Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68136
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳育任
dc.contributor.authorChih-Wei Hsuen
dc.contributor.author徐志維zh_TW
dc.date.accessioned2021-06-17T02:13:16Z-
dc.date.available2018-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-12-05
dc.identifier.citation[1] O. Ambacher, J. Smart, J. Shealy, N. Weimann, K. Chu, M. Murphy,
W. Schaff, L. Eastman, R. Dimitrov, L. Wittmer, et al.,
“Two-dimensional electron gases induced by spontaneous and
piezoelectric polarization charges in N-and Ga-face AlGaN/GaN
heterostructures,” Journal of applied physics, vol. 85, no. 6,
pp. 3222–3233, 1999.
[2] R. Gaska, J. Yang, A. Osinsky, A. Bykhovski, and M. S. Shur,
“Piezoeffect and gate current in AlGaN/GaN high electron mobility
transistors,” Applied physics letters, vol. 71, no. 25, pp. 3673–
3675, 1997.
[3] C.-H. Chen, S. M. Baier, D. K. Arch, and M. S. Shur, “A new and
simple model for GaAs heterojunction fet gate characteristics,”
IEEE Transactions on Electron Devices, vol. 35, no. 5, pp. 570–
577, 1988.
[4] J.W¨urfl, “Technology and perspectives of GaN devices for innovative
microwave applications,” in Microwave Conference (GeMIC),
2008 German, pp. 1–4, VDE, 2008.
[5] S. Arulkumaran, T. Egawa, H. Ishikawa, and T. Jimbo, “Hightemperature
effects of AlGaN/GaN high-electron-mobility transistors
on sapphire and semi-insulating SiC substrates,” Applied
Physics Letters, vol. 80, no. 12, pp. 2186–2188, 2002.
[6] Y.-R. Wu and J. Singh, “Transient study of self-heating effects
in AlGaN/GaN HFETs: Consequence of carrier velocities, temperature,
and device performance,” Journal of applied physics,
vol. 101, no. 11, p. 113712, 2007.
[7] C.-H. Chang, H.-T. Hsu, L.-C. Huang, C.-Y. Chiang, and E. Y.
Chang, “Fabrication of AlGaN/GaN high electron mobility transistors
HEMTs on silicon substrate with slant field plates using
deep-uv lithography featuring 5W/mm power density at
x-band,” in Microwave Conference Proceedings (APMC), 2012
Asia-Pacific, pp. 941–943, IEEE, 2012.
[8] H. Xing, Y. Dora, A. Chini, S. Heikman, S. Keller, and U. Mishra,
“High breakdown voltage AlGaN-GaN HEMTs achieved by multiple
field plates,” IEEE Electron Device Letters, vol. 25, no. 4,
pp. 161–163, 2004.
[9] Y. Dora, A. Chakraborty, L. McCarthy, S. Keller, S. Den-
Baars, and U. Mishra, “High breakdown voltage achieved on
AlGaN/GaN HEMTs with integrated slant field plates,” IEEE
Electron Device Letters, vol. 27, no. 9, pp. 713–715, 2006.
[10] Y. Pei, Z. Chen, D. Brown, S. Keller, S. Denbaars, and
U.Mishra, “Deep-submicrometer AlGaN/GaN HEMTs with slant
field plates,” IEEE Electron Device Letters, vol. 30, no. 4, pp. 328–
330, 2009.
[11] I.-V. N. Semiconductors, “Applications and devices, edited by et
yu and mo manasreh,” 2003.
[12] A. Bykhovski, B. Gelmont, and M. Shur, “Elastic strain relaxation
and piezoeffect in GaN-AlN, GaN-AlGaN and GaNInGaN
superlattices,” Journal of Applied Physics, vol. 81, no. 9,
pp. 6332–6338, 1997.
[13] H. Morko¸c, R. Cingolani, and B. Gil, “Polarization effects in nitride
semiconductor device structures and performance of modulation
doped field effect transistors,” Solid-State Electronics,
vol. 43, no. 10, pp. 1909–1927, 1999.
[14] J. Ibbetson, P. Fini, K. Ness, S. DenBaars, J. Speck, and
U. Mishra, “Polarization effects, surface states, and the source of
electrons in AlGaN/GaN heterostructure field effect transistors,”
Applied Physics Letters, vol. 77, no. 2, pp. 250–252, 2000.
[15] T.-E. Hsieh, L.-C. Huang, Y.-C. Lin, C.-H. Chang, H.-C. Wang,
and E. Y. Chang, “Fabrication of AlGaN/GaN HEMTs with slant
field plates by using deep-uv lithography,” in Semiconductor Elec-
tronics (ICSE), 2012 10th IEEE International Conference on,
pp. 744–746, IEEE, 2012.
[16] R. Gaska, A. Osinsky, J. Yang, and M. S. Shur, “Self-heating in
high-power AlGaN-GaN HFETs,” IEEE Electron Device Letters,
vol. 19, no. 3, pp. 89–91, 1998.
[17] Z. Liu, S. Arulkumaran, G. Ng, and T. Xu, “Temperaturedependent
microwave noise characteristics of AlGaN/GaN
HEMTs on silicon substrate,” in Device Research Conference,
2008, pp. 127–128, IEEE, 2008.
[18] R. C. Bragado, Y. Pei, F. Recht, N. Fichtenbaum, S. Keller,
S. DenBaars, F. C. G´omez, and U. Mishra, “Temperature-
dependent high-frequency performance of deep submicron ionimplanted
AlGaN/GaN HEMTs,” 2008.
[19] S. C. Binari, K. Ikossi, J. A. Roussos, W. Kruppa, D. Park,
H. B. Dietrich, D. D. Koleske, A. E. Wickenden, and R. L.
Henry, “Trapping effects and microwave power performance in
AlGaN/GaN HEMTs,” IEEE Transactions on Electron Devices,
vol. 48, no. 3, pp. 465–471, 2001.
[20] W. Saito, M. Kuraguchi, Y. Takada, K. Tsuda, I. Omura, and
T. Ogura, “High breakdown voltage undoped AlGaN-GaN power
HEMT on sapphire substrate and its demonstration for dc-dc
converter application,” IEEE Transactions on Electron Devices,
vol. 51, no. 11, pp. 1913–1917, 2004.
[21] C. kang Li, M. Rosmeulen, E. Simoen, and Y.-R. Wu, “Study
on the optimization for current spreading effect of lateral
GaN/InGaN LEDs,” Electron Devices, IEEE Transactions on,
vol. 61, no. 2, pp. 511–517, 2014.
[22] C.-Y. Chen and Y.-R. Wu, “Studying the short channel effect in
the scaling of the AlGaN/GaN nanowire transistors,” Journal of
Applied Physics, vol. 113, no. 21, p. 214501, 2013.
[23] H.-W. Wang, P. Yu, Y.-R. Wu, H.-C. Kuo, E. Chang,
and S.-H. Lin, “Projected efficiency of polarization-matched
p-InxGa1−xN/i-InyGa1−yN/n-GaN double heterojunction solar
cells,” Photovoltaics, IEEE Journal of, vol. 3, no. 3, pp. 985–990,
2013.
[24] C.-K. Wu, C.-K. Li, and Y.-R. Wu, “Percolation transport study
in nitride based LED by considering the random alloy fluctuation,”
Journal of Computational Electronics, vol. 14, pp. 416–424,
2015.
[25] K.-Y. Ho, “有機無機混合型太陽能電池與全背電極砷化鎵太陽
能電池的二維模擬與優化,” 臺灣大學光電工程學研究所學位論
文, pp. 1–93, 2016.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68136-
dc.description.abstract眾所周知,氮化鎵(GaN)高電子遷移率晶體管(HEMT)是良好的大功率半導體器件,因為它們的極化場而具有高擊穿電壓,高遷移率和大量的二維電子氣。為了在高電壓下操作HEMT,使用場板來提高HEMT的擊穿電壓是必要的。在本文中,我們研究了不同的傾斜或彎曲場板,以研究對通道中峰值電場的減小的影響。施加了具有彎曲側壁(傾斜或彎曲的場板)的SiN鈍化的柵極。通過這種結構,將研究不同電壓的峰值電場以找到優化條件。我們將研究場板的不同配置,以了解場板的幾何如何減小沿著通道的峰值電場。
在我們的研究結果中,在不優化的情況下,不同配置的峰值電場主要位於最高工作電壓下的柵極端向漏極側端點和傾斜場板的端點。凹形結構使得柵極和場板之間的電場平衡更好。另外,目前也受不同傾斜場板厚度的影響。通過使用彎曲場板,可以以更平滑的電場分佈來增加器件的擊穿電壓。而且,彎曲場版可以使擊穿電壓達到500伏特,雖然可能難以製造彎曲的場板。然而,通過控制蝕刻角度和選擇性蝕刻溶劑,對於未來的應用來說仍然是可行的。
zh_TW
dc.description.abstractIt is well known that gallium nitride (GaN) high-electron-mobility transistors (HEMTs) are good high-power semiconductor devices because they have high breakdown voltage, high mobility, and large amount of 2DEG due to the polarization field. To operate HEMTs in high voltage, using the field plate to enhance the breakdown voltage of the HEMTs is necessary. In this paper, we studied the different slanted or curved field plates to investigate the influence to the reduction of the peak electric field in the channel. Gates deposited on SiN passivation with a curved sidewall (the slanted or curved field plate) were applied. With this structure, the peak electric field with different voltage will be studied to find the optimized condition. We will examine different configurations of the field plates to see how the geometries of the field plate reduce the peak electric field along the channel.
In our investigated results show that , the peak electric fields of different configurations are mainly located at the end point of gate toward the drain side and the end point of the curve field plate at the highest operation voltage. In addition, the current is also affected for different length of gate. By using a curved field plate, it is possible to increase the breakdown voltage of the device with a more smooth distribution of electric field. And the breakdown voltage can be up to 500V in the curve structure. It might be difficult to fabricate a curved field plate. However, by controlling the etching angle and selective etching solvent, it might still be feasible for future applications.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:13:16Z (GMT). No. of bitstreams: 1
ntu-106-R04941093-1.pdf: 6833146 bytes, checksum: 7537da5be2fa529f20aff8ee68646668 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書. . . . . . . . . . . . . . . . . . . . . . . . . i
誌謝. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii
中文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv
英文摘要. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v
目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii
圖目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x
表目錄. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xvii
1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Background of the AlGaN/GaN HFETs . . . . . . . . 2
1.3 Defects of the AlGaN/GaN HFETs . . . . . . . . . . . 5
1.4 The function of field plate structure . . . . . . . . . . . 8
1.5 Thesis overview . . . . . . . . . . . . . . . . . . . . . . 12
2 Simulation methods . . . . . . . . . . . . . . . . . . . . . . . 13
2.1 Electrical modeling . . . . . . . . . . . . . . . . . . . . 13
2.1.1 2D Poisson and Drift-Diffusion Solver . . . . . . 13
2.1.2 Carrier transport in AlGaN/GaN HEMTs . . . 16
2.1.3 Thermal model in AlGaN/GaN HEMTs . . . . 19
2.2 Summary of simulation work flow . . . . . . . . . . . . 20
3 Investigation of various field plate design in enhancing the
maximum power density. . . . . . . . . . . . . . . . . . . . . 22
3.1 Simulation model-reference case . . . . . . . . . . . . . 23
3.2 Results of reference structure . . . . . . . . . . . . . . 30
3.2.1 Results of reference structure with different lfp . 30
3.2.2 Results of reference structure with different lg . 33
3.2.3 Results of reference structure : current density . 35
3.3 The performance with different thickness of SiN . . . . 38
3.4 The improvement in reference structure . . . . . . . . . 42
4 The optimization of structure : slant structure and curve
structure . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
4.1 Simulation model-slant case . . . . . . . . . . . . . . . 46
4.2 Results of slant structure . . . . . . . . . . . . . . . . . 51
4.2.1 Results of slant structure with different lfp . . . 51
4.2.2 Results of slant structure with different lg . . . 53
4.2.3 Results of slant structure : current density . . . 55
4.3 Improvement in slant structure . . . . . . . . . . . . . 58
4.4 Simulation model-curve case . . . . . . . . . . . . . . . 62
4.5 Optimization of the curve structure . . . . . . . . . . . 65
4.5.1 Results of curve structure : current density . . . 69
4.5.2 Results of curve structure : electric field . . . . 71
4.6 Optimization summary . . . . . . . . . . . . . . . . . . 73
5 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75
Bibliography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
dc.language.isoen
dc.subject場效電晶體zh_TW
dc.subject場板zh_TW
dc.subjectfield plateen
dc.subjectHFETsen
dc.title利用最佳化的場板設計以提升氮化鎵異質接面場效電晶體之最大崩潰電壓zh_TW
dc.titleOptimization of Various Field Plate Design in Enhancing the Maximum Breakdown Voltage of GaN heterojunction Field Effect Transistoren
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee盧廷昌,吳肇欣,黃建璋
dc.subject.keyword場板,場效電晶體,zh_TW
dc.subject.keywordfield plate,HFETs,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201704433
dc.rights.note有償授權
dc.date.accepted2017-12-05
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved