Appl. Phys. 67 (1990) 3490¬¬–3493.
[5] E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. Al-Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, C. Weisbuch, High internal and external quantum efficiency InGaN/GaN solar cells, Appl. Phys. Lett. 98 (2011) 021102.
[6] G. J. Lin, K. Y. Lai, C. A. Lin, Y.-L. Lai, J. H. He, Efficiency enhancement of InGaN-based multiple quantum well solar cells employing antireflective ZnO nanorod arrays, IEEE Electron Dev. Lett. 32 (2011) 1104¬¬–1106.
[7] I. M. Pryce, D. D. Koleske, A. J. Fischer, H. A. Atwater, Plasmonic nanoparticle enhanced photocurrent in GaN/InGaN/GaN quantum well solar cells, Appl. Phys. Lett. 96 (2010) 153501.
[8] Y. Kuwahara, T. Fujii, T. Sugiyama, D. Iida, Y. Isobe, Y. Fujiyama, Y. Morita, M. Iwaya, T. Takeuchi, S. Kamiyama, I. Akasaki, H. Amano, GaInN-based solar cells using strained-layer GaInN/GaInN superlattice active layer on a freestanding GaN substrate, Appl. Phys. Express 4 (2011) 021001.
[9] Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, J. H. He, Antireflection effect of ZnO nanorod arrays, J. Mater. Chem. 20 (2010) 8134–8138.
[10] K. Y. Lai, Y. R. Lin, H. P. Wang, J. H. He, Synthesis of anti-reflective and hydrophobic Si nanorod arrays by colloidal lithography and reactive ion etching, Cryst. Eng. Comm. 13 (2011) 1014–1017.
[11] P. Beckman, A. Spizzichno, The scattering of electromagnetic waves from rough surfaces, Pergamon, Oxford, 1963.
[12] P. B. Clapham, M. C. Hutley, Reduction of lens reflexion by the ‘moth eye’ principle, Nature 244 (1973) 281–282.
[13] L. Li, T. Y. Zhai, H. B. Zeng, X. S. Fang, Y. Bando, D. Golberg, Polystyrene sphere-assisted one-dimensional nanostructure arrays: synthesis and applications, J. Mater. Chem. 21 (2011) 40–56.
[14] X. D. Wang, E. Graugnard, J. S. King, Z. L. Wang, Large-scale fabrication of ordered nanobowl arrays, Nano Lett. 4 (2004) 2223–2226.
[15] Z. Fan, J. C. Ho, Self-assembly of one-dimensional nanomaterials for cost-effective photovoltaics, Int. J. Nanoparticles 4 (2011) 164–183.
[16] Z. Fan, R. Kapadia, P. W. Leu, X. Zhang, Y.-L. Chueh, K. Takei, K. Yu, A. Jamshidi, A. A. Rathore, D. J. Ruebusch, M. Wu, A. Javey, Ordered arrays of dual-diameter nanopillars for maximized optical absorption, Nano Lett. 10 (2010) 3823–3827.
[17] Y. J. Lee, D. S. Ruby, D. W. Peters, B. B. McKenzie, J. W. P. Hsu, ZnO nanostructures as efficient antireflection layers in solar cells, Nano Lett. 8 (2008) 1501–1505.
[18] H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin and J. H. He, Nanowire arrays with controlled structure profiles for maximizing optical collection efficiency, Energy Environ. Sci. 4 (2011) 2863–2869.
[19] Y. R. Lin, H. P. Wang, C. A. Lin and J. H. He, 'Surface profile-controlled close-packed Si nanorod arrays for self-cleaning antireflection coatings,' J. Appl. Phys. 106 (2009) 114310.
[20] Y. A. Dai, H. J. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin and J. H. He, 'Subwavelength Si nanowire arrays for self-cleaning antireflection coatings,' J. Mater. Chem. 20 (2010) 10924–10930.
[21] E. D. Palik, Handbook of Optical Constants of Solids, Academic Press.
[22] D. G. Stavenga, S. Foletti, G. Palasantzas, K. Arikawa, Light on the moth-eye corneal nipple array of butterflies, Proc. R. Soc. B 273 (2006) 661–667.
[23] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. Chen, S. Y. Lin, W. Liu, J. A. Smart, Optical thin-film materials with low refractive index for broadband elimination of Fresnel reflection, Nat. Photonics 1 (2007) 176–179.
[24] J. Q. Xi, J. K. Kim, E. F. Schubert, Silica nanorod-array films with very low refractive indices, Nano Lett. 5 (2005) 1385–1387.
[25] S. L. Diedenhofen, G. Vecchi, R. E. Algra, A. Hartsuiker, O. L. Muskens, G. Immink, E. P. A. M. Bakkers, W. L. Vos, J. G. Rivas, Broad-band and omnidirectional antireflection coatings based on semiconductor nanorods, Adv. Mater. 21 (2009) 973–978.
[26] S. Laux, N. Kaiser, A. Zoller, R. Gotzelmann, H. Lauth, H. Bernitzki, Room-temperature deposition of indium tin oxide thin films with plasma ion-assisted evaporation, Thin Solid Films 335 (1998) 1–5.
§ 4-5 References
[1] K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, and J. H. He, Appl. Phys. Lett. 96, 81 (2010).
[2] K. Y. Lai, G. J. Lin, C.-Y. Chen, Y.-L. Lai, and J. H. He, IEEE Electron Dev. Lett. 32, 179 (2011).
[3] G. J. Lin, K. Y. Lai, C. A. Lin, Y.-L. Lai, and J. H. He, IEEE Electron Dev. Lett. 32, 1104 (2011).
[4] E. Matioli, C. Neufeld, M. Iza, S. C. Cruz, A. A. A. Heji, X. Chen, R. M. Farrell, S. Keller, S. DenBaars, U. Mishra, S. Nakamura, J. Speck, and C. Weisbuch, Appl. Phys. Lett. 98, 021102 (2011).
[5] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 84, 855 (2004).
[6] P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, Appl. Phys. Lett. 100, 013105 (2012).
[7] G. J. Lin, K. Y. Lai, C. A. Lin, and J. H. He, Opt. Lett. 37, 61 (2012).
[8] Z. Fan, and J. C. Ho, Int. J. Nanoparticles 4, 164 (2011).
[9] Y. R. Lin, K. Y. Lai, H. P. Wang, and J. H. He, Nanoscale 2, 2765 (2010).
[10] Y. R. Lin, H. P. Wang, C. A. Lin, and J. H. He, J. Appl. Phys. 106, 114310 (2009).
[11] D. S. Tsai, C. A. Lin, W. C. Lien, H. C. Chang, Y. L. Wang, and J. H. He, ACS Nano 5, 7748 (2011).
[12] J. Q. Xi, M. F. Schubert, J. K. Kim, E. F. Schubert, M. F. Chen, S. Y. Lin, W. Liu, and J. A. Smart, Nature Photonic 1, 176 (2007).
[13] Y. K. Ee, P. Kumnorkaew, R. A. Arif, H. Tong, H. Zhao, J. F. Gilchrist, and N. Tansu, IEEE J. Sel. Top. Quantum Electron. 15, 1218 (2009).
[14] P. Kumnorkaew, Y. K. Ee, N. Tansu, and J. F. Gilchrist, Langmuir 24, 12150 (2008).
[15] X. H. Li, R. Song, Y. K. Ee, P. Kumnorkaew, J. F. Gilchrist, and N. Tansu, IEEE Photonics Journal 3, 489 (2011).
[16] W. H. Koo, W. Youn, P. Zhu, X. H. Li, N. Tansu, and F. So, Adv. Funct. Mater. DOI: 10.1002/adfm.201200876, (2012).
[17] M. A. Tsai, P. C. Tseng, H. C. Chen, H. C. Kuo, and P. Yu, Opt. Express 19, A28 (2011).
[18] C. Huh, K. S. Lee, E. J. Kang, and S. J. Park, J. Appl. Phys. 93, 9383 (2003).
[19] H. M. Kim, Y. H. Cho, H. Lee, S. I. Kim, S. R. Ryu, D. Y. Kim, T. W. Kang, and K. S. Chung, Nano Lett. 4, 1059 (2004).
[20] Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, IEEE Electron Dev. Lett. 32, 182 (2011).
[21] M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, IEEE J. Sel. Top. Quant. 15, 1242 (2009).
[22] Z. Q. Li, M. Lestradet, Y. G. Xiao, and S. Li, Phys. Status Solidi A 208, 928 (2011).
[23] H. P. Wang, K. T. Tsai, K. Y. Lai, T. C. Wei, Y. L. Wang, and J. H. He, Opt. Express 20, A94 (2012).
[24] Y. C. Chao, C. Y. Chen, C. A. Lin, and J. H. He, Energy Environ. Sci. 4, 3436 (2011).
[25] B. M. Kayes, H. A. Atwater, and N. S. Lewis, J. Appl. Phys. 97, 114302 (2005).
[26] K. Sun, A. Kargar, N. Park, K. N. Madsen, P. W. Naughton, T. Bright, Y. Jing, and D. Wang, IEEE J. Sel. Top. Quant. 17, 1033 (2011).
[27] J. J. Wierer, Jr., D. D. Koleske, and S. R. Lee, Appl. Phys. Lett. 100, 111119 (2012).
§ 5-5 References
[1] J. Wu, W. Walukiewicz, K. M. Yu, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, Appl. Phys. Lett. 2002, 80, 4741.
[2] J. Wu, W. Walukiewicz, K. M. Yu, W. Shan, J. W. Ager, E. E. Haller, H. Lu, W. J. Schaff, W. K. Metzger, S. Kurtz, J. Appl. Phys. 2003, 94, 6477.
[3] R. Dahal, B. Pantha, J. Li, J. Y. Lin, H. X. Jiang, Appl. Phys. Lett. 2009, 94, 063505.
[4] K. W. J. Barnham, G. Duggan, J. Appl. Phys. 1990, 67, 3490.
[5] K. Y. Lai, G. J. Lin, Y. L. Lai, Y. F. Chen, J. H. He, Appl. Phys. Lett. 2010, 96, 081103.
[6] K. Y. Lai, G. J. Lin, Y. L. Lai, J. H. He, IEEE Electron Dev. Lett. 2011, 32, 179.
[7] D. Hofstetter, E. Baumanna, F. R. Giorgettaa, M. Maierb, F. Guillotc, E. Bellet-Amalricc, E. Monroy, Appl. Phys. Lett. 2006, 88, 121112.
[8] C. L. Chao, C. H. Chiu, Y. J. Lee, H. C. Kuo, P. C. Liu, J. D. Tsay, S. J. Cheng, Appl. Phys. Lett. 2009, 95, 051905.
[9] P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, J. H. He, Appl. Phys. Lett. 2012, 100, 013105.
[10] Z. Y. Fan, D. J. Ruebusch, A. A. Rathore, R. Kapadia, O. Ergen, P. W. Leu, A. Javey, Nano Res. 2009, 2, 829.
[11] J. Zhu, Z. Yu, G. F. Burkhard, C.-M. Hsu, S. T. Connor, Y. Xu, Q. Wang, M. McGehee, S. Fan, Y. Cui, Nano Lett. 2009, 9, 279.
[12] Y. A. Dai, H. C. Chang, K. Y. Lai, C. A. Lin, R. J. Chung, G. R. Lin, J. H. He, J. Mater. Chem. 2010, 20, 10924.
[13] H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, J. H. He, Energy Environ. Sci. 2011, 4, 2863.
[14] Y. C. Chao, C. Y. Chen, C. A. Lin, Y. A. Dai, J. H. He, J. Mater. Chem. 2010, 20, 8134.
[15] K. Y. Lai, Y. R. Lin, H. P. Wang, J. H. He, Cryst. Eng. Comm. 2011, 13, 1014.
[16] Y. R. Lin, K. Y. Lai, H. P. Wang, J. H. He, Nanoscale 2010, 2, 2765.
[17] J. H. Hsieh, Chuan Li, Y. Y. Wub, S. C. Jang, Curr. Appl. Phys. 2010, 11, S328.
[18] C. F. Lin, J. H. Zheng, Z. J. Yang, J. J. Dai, Appl. Phys. Lett. 2006, 88, 083121.
[19] P. C. Tsai, W. R. Chen, Y. K. Su, C. Y. Huang, Appl. Surf. Sci. 2010, 256, 6694.
[20] Y. H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, J. J. Huang, IEEE Electron Dev. Lett. 2011, 32, 182.
[21] M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, J. J. Huang, IEEE J. Sel. Top. Quant. 2009, 15, 1242.
[22] C. Huh, K. S. Lee, E. J. Kang and S. J. Park, J. Appl. Phys. 2003, 93, 9383.
[23] Z. Q. Li, M. Lestradet, Y. G. Xiao and S. Li, Phys. Status Solidi A 2011, 208, 928.
§ 6-5 References
[1] C. C. Sun, I. Moreno, S. H. Chung, W. T. Chien, C. T. Hsieh, and T. H. Yang, J. Soc. Inf. Display 2008, 16, 519.
[2] R. Goldhahn, J. Scheiner, S. Shokhovets, T. Frey, U. Khler, D. J. As, and K. Lischka, Appl. Phys. Lett. 2000, 76, 291.
[3] M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, IEEE J. Sel. Top. Quant. 2009, 15, 1242.
[4] T. H. Seo, T. S. Oh, Y. S. Lee, H. Jeong, J. D. Kim, H. Kim, A. H. Park, K. J. Lee, C. H. Hong, and E. K. Suh, Jpn. J. Appl. Phys. 2010, 49, 092101.
[5] S. J. Tu, J. K. Sheu, M. L. Lee, C. C. Yang, and W. C. Lai, Opt. Express 2011, 19, 12719.
[6] T. Fujii, Y. Gao, R. Sharma, E. L. Hu, S. P. DenBaars, and S. Nakamura, Appl. Phys. Lett. 2004, 84, 855.
[7] C. B. Soh, B. Wang, S. J. Chua, Vivian K. X. Lin, Rayson J. N. Tan, and S. Tripathy, Nanotechnology 2008, 19, 405303.
[8] S. Chhajed, W. Lee, J. Cho, E. F. Schubert, and J. K. Kim, Appl. Phys. Lett. 2011, 98, 071102.
[9] H. Sun, Y. W. Cheng, S. C. Wang, Y. Y. Huang, C. H. Chang, S. C. Yang, L. Y. Chen, M. Y. Ke, C. K. Li, Y. R. Wu, and J. J. Huang, IEEE Electron Dev. Lett. 2011, 32, 182.
[10] M. Y. Ke, C. Y. Wang, L. Y. Chen, H. H. Chen, H. L. Chiang, Y. W. Cheng, M. Y. Hsieh, C. P. Chen, and J. J. Huang, IEEE J. Sel. Top. Quant. 2009, 15, 1242.
[11] G. J. Lin, K. Y. Lai, C. A. Lin, and J. H. He, Opt. Lett. 2012, 37, 61.
[12] L. K. Yeh, K. Y. Lai, G. J. Lin, P. H. Fu, H. C. Chang, C. A. Lin, and J. H. He, Adv. Energy Mater. 2011, 1, 506.
[13] G. J. Lin, K. Y. Lai, C. A. Lin, Y.-L. Lai, and J. H. He, IEEE Electron Dev. Lett. 2011, 32, 1104.
[14] H. C. Chang, K. Y. Lai, Y. A. Dai, H. H. Wang, C. A. Lin, and J. H. He, Energy Environ. Sci. 2011, 4, 2863.
[15] P. H. Fu, G. J. Lin, C. H. Ho, C. A. Lin, C. F. Kang, Y. L. Lai, K. Y. Lai, and J. H. He, Appl. Phys. Lett. 2012, 100, 013105.
[16] M. K. Lee, C. L. Ho, and P. C. Chen, IEEE Photonics Technol. Lett. 2008, 20, 252.
[17] M. K. Lee, C. L. Ho, C. C. Lin, N. R. Cheng, M. H. Houng, Y. K. Chien, and C. F. Yen, J. Electrochem. Soc. 2011, 158, D286.
[18] S. J. An, J. H. Chae, G. C. Yi, and G. H. Park, Appl. Phys. Lett. 2008, 92, 121108.
[19] K. K. Kim, S. D. Lee, H. Kim, J. C. Park, S. N. Lee, Appl. Phys. Lett. 2009, 94, 071118.
[20] J. K. Kim, A. N. Noemaun, F. W. Mont, D. Meyaard, E. F. Schubert, D. J. Poxson, H. Kim, C. Sone, and Y. Park, Appl. Phys. Lett. 2008, 93, 221111.
[21] C. C. Sun, C. Y. Lin, T. X. Lee, T. H. Yang, Opt. Eng. 2004, 43, 1700.
[22] T. X. Lee, K. F. Gao, W. T. Chien, and C. C. Sun, Opt. Express 2007, 15, 6670.
[23] E. D. Palik, “Handbook of Optical Constants of Solids,” Academic Press.
[24] K. Nakagawa, H. Mikami, T. Ishikawa, Y. Shiraishi, A. Ejiri, H. Matsumoto, and S. Matsumoto, UVSOR Act Rep 2005, 2004, 88.
[25] R. B. Laughlin, Phys. Rev. B 1980, 22, 3021.
[26] Y. K. Ee, R. A. Arif, and N. Tansu, Appl. Phys. Lett. 2007, 91, 221107.
[27] J. H. Hsieh, Chuan Li, Y. Y. Wu, S. C. Jang, Curr. Appl. Phys. 2011, 11, S328.
[28] X. S. Fang, Y. H. Bando, C. H. Ye, G. H. Shen, D. Golberg, J. Phys. Chem. C 2007, 111, 8469.
[29] H. J. Xu, L. Su, Y. F. Chan, and X. M. Sun, J. Mater. Res. 2011, 26, 1174.
[30] Y. H. Ko, and J. S. Yu, Opt. Express 2011, 19, 25935
[31] J. Q. Xi, J. K. Kim, and E. F. Schubert, Nano Lett. 2005, 5, 1385.
[32] J. Q. Xi, J. K. Kim, E. F. Schubert, Dexian Ye, T. M. Lu, and S. Yu Lin, Opt. Lett. 2006, 31, 601.
[33] P. Wang, Z. Gan, S. Liu, Opt. Laser Technol. 2009, 41, 823.
[34] H. C. Wang, T. Y. Tang, C. C. Yang, T. Malinauskas, and K. Jarasiunas, Thin Solid Films 2010, 519, 863.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6815-
dc.description.abstract在本篇論文中,我們將先討論氮化鎵系的太陽能電池,接著為氮化鎵系的發光二極體,最後是我們的總結。
首先,在氮化銦鎵系的多重量子井太陽能電池上,利用自組裝的銀奈米小球當作蝕刻遮罩,去做反應式離子蝕刻,製做出二氧化矽奈米柱陣列。由於光捕捉效應及折射率的匹配(在空氣及元件間),使此二氧化矽奈米柱陣列可有效地降低元件的表面反射率(從330至570奈米波段)。電池在模擬太陽光源(air mass 1.5G)的照射下,其短路電流明顯提升,而轉換效率可增加21 %。模擬軟體的分析也進一步証明此表面結構能改善電池的光伏特性。
第二,將太陽能電池的p型氮化鎵層製做成微米鐘的結構,也可以顯著的提升其轉化效率達102 %之多。此微米鐘結構能降低元件表面的反射率,增加電池的光吸收能力,並提升短路電流及填充因子。此經由磊晶直接成長出微米鐘的方法,可有效的改善元件的光伏特性。
第三,二氧化矽奈米柱陣列/p型氮化鎵微米鐘的分層結構被應用在氮化銦鎵的多層量子井太陽能電池上,以當作光擷取層。同樣以自組裝的銀球當作蝕刻遮罩來做反應式離子蝕刻,來將二氧化矽奈米柱陣列製作於p型氮化鎵微米鐘之上。由於此粗糙結構的光捕捉效應以及奈米柱具匹配的折射率,使得介面的菲涅耳反射(Fresnel reflection)能被更有效地降低。具此分層結構的電池表現出優異的光伏特性,能提升短路電流及填充因子,進而使轉換效率增加1.47倍。此外,元件光吸收能力的增加與以有限差分時域法(finite-difference time-domain, FDTD)分析的結果相吻合。
最後,我們將此分層結構應用在LED上,發現能增加LED的出光強度。與表面未經粗化的LED相比,在20mA注入電流下,微米鐘LED出光強度增強16.7 %,而奈米柱/微米鐘LED則增強了36.8 %之多。此結果歸因於粗化結構能使出射光散射並提供一等效折射率,來降低元件的內部全反射,進而提高光萃取率。此LED出光強度的增加也同樣可由有限差分時域法來分析得到。
zh_TW
dc.description.abstractIn this thesis, we will firstly focus on InGaN/GaN solar cells, and secondly we move to GaN/InGaN light emitting diodes. The final is our conclusion.
First, SiO2 nanorod arrays (NRAs) are fabricated on InGaN-based multiple quantum well (MQW) solar cells using self-assembled Ag nanoparticles as the etching mask and subsequent reactive ion etching. The SiO2 NRAs effectively suppress the undesired surface reflections over the wavelengths from 330 to 570 nm, which is attributed to the light-trapping effect and the improved mismatch of refractive index at the air/MQW device interface. Under the air mass 1.5 global illumination, the conversion efficiency of the solar cell is enhanced by ~21 % largely due to increased short-circuit current from 0.71 to 0.76 mA/cm2. The enhanced device performances by the optical absorption improvement are supported by the simulation analysis as well.
Second, InGaN-based multiple quantum well (MQW) solar cells (SCs) employing the p-GaN microdome were demonstrated to significantly boost the conversion efficiency by 102 %. The improvements in short-circuit current density (Jsc, from 0.43 to 0.54 mA/cm2) and fill factor (from 44 % to 72 %) using the p-GaN microdome are attributed to enhanced light absorption due to surface reflection suppression. The concept of microdome directly grown during SC epitaxial growth preserving mechanical robustness and wafer-scale uniformity proves a promising way in promoting the photovoltaic performances of SCs without any additional process.
Third, the hierarchical structure of SiO2 nanorod arrays/p-GaN microdomes was applied as a light harvesting scheme on InGaN-based multiple quantum well solar cells. Using self-assembled Ag nanoparticles as the etching mask and subsequent reactive ion etching, SiO2 NRAs were fabricated upon the p-GaN microdomes. Due to the light trapping effect of the roughness and the improved match of refractive index by SiO2 nanorod arrays, the undesired Fresnel reflections are effectively suppressed. Cells with the hierarchical surfaces exhibit excellent photovoltaic performances including enhanced short-circuit current densities and fill factor, and the measured conversion efficiency is enhanced by 1.47-fold. The improved light absorption in device is consistent with the finite-difference time-domain analysis.
Finally, we report the enhanced light extraction efficiency of the hierarchical structure, SiO2 nanorods/p-GaN microdomes, fabricating on InGaN/GaN LEDs. Compared with conventional flat LEDs, the light output intensity of bare microdome LED presents an improvement of 16.7 % at 20 mA, yet it boosts to 36.8 % for SiO2 NRA/p-GaN microdome LED. The results are attributed to the scattering effect and the effective refraction indexes of the textured structures that reduce the total internal reflection, contributing to the most light extraction. The enhanced optical performances are supported by the improved light output power calculated by finite-difference time-domain analysis.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:18:42Z (GMT). No. of bitstreams: 1
ntu-101-R99941049-1.pdf: 2018908 bytes, checksum: e2b732daa366542c7d5e5ef25844e126 (MD5)
Previous issue date: 2012
en
dc.description.tableofcontents口試委員會審定書...........................................I
致謝......................................................II
摘要.....................................................III
Abstract...................................................V
List of Contents.........................................VII
List of Figures and Tables................................IX
Chapter 1 Introduction
Introduction ..............................................1
Chapter 2 Experimental setup
Experimental setup.........................................3
Chapter 3 An efficient light-harvesting scheme using SiO2 nanorods for InGaN MQW solar cells
3-1 Introduction ..............................................4
3-2 Experiment.................................................6
3-3 Results and Discussion ................................................8
3-4 Summary...................................................15
3-5 References...........................................16
Chapter 4 Microdome InGaN-Based Multiple Quantum Well Solar Cells
4-1 Introduction .............................................19
4-2 Experiment................................................21
4-3 Results and Discussion ...............................................22
4-4 Summary ..................................................30
4-5 References................................................31
Chapter 5 Efficient light harvesting scheme for InGaN-based quantum well solar cells employing the hierarchical structure: SiO2 nanorods/p-GaN microdomes
5-1 Introduction .............................................34
5-2 Experiment................................................37
5-3 Results and Discussion ...............................................38
5-4 Summary .............................................46
5-5 References................................................47
Chapter 6 Light emission enhancement of GaN-based light -emitting diodes via the hierarchical structure: SiO2 nanorods/p-GaN microdomes
6-1 Introduction .............................................49
6-2 Experiment................................................52
6-3 Results and Discussion ...............................................53
6-4 Summary ..................................................60
6-5 References................................................61
Chapter 7 Conclusion
Conclusion................................................64
Cheng-Han Ho curriculum vitae.............................66
Publication list..........................................67
dc.language.isoen
dc.title從奈米到微米結構設計以達成氮化銦鎵/氮化鎵元件之高效能光擷取/光萃取zh_TW
dc.titleEfficient Light Harvesting/Extraction Schemes Employing Structure Designs from Microscale to Nanoscale for InGaN/GaN Devicesen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee許進恭,杜立偉,黃建璋,葉秉慧
dc.subject.keyword太陽能電池,氮化銦鎵/氮化鎵,反應式離子蝕刻,奈米柱,抗反射,光擷取,微米鐘,發光二極體,內/外部量子效率,光萃取效率,zh_TW
dc.subject.keywordSolar cell (SC),InGaN/GaN,Reactive ion etching (RIE),Nanorod,Antireflection,Light harvesting,Microdome,Light-emitting diode (LED),Internal/External quantum efficiency (IQE/EQE),Light extraction efficiency,en
dc.relation.page68
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-12
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf1.97 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved