Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68132
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳景然(Ching-Jan Chen)
dc.contributor.authorChia-Wei Kuen
dc.contributor.author顧家瑋zh_TW
dc.date.accessioned2021-06-17T02:13:11Z-
dc.date.available2018-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-12-06
dc.identifier.citation[1] Q. Jin and M. Vasić, “Optimized design of GaN switched-capacitor-converter-based envelope tracker for satellite application,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 5, no. 3, pp. 1346-1355, Sep. 2017.
[2] Y. Guan, Y. Wang, D. Xu, and W. Wang, “A 1 MHz half-bridge resonant DC/DC converter based on GaN FETs and planar magnetics,” IEEE Trans. Power Electron., vol. 32, no. 4, pp. 2876-2890, Apr. 2017.
[3] R. Perrin, N. Quentin, B. Allard, C. Martin, and M. Ali, “High-temperature GaN active-clamp flyback converter with resonant operation mode,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 1077-1085, Sep. 2016.
[4] C. Zhao et al., “Design and implementation of a GaN-based, 100-kHz, 102-W/in3 single-phase inverter,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 824-840, Sep. 2016.
[5] X. Huang, F. C. Lee, Q. Li, and W. Du, “High-frequency high-efficiency GaN-based interleaved CRM bidirectional buck/boost converter with inverse coupled inductor,” IEEE Trans. Power Electron., vol. 31, no. 6, pp. 4343-4352, Jun. 2016.
[6] R. Ren, B. Liu, E. A. Jones, F. Wang, Z. Zhang, and D. Costinett, “Capacitor-clamped, three-level GaN-based DC-DC converter with dual voltage outputs for battery charger applications,” IEEE J. Emerg. Sel. Topics Power Electron., vol. 4, no. 3, pp. 841-853, Sep. 2016.
[7] A. Hariya, K. Matsuura, H. Yanagi, S. Tomioka, Y. Ishizuka, and T. Ninomiya, “Five-megahertz PWM-controlled current-mode resonant DC-DC step-down converter using GaN-HEMTs,” IEEE Trans. Ind. Appl., vol. 51, no. 4, pp. 3263-3272, Jul./Aug. 2015.
[8] R. Ramachandran and M. Nymand, “A 98.8% efficienct bidirectional full-bridge isolated DC-DC GaN converter,” in Proc. IEEE APEC, 2016, pp. 609-614.
[9] Z.-W. Xu, Z.-L. Zhang, K. Xu, Z. Dong, and X. Ren, “2-MHz GaN PWM isolated SEPIC converters,” in Proc. IEEE APEC, 2017, pp. 149-156.
[10] C. Nan, R. Ayyanar, and Y. Xi, “A GaN based 2.2 MHz active-clamp buck converter for automotive applications,” in Proc. IEEE ECCE, 2016, pp. 1-8.
[11] F. Xue, R. Yu, and A. Q. Huang, “Design consideration of an isolated GaN bidirectional DC-DC converter,” in Proc. IEEE ECCE, 2016, pp. 1-7.
[12] K. Kruse, M. Elbo, and Z. Zhang, “GaN-based high efficiency bidirectional DC-DC converter with 10 MHz switching frequency,” in Proc. IEEE APEC, 2017, pp. 273-278.
[13] A. Amirahmadi, M. Domb, E. Persson, “High power density high efficiency wide input voltage range LLC resonant converter utilizing e-mode GaN switches,” in Proc. IEEE APEC, 2017, pp. 350-354.
[14] C. Yao, Y. Zhang, X. Zhang, H. Li, H. Chen, and J. Wang, “Adaptive constant power control and power loss analysis of a MHz GaN-based AC/DC converter for low power applications,” in Proc. IEEE APEC, 2017, pp. 1755-1762.
[15] X. Huang, J. Feng, W. Du, F. C. Lee, and Q. Li, “Design consideration of MHz active clamp flyback converter with GaN devices for low power adapter application,” in Proc. IEEE APEC, 2016, pp. 2334-2341.
[16] Z. Zhang, K. D. T. Ngo, and J. L Nilles, “A 30-W flyback converter operating at 5MHz,” in Proc. IEEE APEC, 2014, pp. 1415-1421.
