請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68157完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 廖文彬(Wen-Bin Liau) | |
| dc.contributor.author | Jyun-Yu Liao | en |
| dc.contributor.author | 廖俊宇 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:13:41Z | - |
| dc.date.available | 2023-03-01 | |
| dc.date.copyright | 2018-03-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-11-27 | |
| dc.identifier.citation | 1. Smalley, R. E. MRS Bull. 2011, 30, 412.
2. Armaroli, N.; Balzani, V. Angew. Chem. Int. Ed. Engl. 2007, 46, 52. 3. Kumar, A. A.; Hennek, J. W.; Smith, B. S.; Kumar, S.; Beattie, P.; Jain, S.; Rolland, J. P.; Stossel, T. P.; Chunda-Liyoka, C.; Whitesides, G. M. Angew. Chem. Int. Ed. Engl. 2015, 54, 5836. 4. Li, D.; Ouyang, G.; McCann, J. T.; Xia, Y. Nano Lett. 2005, 5, 913. 5. Xia, Y.; Xiong, Y.; Lim, B.; Skrabalak, S. E. Angew. Chem. Int. Ed. Engl. 2009, 48, 60. 6. Natta, G.; Mazzanti, G.; Corradini, R. Rend. Accad. Nazl. Lincei. 1958, 28, 2. 7. Shirakawa, H.; Ikeda, S. Polym. J. 1971, 2, 231. 8. Chiang, C. K.; Fincher, C. R.; Park, Y. W.; Heeger, A. J.; Shirakawa, H.; Louis, E. J.; Gau, S. C.; Macdiarmid, A. G. Phys. Rev. Lett. 1977, 39, 1098. 9. Bredas, J. L.; Street, G. B. Acc. Chem. Res. 1985, 18, 309. 10. Beverina, L.; Pagani, G. A.; Sassi, M. Chem. Commun. 2014, 50, 5413. 11. Tamao, K.; Sumitani, K.; Kumada, M. J. Am. Chem. Soc. 1972, 94, 4374. 12. Kumada, M.; Tamao, K.; Sumitani, K. Org. Synth. 1978, 58, 127. 13. Corriu, R. J. P.; Masse, J. P. J. Chem. Soc., Chem. Commun. 1972, 0, 144a. 14. Yamamoto, T.; Sanechika, K.; Yamamoto, A. J. Polym. Sci. Pol. Lett. 1980, 18, 9. 15. Lin, J. W. P.; Dudek, L. P. J. Polym. Sci. Pol. Chem. 1980, 18, 2869. 16. Yoshino, K.; Hayashi, S.; Sugimoto, R. Jpn. J. Appl. Phys. 1984, 23, L899. 17. Jen, K. Y.; Oboodi, R.; Elsenbaumer, R. L. Polym. Mater. Sci. Eng. 1985, 53, 79. 18. Leclerc, M.; Diaz, F. M.; Wegner, G. Makromol. Chem. 1989, 190, 3105. 19. Sugimoto, R.; Takeda, S.; Gu, H. B.; Yoshino, K. Chem. Express 1986, 1, 635. 20. Leclerc, M.; Morin, J.-F., Design and Synthesis of Conjugated Polymers. 1st ed.; Wiley-VCH: Germany, 2010. 21. Loewe, R. S.; Ewbank, P. C.; Liu, J.; Zhai, L.; McCullough, R. D. Macromolecules 2001, 34, 4324. 22. McCullough, R. D.; Lowe, R. D. J. Chem. Soc., Chem. Commun. 1992, 70. 23. McCullough, R. D.; Lowe, R. D.; Jayaraman, M.; Anderson, D. L. J. Org. Chem. 1993, 58, 904. 24. Chen, T. A.; Rieke, R. D. J. Am. Chem. Soc. 1992, 114, 10087. 25. Loewe, R. S.; Khersonsky, S. M.; McCullough, R. D. Adv. Mater. 1999, 11, 250. 26. Chen, T. A.; Wu, X. M.; Rieke, R. D. J. Am. Chem. Soc. 1995, 117, 233. 27. Yokoyama, A.; Miyakoshi, R.; Yokozawa, T. Macromolecules 2004, 37, 1169. 28. Odian, G., Principles of Polymerization. 4th ed.; Wiley-Interscience: New York, US, 2004. 29. Sheina, E. E.; Liu, J. S.; Iovu, M. C.; Laird, D. W.; McCullough, R. D. Macromolecules 2004, 37, 3526. 30. Iovu, M. C.; Sheina, E. E.; Gil, R. R.; McCullough, R. D. Macromolecules 2005, 38, 8649. 31. Chang, Y.-M. Morphology of Bulk Heterojunction Layer in Polymer-based Solar Cells. Doctoral Dissertation, National Taiwan University, Taipei, Taiwan, 2008. 32. Monnaie, I. Structure Creation of P3HT in Solution. Doctoral Dissertation, Eindhoven University of Technology, Eindhoven, Netherlands, 2015. 33. Amou, S.; Haba, O.; Shirato, K.; Hayakawa, T.; Ueda, M.; Takeuchi, K.; Asai, M. J. Polym. Sci., Part A: Polym. Chem. 1999, 37, 1943. 34. Woo, C. H.; Thompson, B. C.; Kim, B. J.; Toney, M. F.; Frechet, J. M. J. Am. Chem. Soc. 2008, 130, 16324. 35. Liu, H.-W. Thermal Stability Enhancement of P3HT/PCBM Solar Cells by Controlling the Polymer Regioregularity. MS Thesis, National Taipei University of Technology, Taipei, Taiwan, 2009. 36. Zen, A.; Pflaum, J.; Hirschmann, S.; Zhuang, W.; Jaiser, F.; Asawapirom, U.; Rabe, J. P.; Scherf, U.; Neher, D. Adv. Funct. Mater. 2004, 14, 757. 37. Kim, Y.; Cook, S.; Tuladhar, S. M.; Choulis, S. A.; Nelson, J.; Durrant, J. R.; Bradley, D. D. C.; Giles, M.; Mcculloch, I.; Ha, C. S.; Ree, M. Nat. Mater. 2006, 5, 197. 38. Clark, J.; Chang, J. F.; Spano, F. C.; Friend, R. H.; Silva, C. Appl. Phys. Lett. 2009, 94, 163306. 39. Hugger, S.; Thomann, R.; Heinzel, T.; Thurn-Albrecht, T. Colloid. Polym. Sci. 2004, 282, 932. 40. Jimison, L. H.; Toney, M. F.; McCulloch, I.; Heeney, M.; Salleo, A. Adv. Mater. 2009, 21, 1568. 41. Xu, W. T.; Tang, H. W.; Lv, H. Y.; Li, J.; Zhao, X. L.; Li, H.; Wang, N.; Yang, X. N. Soft Matter 2012, 8, 726. 42. Malik, S.; Jana, T.; Nandi, A. K. Macromolecules 2001, 34, 275. 43. Li, D.; Wang, Y. L.; Xia, Y. N. Nano Lett. 2003, 3, 1167. 44. Billmeyer, F. W., Textbook of Polymer Science. 2nd ed.; John Wiley & Sons: US, 1971; p 47. 45. Taylor, G. I. Proc. R. Soc. London, Ser. A 1964, 280, 383. 46. Reneker, D. H.; Yarin, A. L.; Fong, H.; Koombhongse, S. J. Appl. Phys. 2000, 87, 4531. 47. Buchko, C. J.; Chen, L. C.; Shen, Y.; Martin, D. C. Polymer 1999, 40, 7397. 48. Demir, M. M.; Yilgor, I.; Yilgor, E.; Erman, B. Polymer 2002, 43, 3303. 49. Mit-uppatham, C.; Nithitanakul, M.; Supaphol, P. Macromol. Chem. Phys. 2004, 205, 2327. 50. Megelski, S.; Stephens, J. S.; Chase, D. B.; Rabolt, J. F. Macromolecules 2002, 35, 8456. 51. Casper, C. L.; Stephens, J. S.; Tassi, N. G.; Chase, D. B.; Rabolt, J. F. Macromolecules 2004, 37, 573. 52. Caswell, K. K.; Bender, C. M.; Murphy, C. J. Nano Lett. 2003, 3, 667. 53. Wei, G.; Zhou, H.; Liu, Z.; Song, Y.; Wang, L.; Sun, L.; Li, Z. J. Phys. Chem. B. 2005, 109, 8738. 54. Piquemal, J.-Y.; Viau, G.; Beaunier, P.; Bozon-Verduraz, F.; Fiévet, F. Mater. Res. Bull. 2003, 38, 389. 55. Sun, Y. G.; Yin, Y. D.; Mayers, B. T.; Herricks, T.; Xia, Y. N. Chem. Mater. 2002, 14, 4736. 56. Murphy, C. J.; Gole, A. M.; Hunyadi, S. E.; Orendorff, C. J. Inorg. Chem. 2006, 45, 7544. 57. Wagner, R. S.; Ellis, W. C. Appl. Phys. Lett. 1964, 4, 89. 58. Li, M.; Guo, Y.; Wei, Y.; MacDiarmid, A. G.; Lelkes, P. I. Biomaterials 2006, 27, 2705. 59. Xin, Y.; Huang, Z. H.; Chen, J. F.; Wang, C.; Tong, Y. B.; Liu, S. D. Mater. Lett. 2008, 62, 991. 60. Gonzalez, R.; Pinto, N. J. Synth. Met. 2005, 151, 275. 61. Liu, H. Q.; Reccius, C. H.; Craighead, H. G. Appl. Phys. Lett. 2005, 87, 253106. 62. Li, D.; Babel, A.; Jenekhe, S. A.; Xia, Y. Adv. Mater. 2004, 16, 2062. 63. Bianco, A.; Bertarelli, C.; Frisk, S.; Rabolt, J. F.; Gallazzi, M. C.; Zerbi, G. Synth. Met. 2007, 157, 276. 64. Laforgue, A.; Robitaille, L. Synth. Met. 2008, 158, 577. 65. Li, D.; Xia, Y. Adv. Mater. 2004, 16, 1151. 66. Chen, J. Y.; Kuo, C. C.; Lai, C. S.; Chen, W. C.; Chen, H. L. Macromolecules 2011, 44, 2883. 67. Chen, J. Y.; Wu, H. C.; Chiu, Y. C.; Lin, C. J.; Tung, S. H.; Chen, W. C. Adv. Electron. Mater. 2015, 1, 1400028. 68. Chan, S.-H. Electrospun P3HT/PMMA Blend Fibers for High Efficient, Real-Time and Low Cost Volatile Organic Compounds Sensors. MS Thesis, Chang Gung University, Taoyuan, Taiwan, 2014. 69. Kim, T.; Yang, S. J.; Sung, S. J.; Kim, Y. S.; Chang, M. S.; Jung, H.; Park, C. R. ACS Appl. Mater. Interfaces 2015, 7, 4481. 70. Pierini, F.; Lanzi, M.; Nakielski, P.; Pawlowska, S.; Zembrzycki, K.; Kowalewski, T. A. Polym. Adv. Technol. 2016, 27, 1465. 71. Dillard, C.; Singhal, R.; Kalra, V. Macromol. Mater. Eng. 2015, 300, 320. 72. Lee, S.; Moon, G. D.; Jeong, U. J. Mater. Chem. 2009, 19, 743. 73. Lee, S. W.; Lee, H. J.; Choi, J. H.; Koh, W. G.; Myoung, J. M.; Hur, J. H.; Park, J. J.; Cho, J. H.; Jeong, U. Nano Lett. 2010, 10, 347. 74. Chan, K. H. K.; Yamao, T.; Kotaki, M.; Hotta, S. Synth. Met. 2010, 160, 2587. 75. Tseng, W.-T. Preparation and Characterization of Electrospun Conductive Poly(3-hexyl-thiophene) Fibers. MS Thesis, National Chung-Hsing Univeristy, Taichung, Taiwan, 2009. 76. Chen, S.-N. The Morphology, Microstructure and Photophysical Properties of P3HT and P3HT/PCBM Electrospun Fibers. MS Thesis, Kun Shan University, Tainan, Taiwan, 2011. 77. Chen, Y.-W. Growth Mechanism of Silver on Electrospun Poly(3-hexylthiophene-2,5-diyl)/Poly(ethylene oxide) Nanofibers. MS Thesis, National Taiwan University, Taipei, Taiwan, 2017. 78. Xu, P.; Jeon, S. H.; Chen, H. T.; Luo, H. M.; Zou, G. F.; Jia, Q. X.; Anghel, M.; Teuscher, C.; Williams, D. J.; Zhang, B.; Han, X. J.; Wang, H. L. J. Phys. Chem. C 2010, 114, 22147. 79. Wang, H. L.; Li, W. G.; Jia, Q. X.; Akhadov, E. Chem. Mater. 2007, 19, 520. 80. Lee, C.-W. Preparation and Growth Mechanism of Poly(3-hexylthiophene-2,5-diyl)-Silver Composites. MS Thesis, National Taiwan University, Taipei, Taiwan, 2013. 81. Chiu, Y. Effect of Different Solvent on Preparation and Growth Mechanism of Poly(3-hexylthiophene-2,5-diyl)-Silver Composites. MS Thesis, National Taiwan University, Taipei, Taiwan, 2015. 82. Chang, M.; Choi, D.; Fu, B.; Reichmanis, E. ACS Nano 2013, 7, 5402. 83. Machui, F.; Langner, S.; Zhu, X. D.; Abbott, S.; Brabec, C. J. Sol. Energy Mater. Sol. Cells 2012, 100, 138. 84. Doshi, J.; Reneker, D. H. J. Electrostat. 1995, 35, 151. 85. Jiang, X. M.; An, C. P.; Osterbacka, R.; Vardeny, Z. V. Synth. Met. 2001, 116, 203. 86. Palermo, E. F.; van der Laan, H. L.; McNeil, A. J. Polym. Chem. 2013, 4, 4606. 87. Chen, Y.; Cui, H. J.; Li, L. S.; Tian, Z. Y.; Tang, Z. Y. Polym. Chem. 2014, 5, 4441. 88. Chang, Y. M.; Su, W. F.; Wang, L. Y. Macromol. Rapid Commun. 2008, 29, 1303. 89. Kubo, M.; Takimoto, C.; Minami, Y.; Uno, T.; Itoh, T.; Shoyama, M. Macromolecules 2005, 38, 7314. 90. Li, M.; Xu, P.; Yang, J.; Yang, S. J. Mater. Chem. 2010, 20, 3953. 91. Li, M. H.; Xu, P.; Yang, J. G.; Ying, H.; Haubner, K.; Dunsch, L.; Yang, S. F. J. Phys. Chem. C 2011, 115, 4584. 92. Lin, C. J.; Liu, C. L.; Chen, W. C. J. Mater. Chem. C 2015, 3, 4290. 93. Sørensen, J. M.; Magnussen, T.; Rasmussen, P.; Fredenslund, A. Fluid Phase Equilib. 1979, 2, 297. 94. Coca, J.; Diaz, R. M.; Pazos, C. Fluid Phase Equilib. 1980, 4, 125. 95. Malik, S.; Nandi, A. K. J. Appl. Polym. Sci. 2007, 103, 2528. 96. Chang, M. Y.; Huang, Y. H.; Han, Y. K. Org. Electron. 2014, 15, 251. 97. Chen, C. Y.; Chan, S. H.; Li, J. Y.; Wu, K. H.; Chen, H. L.; Chen, J. H.; Huang, W. Y.; Chen, S. A. Macromolecules 2010, 43, 7305. 98. Williams, D. B.; Carter, C. B., Transmission Electron Microscopy: A Textbook for Materials Science. 2nd ed.; Springer US: New York, US, 2009. 99. Wang, Z. L. J. Phys. Chem. B 2000, 104, 1153. 100. Germain, V.; Li, J.; Ingert, D.; Wang, Z. L.; Pileni, M. P. J. Phys. Chem. B 2003, 107, 8717. 101. Barton, A. F. M., Handbook of Solubility Parameters and Other Cohesion Parameters. 1st ed.; CRC Press: US, 1983. 102. Tester, J. W.; Modell, M., Thermodynamics and Its Applications. 3rd ed.; Pearson Education Taiwan Ltd.: Taiwan, 1996. 103. Gibby, C. W.; Hall, J. J. Chem. Soc. 1931, --, 691. 104. Rex, A. Z. Phys. Chem. 1906, 55, 355. 105. Clifford, C. W. Ind. Eng. Chem. 1921, 13, 628. 106. Gross, P. M.; Saylor, J. H. J. Am. Chem. Soc. 1931, 53, 1744. 107. Sørensen, J. M., Liquid-liquid Equilibrium Data Collection. Scholium Intl: Great Neck, N.Y., 1980; Vol. 1. 108. Matouš, J.; Novák, J. P.; Šobr, J.; Pick, J. Collect. Czech. Chem. Commun. 1972, 37, 2653. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68157 | - |
| dc.description.abstract | 為優化以聚(3-己基噻吩)電紡纖維圖式製作銀金屬-纖維複合物圖式的問題,在本論文裡,我們採用修改靜電紡絲加工程序的策略,以四氫呋喃(THF)液體收集聚(3-己基噻吩)/聚環氧乙烷(P3HT/PEO)混摻電紡纖維以製作有一維帶狀銀金屬沿著電紡纖維延伸的方向包覆成長的銀金屬-纖維複合物,其中導電高分子聚(3-己基噻吩)為電子予體,藉四氫呋喃對聚(3-己基噻吩)的膨潤作用而使銀離子在膨潤的聚(3-己基噻吩)高分子鏈聚集體上還原形成具一維結構的銀金屬。
於溶液裡的聚(3-己基噻吩)為無規則捲曲的構型,高分子鏈之間沒有π-π堆疊(π-π stacking)交互作用;我們將聚(3-己基噻吩)的氯仿溶液滴入含有銀前驅物的四氫呋喃/水共溶劑系統裡探討其溶液態成長具一維結構的銀金屬的成長過程。在這成長過程裡,涉及到:一、以NRTL熱力學模型迴歸關聯計算四氫呋喃-水-氯仿三成份液液相平衡,其結果顯示這系統使用的溶液混合比例藉著液液相分離趨向熱力學穩定。二、由不同溶劑品質的溶劑經擴散而發生的高分子溶液-凝膠轉換,該凝膠轉換為加熱可逆的物理型凝膠化,是因聚(3-己基噻吩)的糾纏所造成。三、在不同時間點開始的銀金屬成長事件,在最適化的時間條件啟動的帶狀銀金屬的長度可達ca. 102 μm。然於銀金屬的結構方面:該帶狀銀金屬結構具有高度的晶體位向排列一致性,其結構主要晶面是為{111}晶面族及<110>的晶面成長方向。在同樣具有高長寬比的一維銀金屬,我們的銀金屬預期會有更好的傳導性質。在我們的銀金屬成長系統裡,不需要額外引入還原劑以及額外的模板,且在常溫、常壓的環境條件下就可以製備得一維帶狀銀金屬-電紡纖維複合物。 | zh_TW |
| dc.description.abstract | Optimizing the problems in the pattern of silver-fiber composites fabricated by a pattern of poly(3-hexylthiophene) (P3HT) electrospun fibers, in this thesis, we adopted a modified electrospinning processing strategy, in which the P3HT/poly(ethylene oxide) (PEO) blending electrospun fibers were collected in a bath of THF. Such the fibers were employed to fabricate the silver-fiber composites, on which there was a part of 1-D belt-like silver grew along with the elongation direction of fibers. P3HT, one conducting polymer, was an electron donor, and what the swelling effect of THF in P3HT let silver ions reduced on the swollen P3HT polymer chain aggregates to generate silver with 1-D structure.
P3HT was a random coil in the solution state, where there was no π-π stacking interaction between polymer chains; based on this concept, we introduced a drop of P3HT in chloroform into a THF/water co-solvent system containing silver precursor, discussing the processes that 1-D silver grew via P3HT solution. In such the processes, there were three major topics involved. First, a ternary liquid-liquid phase equilibrium for THF-water-chloroform was estimated by NRTL model regression correlation, and the result demonstrated the molar ratio of mixing solvents in this system became thermodynamically stable via liquid-liquid phase separation. Second, the polymer solution-gel transition (i.e. gelation) happened through molecular diffusion of solvents with different quality, and the gelation causing by the entanglement of P3HT rigid backbone was thermoreversible. Third, there were silver growth events launched at different time, in which the maximal length of belt-like silver was ca. 102 μm when it started on the optimized time. This silver structure had high degree of consistent arrangement, and showed the major crystal plane of {111} and the major growth direction of <110> as well. Our silver was expected to perform more advantageous transporting properties in the case of 1-D silver with high aspect ratio. Last but not least, in our growth system for silver, without any extra reducing agent and other templates, we can fabricate 1-D belt-like silver-electrospun fiber composites under ambient temperature and pressure conditions via addition of silver precursor only. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:13:41Z (GMT). No. of bitstreams: 1 ntu-106-R03549030-1.pdf: 14116705 bytes, checksum: 2aba2b0d551a205e12d321805fc72895 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Acknowledgement i
縮寫對照表 iii 符號對照表 iv 中文摘要 v Abstract vi 目錄 viii 流程目錄 xi 圖目錄 xii 表目錄 xix Chapter 1 緒論 1 1-1 前言 1 1-2 導電高分子材料 2 1-2.1 高分子的導電性質 2 1-2.2 聚噻吩合成的發展歷史 3 1-2.3 聚(3-己基噻吩)的薄膜性質 9 1-2.4 聚(3-己基噻吩)的凝膠 10 1-3 高分子纖維 13 1-3.1 紡絲與纖維的介紹 13 1-3.2 靜電紡絲加工的工作原理 13 1-3.3 靜電紡絲加工的參數 15 1-4 一維銀金屬 17 1-5 文獻回顧-由靜電紡絲加工製造的聚(3-己基噻吩)纖維 18 1-6 文獻回顧-以導電高分子成長的一維銀金屬 23 1-7 研究動機 27 Chapter 2 實驗 28 2-1 實驗材料 28 2-2 實驗設備 31 2-3 實驗儀器 36 2-4 分析樣品製作 42 Chapter 3 以Grignard置換聚合反應合成聚(3-己基噻吩) 45 3-1 結果與討論 45 3-1.1 預聚物HTBr的合成 45 3-1.2 預聚物HTBr的聚合:聚(3-己基噻吩) P3HT的合成 46 3-1.3 聚(3-己基噻吩)的純化步驟:Soxhlet萃取 46 3-1.4 聚(3-己基噻吩)的聚合度分析:GPC鑑定 48 3-1.5 聚(3-己基噻吩)的分子結構鑑定:1H-NMR鑑定 49 Chapter 4 以高分子溶液製備銀金屬 52 4-1 簡介與先前技術 52 4-2 實驗流程 61 4-3 結果與討論 65 4-3.1 高分子溶液系統的設計 65 4-3.2 銀金屬成長機制的推論 68 4-3.3 混合溶液系統的熱力學參數 70 4-3.4 由溶劑品質誘發的高分子溶液-凝膠轉換 76 4-3.5 銀金屬的成長與結構分析 83 4-3.6 以濕式靜電紡絲製作銀金屬/高分子纖維複合物 115 Chapter 5 總結 126 Appendix 127 App-1 本論文選用材料及其涉及探討的物性資料文獻值 127 App-2 本論文用於熱力學模型NRTL 迴歸關聯雙成份液液平衡數據 129 App-3 Chapter 3的實驗步驟 135 App-4 核磁共振氫譜 (1H-NMR Spectrum) 140 App-5 凝膠滲透層析圖 (GPC Chromatogram) 143 Reference 144 | |
| dc.language.iso | zh-TW | |
| dc.subject | 凝膠化 | zh_TW |
| dc.subject | 聚(3-己基?吩) | zh_TW |
| dc.subject | 濕式靜電紡絲 | zh_TW |
| dc.subject | 一維結構 | zh_TW |
| dc.subject | 銀金屬 | zh_TW |
| dc.subject | 共溶劑 | zh_TW |
| dc.subject | gelation | en |
| dc.subject | one-dimensional (1-D) structure | en |
| dc.subject | silver | en |
| dc.subject | co-solvent | en |
| dc.subject | poly(3-hexylthiophene) (P3HT) | en |
| dc.subject | wet-electrospinning | en |
| dc.title | 以聚(3-己基噻吩)溶液製備一維帶狀銀金屬及成長機制之探究 | zh_TW |
| dc.title | Growth Mechanism and Fabrication of One-dimensional Belt-like Silver via Solution of Poly(3-hexylthiophene-2,5-iyl) | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 童世煌(Shih-Huang Tung),曾勝茂 | |
| dc.subject.keyword | 聚(3-己基?吩),濕式靜電紡絲,一維結構,銀金屬,共溶劑,凝膠化, | zh_TW |
| dc.subject.keyword | poly(3-hexylthiophene) (P3HT),wet-electrospinning,one-dimensional (1-D) structure,silver,co-solvent,gelation, | en |
| dc.relation.page | 150 | |
| dc.identifier.doi | 10.6342/NTU201700529 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-11-28 | |
| dc.contributor.author-college | 工學院 | zh_TW |
| dc.contributor.author-dept | 高分子科學與工程學研究所 | zh_TW |
| 顯示於系所單位: | 高分子科學與工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 13.79 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