[17] Z. Zhang and K. D. T. Ngo, “Multi-megahertz quasi-square-wave flyback converter using eGaN FETs,” IET Power Electron., vol. 10, no. 10, pp. 1138-1146, Jun. 2017.
[18] N. Quentin, R. Perrin, C. Martin, C. Joubert, B. Lacombe, and C. Buttay, “GaN active-clamp flyback converter with resonant operation over a wide input range,” in Proc. PCIM Europe, 2016, pp. 1-8.
[19] R. Nune, A. Anurag, S. Anand, and Y. S. Chauhan, “Comparative analysis of power density in Si MOSFET and GaN HEMT based flyback converters,” in Proc. CPE-POWERENG, 2016, pp. 347-352.
[20] L. Liu, J. Puukko, and J. Xu, “Consideration of flyback converter using GaN devices,” in Proc. IEEE WiPDA, 2015, pp. 196-200.
[21] J. Delaine, P. O. Jeannin, and D. Frey, “High frequency DC-DC converter using GaN device,” in Proc. IEEE APEC, 2012, pp. 1754-1761.
[22] Y. Wang, W. Kim, Z. Zhang, J. Calata, and K. D. T. Ngo, “Experience with 1 to 3 megahertz power conversion using eGaN FETs,” in Proc. IEEE APEC, 2013, pp. 532-539.
[23] B.-C. Kim, K.-B. Park, C.-E. Kim, B.-H. Lee, and G.-W. Moon, “LLC resonant converter with adaptive line-voltage variation for a high-power-density adapter,” IEEE Trans. Power Electron., vol. 25, no. 9, pp. 2248-2252, Sep. 2010.
[24] Y. Panov and M. M. Jovanović, “Performance evaluation of 70-W two-stage adapters for notebook computers,” in Proc. APEC, 1999, vol. 2, pp. 1059-1065.
[25] X. Zhang et al., “A gan transistor based 90W AC/DC adapter with a buck-PFC stage and an isolated quasi-switched-capacitor DC/DC stage,” in Proc. IEEE APEC, 2014, pp. 109-116.
[26] S. H. Kang, D. Maksimovic, and I. Cohen, “Efficiency optimization in digitally controlled flyback DC-DC converters over wide ranges of operating conditions,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3734-3748, Aug. 2012.
[27] X. Huang, Z. Liu, Q. Li and F. C. Lee, “Evaluation and application of 600V GaN HEMT in cascode structure,” IEEE Trans. Power Electron., vol. 29, no. 5, pp. 2453-2461, May 2014.
[28] A. Lidow, J. Strydom, M. D. Rooij and Y. Ma, GaN Transistors for Efficient Power Conversion, El Segundo, CA: Power Conversion Publications, 2012.
[29] E. A. Jones and F. Wang, “Application-based review of GaN HFETs,” in Proc. WiPDA, 2014, pp. 24-29.
[30] D. Han and B. Sarlioglu, “Deadtime effect on GaN-based synchronous boost converter and analytical model for optimal deadtime selection,” IEEE Trans. Power Electron., vol. 31, no. 1, pp. 601-612, Jan. 2016.
[31] V. Barkhordarian, “Power MOSFET basics,” International Rectifier, El Segundo, CA, Appl. Note, pp. 1-11. [Online]. Available:
http://www.irf.com/technical-info/appnotes/mosfet.pdf
[32] “Power MOSFET basics,” Alpha & Omega Semiconductor, Sunnyvale, CA, Appl. Note MOS-007, pp. 1-10. [Online]. Available:
http://www.aosmd.com/res/application_notes/mosfets/Power_MOSFET_Basics.pdf
[33] “An introduction to power MOSFETs,” STMicroelectronics, Gavena, Switzerland. [Online]. Available:
http://www.arroweurope.com/nc/services/downloadcenter.html?tx_abdownloads_pi1%5Baction%5D=getviewclickeddownload&tx_abdownloads_pi1%5Buid%5D=427&tx_abdownloads_pi1%5Bcid%5D=9774
[34] R. McArther, “Making use of gate charge information in MOSFET and IGBT data sheets,” Advanced Power Technology, Bend, OR, Appl. Note APT0103, pp. 1-8, Oct. 2001. [Online]. Available:
http://www.microsemi.com/document-portal/doc_view/14697-making-use-of-gate-charge-information-in-mosfet-and-igbt-data-sheets
[35] “MOSFET gate-charge origin and its applications,” ON Semiconductor, Phoenix, AZ, Appl. Note AND9083/D, pp. 1-8, Feb. 2016. [Online]. Available:
http://www.onsemi.com/pub_link/Collateral/AND9083-D.PDF
[36] K. Gauen and W. Chavez, “High cell density MOSFETs,” ON Semiconductor, Phoenix, AZ, Appl. Note EB201/D, pp. 1-8, Feb. 2002. [Online]. Available:
http://www.onsemi.com/pub_link/Collateral/EB201-D.PDF
[37] J. Korec and C. Bull, “History of FET technology and the move to NexFETTM”, Bodo’s Power Systems, pp. 44-45, May 2009.
[38] J. Brown and G. Moxey, “Power MOSFET basics: understanding MOSFET characteristics associated with the figure of merit,” Vishay Siliconix, Malvern, PA, Appl. Note AN605, pp. 1-4, Sep. 2003. [Online]. Available:
http://www.vishay.com/docs/71933/71933.pdf
[39] J. Ejury, “How to compare the figure of merit (FOM) of MOSFETs,” Infineon Technology, El Segundo, CA, Appl. Note, pp. 1-5, Jun. 2003.
[40] “Power MOSFET electrical characteristics,” Toshiba, Tokyo, Japan, Appl. Note, pp. 1-11, Nov. 2016. [Online]. Available:
https://www.google.com.tw/url?sa=t&rct=j&q=&esrc=s&source=web&cd=1&ved=0ahUKEwj3jcqtvr3XAhXDHpQKHRZbC4sQFgglMAA&url=https%3A%2F%2Ftoshiba.semicon-storage.com%2Finfo%2Fdocget.jsp%3Fdid%3D13415&usg=AOvVaw2YDA-qsE8IKEInjMeb5AdX
[41] X. Huang, T. Liu, B. Li, F. C. Lee, and Q. Li, “Evaluation and applications of 600V/650V enhancement-mode GaN devices,” in Proc. IEEE WiPDA, 2015, pp. 113-118.
[42] N. Mohan, T. M. Undeland, and W. P. Robbins, Power Electronics: Converters, Applications, and Design, New York, NY: Wiley, 1989.
[43] Di Han and Bulent Sarlioglu, “Performance evaluation of GaN-based synchronous boost converter under various output voltage, load current, and switching frequency operations,” Journal of Power Electronics, vol.15, no. 6, pp. 1489-1498, Nov. 2015.
[44] K. Wang, H. Ma, H. Li, Y. Guo, X. Yang, X. Zeng, and X. Yu, “An optimized layout with low parasitic inductances for GaN HEMTs based DC-DC converter,” in Proc. IEEE APEC, 2015, pp. 948-951.
[45] D. Reusch and J. Strydom, “Understanding the effect of PCB layout on circuit performance in a high frequency gallium nitride based point of load converter,” in Proc. IEEE APEC, 2013, pp. 648-655.
[46] U. K. Mishra, P. Parikh, and Y. F. Wu, “AlGaN/GaN HEMTs – an overview of device operation and applications,” in Proc. IEEE, 2002, vol. 90, no. 6, pp. 1022-1031.
[47] “Gallium nitride (GaN) versus silicon carbide (SiC) in the high frequency (RF) and power switching applications,” Microsemi, Aliso Viejo, CA., Appl. Note, pp. 1-9. [Online]. Available:
https://www.digikey.com/Web%20Export/Supplier%20Content/Microsemi_278/PDF/Microsemi_GalliumNitride_VS_SiliconCarbide.pdf?redirected=1
[48] F. Recht, Z. Huang, and Y. Wu, “Characteristics of Transphorm GaN power switches,” Transphorm, Goleta, CA, Appl. Note AN0002, pp. 1-9. [Online]. Available:
http://www.transphormusa.com/sites/default/files/public/AN0002-Switch%20Characterisitcs%20of%20Transphorm%20GaN%20HEMTs%20R%202.0.1_0.pdf
[49] GaN Systems, GS66502B Preliminary Datasheet. Sept. 2015. [Online]. Available: http://www.gansystems.com/datasheets/20150904/GS66502B%20DS%20Rev%20150904.pdf
[50] Transphorm, TPH3002LS Datasheet. Dec. 2014. [Online]. Available:
http://www.transphormusa.com/sites/default/files/public/TPH3002LS.pdf
[51] Y. Xi, M. Chen, K. Nielson, and R. Bell, “Optimization of the drive circuit for enhancement mode power GaN FETs in DC-DC converters,” in Proc. IEEE APEC, 2012, pp. 2467-2471.
[52] “How to drive GaN enhancement mode power switching transistors,” GaN Systems, Ottawa, ON, Canada, Appl. Note GN001, Oct. 2014. [Online]. Available:
http://gansystems.com/_uploads/whitepapers/982304_GN001%20App%20Note%20-%20How%20to%20Drive%20GaN%20E-Mode%20Transistors%202014-10-21.pdf
[53] Z. Chen, “Characterization and modeling of high-switching-speed behavior of SiC active devices,” M.S. Thesis, Dept. Elect. Eng., Virginia Polytechnic Institute and State Univ., Blacksburg, VA, 2009.
[54] J. B. Witcher, “Methodology for switching characterization of power devices and modules,” M.S. Thesis, Dept. Elect. Eng., Virginia Polytechnic Institute and State Univ., Blacksburg, VA, 2002.
[55] Z. Zhang, B. Guo, F. Wang, L. M. Tolbert, B. J. Blalock, Z. Liang, and P. Ning, “Methodology for switching characterization evaluation of wide band-gap devices in a phase-leg configuration,” in Proc. IEEE APEC, 2014, pp.2534-2541.
[56] E. A. Jones, F. Wang, D. Costinett, Z. Zhang, B. Guo, B. Liu, and R. Ren, “Characterization of an enhancement-mode 650V GaN HFET,” in Proc. IEEE ECCE, 2015, pp. 400-407.
[57] “ABCs of probes—primer”, Tektronix, Beaverton, OR, Appl. Note, 2005. [Online] Available:
http://www.tektronix.com.
[58] P. D. Hiscocks and J. Gaston, “Oscilloscope probes: theory and practice,” Syscomp Electronic Design, Toronto, ON, Canada, Appl. Note, pp. 1-7, Jul. 2007. [Online] Available:
http://www.syscompdesign.com/assets/Images/AppNotes/probes.pdf
[59] W. McAbel, Probe Measurements, Beaverton, OR: Tektronix, 1969.
[60] S. H. Kee, D. Maksimović, and I. Cohen, “Efficiency optimization in digitally controlled flyback DC-DC converters over wide ranges of operating conditions,” IEEE Trans. Power Electron., vol. 27, no. 8, pp. 3734-3748, Aug. 2012.
[61] Y. Panov and M. M. Jovanović, “Performance evaluation of 70-W two-stage adapters for notebook computers,” in Proc. APEC, 1999, vol. 2, pp. 1059-1065.
[62] J.-E. Park, J.-W. Kim, B.-H. Lee, and G.-W. Moon, “Design on topologies for high efficiency two-stage AC-DC converter,” in Proc. IPEMC, 2012, pp. 257-262.
[63] “Design guidelines for off-line flyback converters using MP3900,” Monolithic Power Systems, San Jose, CA, Appl. Note AN017, pp. 1-14, Aug. 2011.
[64] S. R. Meesala, “Designing flyback converters using peak-current-mode controllers,” Maxim Integrated, San Jose, CA, Appl. Note 5504, pp. 1-16, Nov. 2012.
[65] L. Dinwoodie, “Reference design: isolated 50 watt flyback converter using the UCC3809 primary side controller,” Texas Instruments, Dallas, TX, Appl. Note U-165, pp. 1-9, Jun, 2001.
[66] “Design of a 65W adapter utilizing the NCP1237 PWM controller,” ON Semiconductor, Phoenix, AZ, Appl. Note AND8461/D, pp. 1-20, Oct. 2014.
[67] C. Adragna, “Offline flyback converters design methodology with the L6590 family,” STMicroelectronics, Geneva, Switzerland, Appl. Note AN1262, pp. 1-42, May 2001.
[68] H.-S. Choi, “Design guidelines for off-line flyback converters using FPS,” Fairchild Semiconductor, Sunnyvale, CA, Appl. Note AN4137, pp. 1-14, 2003.
[69] G.-B. Koo, 'Design guidelines for RCD snubber of flyback,' Fairchild Semiconductor, Sunnyvale, CA, Appl. Note AN4147, pp. 1-5, Jun. 2005.
[70] B. J. Baliga, Fundamentals of Power Semiconductor Devices, Boston, MA: Springer Science+Business Media, LLC, 2008.
[71] J. Reinert, A. Brockmeyer, and R. W. A. A. De Doncker, “Calculation of losses in ferro- and ferrimagnetic materials based on the modified Steinmetz equation,” IEEE Trans. Ind. Appl., vol. 37, no. 4, pp. 1055-1061, Jul./Aug. 2001.
[72] K. Venkatachalam, C. R. Sullivan, T. Abdallah, and H. Tacca, “Accurate prediction of ferrite core loss with nonsinusoidal waveforms using only Steinmetz parameters,” in Proc. IEEE COMPEL, 2002, pp. 36-41.
[73] D. Lin, P. Zhou, W. N. Fu, Z. Badics, and Z. J. Cendes, “A dynamic core loss model for soft ferromagnetic and power ferrite materials in transient finite element analysis,” IEEE Trans. Magn., vol. 40, no. 2, pp. 1318-1324, Mar. 2004.
[74] M. Mu and F. C. Lee, 'A new core loss model for rectangular AC voltages,' in Proc. IEEE ECCE, 2014, pp. 5214-5220.
[75] T. Hatakeyama and K. Onda, “Core loss estimation of various materials magnetized with the symmetrical/asymmetrical rectangular voltage,” IEEE Trans. Power Electron., vol. 29, no. 2, pp. 6628-6635, Dec. 2014.
[76] S. Barg, K. Ammous, H. Mejbri, and A. Ammous, “An improved empirical formulation for magnetic core losses estimation under nonsinusoidal induction,” IEEE Trans. Power Electron., vol. 32, no. 3, pp. 2146-2154.
[77] J. Mühlethaler, J. Biela, J. W. Kolar, and A. Ecklebe, “Core losses under the DC bias condition based on Steinmetz parameters,” IEEE Trans. Power Electron., vol. 27, no. 2, pp. 953-963, Feb. 2012.
[78] “ACME product catalog 2015,” Acme Electronics Corp., Taipei, Taiwan, Sep. 2015.
[79] R. W. Erickson and D. Maksimović, Fundamentals of Power Electronics, Norwell, MA: Kluwer Academic, 2001.
[80] J.-P. Vandelac, P. D. Ziogas, “A novel approach for minimizing high-frequency transformer copper losses,” IEEE Trans. Power Electron., vol. 3, no. 3, pp. 266-277, Jul. 1988.
[81] G. S. Dimitrakakis and E. C. Tatakis, “High-frequency copper losses in magnetic components with layered windings,” IEEE Trans. Magn., vol. 45, no. 8, pp. 3187-3199, Aug. 2009.
[82] M. M. Al-Asadi, A. P. Duffy, A. J. Willis, K. Hodge, and T. M. Benson, “A simple formula for calculating the frequency-dependent resistance of a round wire,” Microw. Opt. Tech. Lett., vol. 19, no. 2, pp. 84-87, Oct. 1988.
[83] A. Massarini and M. K. Kazimierczuk, “Self-capacitance of inductors,” IEEE Trans. Power Electron., vol. 12, no. 4, pp. 671-676, Jul. 1997.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68132-
dc.description.abstract受氮化鎵場效電晶體於高效率高功率密度電能轉換技術之潛力所驅,本論文致力於研究使用氮化鎵場效電晶體設計一高功率密度之返馳式轉換器。本論文實作一雙脈衝測試電路研究氮化鎵場效電晶體高速切換行為之模擬與量測。透過比對實驗與模擬結果,本論文確立了數個高速量測之技巧;並且,本論文亦證實,利用一包含了關鍵寄生電感的集總式模擬電路模型,可預測氮化鎵場效電晶體之切換行為至一合理的精確度。本論文進行分析以最佳化基於氮化鎵元件之傳統硬切換式返馳式轉換器之設計。分析的焦點為兩個影響變壓器體積甚鉅的主要設計參數,即切換頻率Fsw及最低線電壓下之臨界負載電流值IoB(Vin_min)。本論文分析了變壓器體積及損耗成分隨Fsw及IoB(Vin_min)的變化趨勢,並以效率/體積變化圖及損耗分布,研究通用線電壓輸入、19.5V/45W輸出、基於氮化鎵元件之硬切換式返馳式轉換器之性能限制。分析發現切換損耗在高切換頻率與高線電壓下仍然嚴重,限制了切換頻率至數百千赫茲。本論文實作了一600kHz之原型電路,達到22.53W/in3之功率密度以及84%之最高效率。實測效率與估計效率彼此是接近的,證實本論文中的分析是可信的。zh_TW
dc.description.abstractMotivated by the potentials of gallium nitride field effect transistors (GaN FETs) in high-efficiency high-power-density switching power conversion, this thesis is devoted to the design of a high-power-density flyback converter using GaN FETs. A double-pulse tester was built to investigate the simulation and measurement of the fast switching behavior of GaN FETs. By comparing experimental and simulation reaults, several high-speed measurement techniques were established; also, it was proved that a lumped simulation model including critical parasitic inductances can predict the switching behavior of GaN FETs to a reasonable extent. Analyses were conducted to optimize the design of a GaN-based traditional hard-switched flyback converter. The focus was on two major designer’s choices that affect greatly the transformer volume, i.e., the switching frequency Fsw and the lowest-line boundary-load current IoB(Vin_min). The varying trends of the transformer volume and loss components with Fsw and IoB(Vin_min) were analyzed, and the performance limit of a universal-line-input, 19.5V/45W-output GaN-based hard-switched flyback converter was studied by efficiency/volume maps and loss distributions. It was found that the switching loss is still severe at high switching frequencies and high line voltages, limiting the switching frequency to several hundred kilohertz. A 600kHz prototype reaching a power density of 22.53W/in3 and a peak efficiency of 84% was built. Measured and estimated efficiencies are close to each other, validating the analyses in this thesis.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:13:11Z (GMT). No. of bitstreams: 1
ntu-106-R04921021-1.pdf: 5151053 bytes, checksum: 185302c1e3e3622b2098716c72e9601a (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES v
LIST OF TABLES ix
Chapter 1 Introduction 1
1.1 Research Motivation and Objective 1
1.2 Thesis Outline 4
Chapter 2 Review of GaN FET Characteristics 8
2.1 Power FET Parameters and Tradeoffs 9
2.2 Superiorities, Potentials and Problems of GaN FETs 16
2.3 The Basic GaN HEMT Structure 19
2.4 Commercial Normally-Off GaN FETs 21
2.5 Driver Design Considerations for E-Mode GaN FETs 29
Chapter 3 Simulation and Measurement of GaN FET Switching Behavior 32
3.1 The Double Pulse Tester (DPT) 34
3.2 Board Design and Measurement Considerations 37
3.3 Simulation Model Establishment 47
3.4 Summary and Remarks 51
Chapter 4 Review of Design and Loss Estimation of a Hard-Switching Flyback Converter 53
4.1 Design Procedure 55
4.2 Loss Estimation 79
Chapter 5 Optimization of the Flyback Converter for High Efficiency and High Power Density 107
5.1 Concept of the Design Optimization Methodology 109
5.2 General Trend Analysis 117
5.3 Quantitative Analysis 140
Chapter 6 Circuit Implementation and Experimental Results 153
6.1 Circuit Implementation 154
6.2 Experimental Results 160
Chapter 7 Conclusion 166
REFERENCE 169
dc.language.isoen
dc.title使用氮化鎵場效電晶體之高功率密度返馳式轉換器設計與實作zh_TW
dc.titleDesign and Implementation of a High-Power-Density Flyback Converter Using GaN FETsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee陳德玉(Dan Chen),陳耀銘(Yaow-Ming Chen),邱煌仁(Huang-Jen Chiu)
dc.subject.keyword氮化鎵場效電晶體,高功率密度,高切換頻率,返馳式轉換器,zh_TW
dc.subject.keywordgallium nitride field effect transistor (GaN FET),high power density,high switching frequency,flyback converter,en
dc.relation.page178
dc.identifier.doi10.6342/NTU201704438
dc.rights.note有償授權
dc.date.accepted2017-12-06
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
5.03 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved