Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 醫學工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68121
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊台鴻(Tai-Horng Young)
dc.contributor.authorChing-Wen Tsaien
dc.contributor.author蔡靜雯zh_TW
dc.date.accessioned2021-06-17T02:13:00Z-
dc.date.available2023-01-04
dc.date.copyright2018-01-04
dc.date.issued2017
dc.date.submitted2017-12-11
dc.identifier.citation[1] Sinha VR, Singla AK, Wadhawan S, Kaushik R, Kumria R, Bansal K, et al. Chitosan microspheres as a potential carrier for drugs. International journal of pharmaceutics. 2004;274:1-33.
[2] Singla AK, Sharma ML, Dhawan S. Nifedipine loaded chitosan microspheres: characterization of internal structure. Biotechnic & histochemistry : official publication of the Biological Stain Commission. 2001;76:165-71.
[3] Kato Y, Onishi H, Machida Y. Application of chitin and chitosan derivatives in the pharmaceutical field. Current pharmaceutical biotechnology. 2003;4:303-9.
[4] Shi C, Zhu Y, Ran X, Wang M, Su Y, Cheng T. Therapeutic potential of chitosan and its derivatives in regenerative medicine. The Journal of surgical research. 2006;133:185-92.
[5] Kas HS. Chitosan: properties, preparations and application to microparticulate systems. Journal of microencapsulation. 1997;14:689-711.
[6] Chen YH, Chung YC, Wang IJ, Young TH. Control of cell attachment on pH-responsive chitosan surface by precise adjustment of medium pH. Biomaterials. 2012;33:1336-42.
[7] Chatelet C, Damour O, Domard A. Influence of the degree of acetylation on some biological properties of chitosan films. Biomaterials. 2001;22:261-8.
[8] Chen YH, Chang SH, Wang IJ, Young TH. The mechanism for keratinocyte detaching from pH-responsive chitosan. Biomaterials. 2014;35:9247-54.
[9] Yang TL, Young TH. The specificity of chitosan in promoting branching morphogenesis of progenitor salivary tissue. Biochemical and biophysical research communications. 2009;381:466-70.
[10] Lin SJ, Jee SH, Hsaio WC, Lee SJ, Young TH. Formation of melanocyte spheroids on the chitosan-coated surface. Biomaterials. 2005;26:1413-22.
[11] Verma P, Verma V, Ray P, Ray AR. Formation and characterization of three dimensional human hepatocyte cell line spheroids on chitosan matrix for in vitro tissue engineering applications. In vitro cellular & developmental biology Animal. 2007;43:328-37.
[12] Huang GS, Dai LG, Yen BL, Hsu SH. Spheroid formation of mesenchymal stem cells on chitosan and chitosan-hyaluronan membranes. Biomaterials. 2011;32:6929-45.
[13] Tsai CW, Kao YT, Chiang IN, Wang JH, Young TH. Chitosan Treatment Delays the Induction of Senescence in Human Foreskin Fibroblast Strains. PloS one. 2015;10:e0140747.
[14] Bartosh TJ, Ylostalo JH, Mohammadipoor A, Bazhanov N, Coble K, Claypool K, et al. Aggregation of human mesenchymal stromal cells (MSCs) into 3D spheroids enhances their antiinflammatory properties. Proceedings of the National Academy of Sciences of the United States of America. 2010;107:13724-9.
[15] Benton G, George J, Kleinman HK, Arnaoutova IP. Advancing science and technology via 3D culture on basement membrane matrix. Journal of cellular physiology. 2009;221:18-25.
[16] Benton G, Kleinman HK, George J, Arnaoutova I. Multiple uses of basement membrane-like matrix (BME/Matrigel) in vitro and in vivo with cancer cells. International journal of cancer Journal international du cancer. 2011;128:1751-7.
[17] Frith JE, Thomson B, Genever PG. Dynamic three-dimensional culture methods enhance mesenchymal stem cell properties and increase therapeutic potential. Tissue engineering Part C, Methods. 2010;16:735-49.
[18] Sadlonova A, Novak Z, Johnson MR, Bowe DB, Gault SR, Page GP, et al. Breast fibroblasts modulate epithelial cell proliferation in three-dimensional in vitro co-culture. Breast cancer research : BCR. 2005;7:R46-59.
[19] Singh SK, Clarke ID, Terasaki M, Bonn VE, Hawkins C, Squire J, et al. Identification of a cancer stem cell in human brain tumors. Cancer research. 2003;63:5821-8.
[20] Wang W, Itaka K, Ohba S, Nishiyama N, Chung UI, Yamasaki Y, et al. 3D spheroid culture system on micropatterned substrates for improved differentiation efficiency of multipotent mesenchymal stem cells. Biomaterials. 2009;30:2705-15.
[21] Yang TL, Lin L, Hsiao YC, Lee HW, Young TH. Chitosan biomaterials induce branching morphogenesis in a model of tissue-engineered glandular organs in serum-free conditions. Tissue engineering Part A. 2012;18:2220-30.
[22] Yeh HY, Liu BH, Hsu SH. The calcium-dependent regulation of spheroid formation and cardiomyogenic differentiation for MSCs on chitosan membranes. Biomaterials. 2012;33:8943-54.
[23] Cheng NC, Wang S, Young TH. The influence of spheroid formation of human adipose-derived stem cells on chitosan films on stemness and differentiation capabilities. Biomaterials. 2012;33:1748-58.
[24] Huang YJ, Hsu SH. Acquisition of epithelial-mesenchymal transition and cancer stem-like phenotypes within chitosan-hyaluronan membrane-derived 3D tumor spheroids. Biomaterials. 2014;35:10070-9.
[25] Ishihara M, Fujita M, Obara K, Hattori H, Nakamura S, Nambu M, et al. Controlled releases of FGF-2 and paclitaxel from chitosan hydrogels and their subsequent effects on wound repair, angiogenesis, and tumor growth. Curr Drug Deliv. 2006;3:351-8.
[26] Masuoka K, Ishihara M, Asazuma T, Hattori H, Matsui T, Takase B, et al. The interaction of chitosan with fibroblast growth factor-2 and its protection from inactivation. Biomaterials. 2005;26:3277-84.
[27] Hirschhaeuser F, Menne H, Dittfeld C, West J, Mueller-Klieser W, Kunz-Schughart LA. Multicellular tumor spheroids: An underestimated tool is catching up again. J Biotechnol. 2010;148:3-15.
[28] de la Puente P, Muz B, Gilson RC, Azab F, Luderer M, King J, et al. 3D tissue-engineered bone marrow as a novel model to study pathophysiology and drug resistance in multiple myeloma. Biomaterials. 2015;73:70-84.
[29] Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. J Control Release. 2012;164:192-204.
[30] Eetezadi S, De Souza R, Vythilingam M, Lessa Cataldi R, Allen C. Effects of Doxorubicin Delivery Systems and Mild Hyperthermia on Tissue Penetration in 3D Cell Culture Models of Ovarian Cancer Residual Disease. Molecular pharmaceutics. 2015;12:3973-85.
[31] Foty RA, Steinberg MS. The differential adhesion hypothesis: a direct evaluation. Dev Biol. 2005;278:255-63.
[32] Wang K, Kievit FM, Florczyk SJ, Stephen ZR, Zhang M. 3D Porous Chitosan-Alginate Scaffolds as an In Vitro Model for Evaluating Nanoparticle-Mediated Tumor Targeting and Gene Delivery to Prostate Cancer. Biomacromolecules. 2015;16:3362-72.
[33] Xiong G, Flynn TJ, Chen J, Trinkle C, Xu R. Development of an ex vivo breast cancer lung colonization model utilizing a decellularized lung matrix. Integrative biology : quantitative biosciences from nano to macro. 2015.
[34] May JE, Morse HR, Xu J, Donaldson C. Development of a novel, physiologically relevant cytotoxicity model: application to the study of chemotherapeutic damage to mesenchymal stromal cells. Toxicology and applied pharmacology. 2012;263:374-89.
[35] Salvatore V, Focaroli S, Teti G, Mazzotti A, Falconi M. Changes in the gene expression of co-cultured human fibroblast cells and osteosarcoma cells: the role of microenvironment. Oncotarget. 2015;6:28988-98.
[36] Ji X, Ji J, Shan F, Zhang Y, Chen Y, Lu X. Cancer-associated fibroblasts from NSCLC promote the radioresistance in lung cancer cell lines. International journal of clinical and experimental medicine. 2015;8:7002-8.
[37] Zhang T, Lee YW, Rui YF, Cheng TY, Jiang XH, Li G. Bone marrow-derived mesenchymal stem cells promote growth and angiogenesis of breast and prostate tumors. Stem Cell Res Ther. 2013;4:70.
[38] Harati K, Daigeler A, Hirsch T, Jacobsen F, Behr B, Wallner C, et al. Tumor-associated fibroblasts promote the proliferation and decrease the doxorubicin sensitivity of liposarcoma cells. Int J Mol Med. 2016;37:1535-41.
[39] Shiga K, Hara M, Nagasaki T, Sato T, Takahashi H, Takeyama H. Cancer-Associated Fibroblasts: Their Characteristics and Their Roles in Tumor Growth. Cancers (Basel). 2015;7:2443-58.
[40] Li XY, Hu SQ, Xiao L. The cancer-associated fibroblasts and drug resistance. Eur Rev Med Pharmacol Sci. 2015;19:2112-9.
[41] Lan SF, Starly B. Alginate based 3D hydrogels as an in vitro co-culture model platform for the toxicity screening of new chemical entities. Toxicology and applied pharmacology. 2011;256:62-72.
[42] Chandrasekaran S, Geng Y, DeLouise LA, King MR. Effect of homotypic and heterotypic interaction in 3D on the E-selectin mediated adhesive properties of breast cancer cell lines. Biomaterials. 2012;33:9037-48.
[43] Phan-Lai V, Florczyk SJ, Kievit FM, Wang K, Gad E, Disis ML, et al. Three-dimensional scaffolds to evaluate tumor associated fibroblast-mediated suppression of breast tumor specific T cells. Biomacromolecules. 2013;14:1330-7.
[44] Shang Y, Tamai M, Ishii R, Nagaoka N, Yoshida Y, Ogasawara M, et al. Hybrid sponge comprised of galactosylated chitosan and hyaluronic acid mediates the co-culture of hepatocytes and endothelial cells. J Biosci Bioeng. 2014;117:99-106.
[45] Celli JP. Stromal interactions as regulators of tumor growth and therapeutic response: A potential target for photodynamic therapy? Isr J Chem. 2012;52:757-66.
[46] Majety M, Pradel LP, Gies M, Ries CH. Fibroblasts Influence Survival and Therapeutic Response in a 3D Co-Culture Model. PloS one. 2015;10.
[47] Knight E, Przyborski S. Advances in 3D cell culture technologies enabling tissue-like structures to be created in vitro. J Anat. 2015;227:746-56.
[48] Jaganathan H, Gage J, Leonard F, Srinivasan S, Souza GR, Dave B, et al. Three-Dimensional In Vitro Co-Culture Model of Breast Tumor using Magnetic Levitation. Sci Rep-Uk. 2014;4.
[49] Hsiao AY, Torisawa YS, Tung YC, Sud S, Taichman RS, Pienta KJ, et al. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials. 2009;30:3020-7.
[50] Ponta H, Sherman L, Herrlich PA. CD44: from adhesion molecules to signalling regulators. Nature reviews Molecular cell biology. 2003;4:33-45.
[51] Park YS, Huh JW, Lee JH, Kim HR. shRNA against CD44 inhibits cell proliferation, invasion and migration, and promotes apoptosis of colon carcinoma cells. Oncology reports. 2012;27:339-46.
[52] Trochon V, Mabilat C, Bertrand P, Legrand Y, Smadja-Joffe F, Soria C, et al. Evidence of involvement of CD44 in endothelial cell proliferation, migration and angiogenesis in vitro. Int J Cancer. 1996;66:664-8.
[53] Mylona E, Jones KA, Mills ST, Pavlath GK. CD44 regulates myoblast migration and differentiation. J Cell Physiol. 2006;209:314-21.
[54] Lazaar AL, Albelda SM, Pilewski JM, Brennan B, Pure E, Panettieri RA, Jr. T lymphocytes adhere to airway smooth muscle cells via integrins and CD44 and induce smooth muscle cell DNA synthesis. J Exp Med. 1994;180:807-16.
[55] Lee DH, Joo SD, Han SB, Im J, Lee SH, Sonn CH, et al. Isolation and expansion of synovial CD34(-)CD44(+)CD90(+) mesenchymal stem cells: comparison of an enzymatic method and a direct explant technique. Connect Tissue Res. 2011;52:226-34.
[56] Zoller M. CD44: can a cancer-initiating cell profit from an abundantly expressed molecule? Nat Rev Cancer. 2011;11:254-67.
[57] Takaishi S, Okumura T, Tu S, Wang SS, Shibata W, Vigneshwaran R, et al. Identification of gastric cancer stem cells using the cell surface marker CD44. Stem Cells. 2009;27:1006-20.
[58] Dalerba P, Dylla SJ, Park IK, Liu R, Wang X, Cho RW, et al. Phenotypic characterization of human colorectal cancer stem cells. Proceedings of the National Academy of Sciences of the United States of America. 2007;104:10158-63.
[59] Du L, Wang H, He L, Zhang J, Ni B, Wang X, et al. CD44 is of functional importance for colorectal cancer stem cells. Clin Cancer Res. 2008;14:6751-60.
[60] Both SK, van der Muijsenberg AJ, van Blitterswijk CA, de Boer J, de Bruijn JD. A rapid and efficient method for expansion of human mesenchymal stem cells. Tissue Eng. 2007;13:3-9.
[61] Sung JH, Yang HM, Park JB, Choi GS, Joh JW, Kwon CH, et al. Isolation and characterization of mouse mesenchymal stem cells. Transplant Proc. 2008;40:2649-54.
[62] T LR, Sanchez-Abarca LI, Muntion S, Preciado S, Puig N, Lopez-Ruano G, et al. MSC surface markers (CD44, CD73, and CD90) can identify human MSC-derived extracellular vesicles by conventional flow cytometry. Cell Commun Signal. 2016;14:2.
[63] Pardal R, Clarke MF, Morrison SJ. Applying the principles of stem-cell biology to cancer. Nat Rev Cancer. 2003;3:895-902.
[64] Kobayashi N, Navarro-Alvarez N, Soto-Gutierrez A, Kawamoto H, Kondo Y, Yamatsuji T, et al. Cancer stem cell research: current situation and problems. Cell Transplant. 2008;17:19-25.
[65] Reya T, Morrison SJ, Clarke MF, Weissman IL. Stem cells, cancer, and cancer stem cells. Nature. 2001;414:105-11.
[66] Ricci-Vitiani L, Lombardi DG, Pilozzi E, Biffoni M, Todaro M, Peschle C, et al. Identification and expansion of human colon-cancer-initiating cells. Nature. 2007;445:111-5.
[67] Elsaba TM, Martinez-Pomares L, Robins AR, Crook S, Seth R, Jackson D, et al. The stem cell marker CD133 associates with enhanced colony formation and cell motility in colorectal cancer. PloS one. 2010;5:e10714.
[68] Fan X, Ouyang N, Teng H, Yao H. Isolation and characterization of spheroid cells from the HT29 colon cancer cell line. International journal of colorectal disease. 2011;26:1279-85.
[69] Cristofalo VJ, Kritchevsky D. Cell size and nucleic acid content in the diploid human cell line WI-38 during aging. Medicina experimentalis International journal of experimental medicine. 1969;19:313-20.
[70] Greenberg SB, Grove GL, Cristofalo VJ. Cell size in aging monolayer cultures. In vitro. 1977;13:297-300.
[71] Mitsui Y, Schneider EL. Relationship between cell replication and volume in senescent human diploid fibroblasts. Mechanisms of ageing and development. 1976;5:45-56.
[72] Dimri GP, Lee X, Basile G, Acosta M, Scott G, Roskelley C, et al. A biomarker that identifies senescent human cells in culture and in aging skin in vivo. Proceedings of the National Academy of Sciences of the United States of America. 1995;92:9363-7.
[73] Lee BY, Han JA, Im JS, Morrone A, Johung K, Goodwin EC, et al. Senescence-associated beta-galactosidase is lysosomal beta-galactosidase. Aging cell. 2006;5:187-95.
[74] Macieira-Coelho A, Azzarone B. Correlation between contractility and proliferation in human fibroblasts. J Cell Physiol. 1990;142:610-4.
[75] Goldstein S. Replicative senescence: the human fibroblast comes of age. Science. 1990;249:1129-33.
[76] Fumagalli M, Rossiello F, Clerici M, Barozzi S, Cittaro D, Kaplunov JM, et al. Telomeric DNA damage is irreparable and causes persistent DNA-damage-response activation. Nat Cell Biol. 2012;14:355-65.
[77] Harley CB, Futcher AB, Greider CW. Telomeres shorten during ageing of human fibroblasts. Nature. 1990;345:458-60.
[78] Chen Q, Ames BN. Senescence-like growth arrest induced by hydrogen peroxide in human diploid fibroblast F65 cells. Proceedings of the National Academy of Sciences of the United States of America. 1994;91:4130-4.
[79] Parrinello S, Samper E, Krtolica A, Goldstein J, Melov S, Campisi J. Oxygen sensitivity severely limits the replicative lifespan of murine fibroblasts. Nat Cell Biol. 2003;5:741-7.
[80] Passos JF, Miwa S, von Zglinicki T. Measuring reactive oxygen species in senescent cells. Methods in molecular biology. 2013;965:253-63.
[81] Tchkonia T, Zhu Y, van Deursen J, Campisi J, Kirkland JL. Cellular senescence and the senescent secretory phenotype: therapeutic opportunities. The Journal of clinical investigation. 2013;123:966-72.
[82] Zhu Y, Armstrong JL, Tchkonia T, Kirkland JL. Cellular senescence and the senescent secretory phenotype in age-related chronic diseases. Current opinion in clinical nutrition and metabolic care. 2014;17:324-8.
[83] Campisi J. Cellular senescence as a tumor-suppressor mechanism. Trends in cell biology. 2001;11:S27-31.
[84] Kiyono T. Molecular mechanisms of cellular senescence and immortalization of human cells. Expert opinion on therapeutic targets. 2007;11:1623-37.
[85] Piegari E, De Angelis A, Cappetta D, Russo R, Esposito G, Costantino S, et al. Doxorubicin induces senescence and impairs function of human cardiac progenitor cells. Basic Res Cardiol. 2013;108:334.
[86] Choi HR, Cho KA, Kang HT, Lee JB, Kaeberlein M, Suh Y, et al. Restoration of senescent human diploid fibroblasts by modulation of the extracellular matrix. Aging Cell. 2011;10:148-57.
[87] Sato Y, Yoshida K, Nozawa S, Yoshiike M, Arai M, Otoi T, et al. Establishment of adult mouse Sertoli cell lines by using the starvation method. Reproduction. 2013;145:505-16.
[88] Buttiglieri S, Ruella M, Risso A, Spatola T, Silengo L, Avvedimento EV, et al. The aging effect of chemotherapy on cultured human mesenchymal stem cells. Exp Hematol. 2011;39:1171-81.
[89] Tsai CC, Chen YJ, Yew TL, Chen LL, Wang JY, Chiu CH, et al. Hypoxia inhibits senescence and maintains mesenchymal stem cell properties through down-regulation of E2A-p21 by HIF-TWIST. Blood. 2011;117:459-69.
[90] Polager S, Ginsberg D. p53 and E2f: partners in life and death. Nature reviews Cancer. 2009;9:738-48.
[91] Campisi J. Senescent cells, tumor suppression, and organismal aging: good citizens, bad neighbors. Cell. 2005;120:513-22.
[92] Shay JW, Pereira-Smith OM, Wright WE. A role for both RB and p53 in the regulation of human cellular senescence. Experimental cell research. 1991;196:33-9.
[93] Bond JA, Wyllie FS, Wynford-Thomas D. Escape from senescence in human diploid fibroblasts induced directly by mutant p53. Oncogene. 1994;9:1885-9.
[94] Bond JA, Haughton MF, Rowson JM, Smith PJ, Gire V, Wynford-Thomas D, et al. Control of replicative life span in human cells: barriers to clonal expansion intermediate between M1 senescence and M2 crisis. Molecular and cellular biology. 1999;19:3103-14.
[95] Ippolito E, Natali PG, Postacchini F, Accinni L, De Martino C. Morphological, immunochemical, and biochemical study of rabbit achilles tendon at various ages. The Journal of bone and joint surgery American volume. 1980;62:583-98.
[96] Nakagawa Y, Majima T, Nagashima K. Effect of ageing on ultrastructure of slow and fast skeletal muscle tendon in rabbit Achilles tendons. Acta physiologica Scandinavica. 1994;152:307-13.
[97] Kohler J, Popov C, Klotz B, Alberton P, Prall WC, Haasters F, et al. Uncovering the cellular and molecular changes in tendon stem/progenitor cells attributed to tendon aging and degeneration. Aging cell. 2013;12:988-99.
[98] Pasquali-Ronchetti I, Frizziero L, Guerra D, Baccarani-Contri M, Focherini MC, Georgountzos A, et al. Aging of the human synovium: an in vivo and ex vivo morphological study. Seminars in arthritis and rheumatism. 1992;21:400-14.
[99] van der Kraan PM, Goumans MJ, Blaney Davidson E, ten Dijke P. Age-dependent alteration of TGF-beta signalling in osteoarthritis. Cell and tissue research. 2012;347:257-65.
[100] Jiang D, Jiang Z, Zhang Y, Wang S, Yang S, Xu B, et al. Effect of young extrinsic environment stimulated by hypoxia on the function of aged tendon stem cell. Cell biochemistry and biophysics. 2014;70:967-73.
[101] Zheng W, Wang S, Ma D, Tang L, Duan Y, Jin Y. Loss of proliferation and differentiation capacity of aged human periodontal ligament stem cells and rejuvenation by exposure to the young extrinsic environment. Tissue engineering Part A. 2009;15:2363-71.
[102] Tsai CC, Chen CL, Liu HC, Lee YT, Wang HW, Hou LT, et al. Overexpression of hTERT increases stem-like properties and decreases spontaneous differentiation in human mesenchymal stem cell lines. Journal of biomedical science. 2010;17:64.
[103] Pandamooz S, Hadipour A, Akhavan-Niaki H, Pourghasem M, Abedian Z, Ardekani AM, et al. Short exposure to collagenase and coculture with mouse embryonic pancreas improve human dermal fibroblast culture. Biotechnol Appl Biochem. 2012;59:254-61.
[104] Tsai CW, Young TH. CD44 expression trends of mesenchymal stem-derived cell, cancer cell and fibroblast spheroids on chitosan-coated surfaces. Pure Appl Chem. 2016;88:843-52.
[105] Chen YH, Wang IJ, Young TH. Formation of keratocyte spheroids on chitosan-coated surface can maintain keratocyte phenotypes. Tissue engineering Part A. 2009;15:2001-13.
[106] Nichols MG, Foster TH. Oxygen diffusion and reaction kinetics in the photodynamic therapy of multicell tumour spheroids. Physics in medicine and biology. 1994;39:2161-81.
[107] Takeichi M. The cadherins: cell-cell adhesion molecules controlling animal morphogenesis. Development. 1988;102:639-55.
[108] Niessen CM, Leckband D, Yap AS. Tissue organization by cadherin adhesion molecules: dynamic molecular and cellular mechanisms of morphogenetic regulation. Physiol Rev. 2011;91:691-731.
[109] Huang YC, Chan CC, Lin WT, Chiu HY, Tsai RY, Tsai TH, et al. Scalable production of controllable dermal papilla spheroids on PVA surfaces and the effects of spheroid size on hair follicle regeneration. Biomaterials. 2013;34:442-51.
[110] Chen MH, Chen YJ, Liao CC, Chan YH, Lin CY, Chen RS, et al. Formation of salivary acinar cell spheroids in vitro above a polyvinyl alcohol-coated surface. Journal of biomedical materials research Part A. 2009;90:1066-72.
[111] Funderburgh ML, Mann MM, Funderburgh JL. Keratocyte phenotype is enhanced in the absence of attachment to the substratum. Molecular vision. 2008;14:308-17.
[112] Ruoslahti E, Reed JC. Anchorage dependence, integrins, and apoptosis. Cell. 1994;77:477-8.
[113] Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Experimental cell research. 2000;257:162-71.
[114] Passos JF, von Zglinicki T. Methods for cell sorting of young and senescent cells. Methods in molecular biology. 2007;371:33-44.
[115] Munoz-Espin D, Serrano M. Cellular senescence: from physiology to pathology. Nat Rev Mol Cell Biol. 2014;15:482-96.
[116] Beausejour CM, Krtolica A, Galimi F, Narita M, Lowe SW, Yaswen P, et al. Reversal of human cellular senescence: roles of the p53 and p16 pathways. EMBO J. 2003;22:4212-22.
[117] Campisi J, di Fagagna FD. Cellular senescence: when bad things happen to good cells. Nat Rev Mol Cell Bio. 2007;8:729-40.
[118] Senturk S, Mumcuoglu M, Gursoy-Yuzugullu O, Cingoz B, Akcali KC, Ozturk M. Transforming growth factor-beta induces senescence in hepatocellular carcinoma cells and inhibits tumor growth. Hepatology. 2010;52:966-74.
[119] Bai H, Gao Y, Hoyle DL, Cheng T, Wang ZZ. Suppression of Transforming Growth Factor-beta Signaling Delays Cellular Senescence and Preserves the Function of Endothelial Cells Derived From Human Pluripotent Stem Cells. Stem Cells Transl Med. 2016.
[120] Lasry A, Ben-Neriah Y. Senescence-associated inflammatory responses: aging and cancer perspectives. Trends Immunol. 2015;36:217-28.
[121] Zerlanko BJ, Bartholin L, Melhuish TA, Wotton D. Premature senescence and increased TGFbeta signaling in the absence of Tgif1. PloS one. 2012;7:e35460.
[122] Ahmadi F, Oveisi Z, Samani SM, Amoozgar Z. Chitosan based hydrogels: characteristics and pharmaceutical applications. Res Pharm Sci. 2015;10:1-16.
[123] Saether HV, Holme HK, Maurstald G, Smidsrod O, Stokke BT. Polyelectrolyte complex formation using alginate and chitosan. Carbohydrate polymers. 2008;74:813-21.
[124] Severino J, Allen RG, Balin S, Balin A, Cristofalo VJ. Is beta-galactosidase staining a marker of senescence in vitro and in vivo? Experimental Cell Research. 2000;257:162-71.
[125] Watt FM, Hogan BL. Out of Eden: stem cells and their niches. Science. 2000;287:1427-30.
[126] Mathieu J, Zhang Z, Zhou W, Wang AJ, Heddleston JM, Pinna CM, et al. HIF induces human embryonic stem cell markers in cancer cells. Cancer research. 2011;71:4640-52.
[127] Lopes JB, Dallan LA, Moreira LF, Campana Filho SP, Gutierrez PS, Lisboa LA, et al. Synergism between keratinocyte growth factor and carboxymethyl chitosan reduces pericardial adhesions. The Annals of thoracic surgery. 2010;90:566-72.
[128] Foty RA, Steinberg MS. Cadherin-mediated cell-cell adhesion and tissue segregation in relation to malignancy. Int J Dev Biol. 2004;48:397-409.
[129] Duguay D, Foty RA, Steinberg MS. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Dev Biol. 2003;253:309-23.
[130] Beysens DA, Forgacs G, Glazier JA. Cell sorting is analogous to phase ordering in fluids. Proceedings of the National Academy of Sciences of the United States of America. 2000;97:9467-71.
[131] Tseng H, Balaoing LR, Grigoryan B, Raphael RM, Killian TC, Souza GR, et al. A three-dimensional co-culture model of the aortic valve using magnetic levitation. Acta biomaterialia. 2014;10:173-82.
[132] Hsiao AY, Torisawa YS, Tung YC, Sud S, Taichman RS, Pienta KJ, et al. Microfluidic system for formation of PC-3 prostate cancer co-culture spheroids. Biomaterials. 2009;30:3020-7.
[133] Derycke LD, Bracke ME. N-cadherin in the spotlight of cell-cell adhesion, differentiation, embryogenesis, invasion and signalling. Int J Dev Biol. 2004;48:463-76.
[134] Stepniak E, Radice GL, Vasioukhin V. Adhesive and signaling functions of cadherins and catenins in vertebrate development. Cold Spring Harbor perspectives in biology. 2009;1:a002949.
[135] Halbleib JM, Nelson WJ. Cadherins in development: cell adhesion, sorting, and tissue morphogenesis. Genes Dev. 2006;20:3199-214.
[136] Katsamba P, Carroll K, Ahlsena G, Bahna F, Vendome J, Posy S, et al. Linking molecular affinity and cellular specificity in cadherin-mediated adhesion. Proceedings of the National Academy of Sciences of the United States of America. 2009;106:11594-9.
[137] Duguay D, Foty RA, Steinberg MS. Cadherin-mediated cell adhesion and tissue segregation: qualitative and quantitative determinants. Developmental Biology. 2003;253:309-23.
[138] Phung YT, Barbone D, Broaddus VC, Ho M. Rapid generation of in vitro multicellular spheroids for the study of monoclonal antibody therapy. J Cancer. 2011;2:507-14.
[139] Iiizumi M, Liu W, Pai SK, Furuta E, Watabe K. Drug development against metastasis-related genes and their pathways: a rationale for cancer therapy. Biochim Biophys Acta. 2008;1786:87-104.
[140] Mehta G, Hsiao AY, Ingram M, Luker GD, Takayama S. Opportunities and challenges for use of tumor spheroids as models to test drug delivery and efficacy. Journal of Controlled Release. 2012;164:192-204.
[141] Lou PJ, Chiu MY, Chou CC, Liao BW, Young TH. The effect of poly (ethylene-co-vinyl alcohol) on senescence-associated alterations of human dermal fibroblasts. Biomaterials. 2010;31:1568-77.
[142] Shin SI, Freedman VH, Risser R, Pollack R. Tumorigenicity of virus-transformed cells in nude mice is correlated specifically with anchorage independent growth in vitro. Proceedings of the National Academy of Sciences of the United States of America. 1975;72:4435-9.
[143] Stoker M, O'Neill C, Berryman S, Waxman V. Anchorage and growth regulation in normal and virus-transformed cells. International journal of cancer Journal international du cancer. 1968;3:683-93.
[144] Decherchi P, Cochard P, Gauthier P. Dual staining assessment of Schwann cell viability within whole peripheral nerves using calcein-AM and ethidium homodimer. Journal of neuroscience methods. 1997;71:205-13.
[145] Sawai H, Domae N. Discrimination between primary necrosis and apoptosis by necrostatin-1 in Annexin V-positive/propidium iodide-negative cells. Biochemical and biophysical research communications. 2011;411:569-73.
[146] Vermes I, Haanen C, Steffens-Nakken H, Reutelingsperger C. A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. Journal of immunological methods. 1995;184:39-51.
[147] Rodier F, Campisi J. Four faces of cellular senescence. The Journal of cell biology. 2011;192:547-56.
[148] van Deursen JM. The role of senescent cells in ageing. Nature. 2014;509:439-46.
[149] Campisi J, Andersen JK, Kapahi P, Melov S. Cellular senescence: a link between cancer and age-related degenerative disease? Seminars in cancer biology. 2011;21:354-9.
[150] Kim JH, Lim IR, Joo HJ, Choi SC, Choi JH, Cui LH, et al. Sphere formation of adipose stem cell engineered by poly-2-hydroxyethyl methacrylate induces in vitro angiogenesis through fibroblast growth factor 2. Biochemical and biophysical research communications. 2015;468:372-9.
[151] Giacinti C, Giordano A. RB and cell cycle progression. Oncogene. 2006;25:5220-7.
[152] Hernando E, Nahle Z, Juan G, Diaz-Rodriguez E, Alaminos M, Hemann M, et al. Rb inactivation promotes genomic instability by uncoupling cell cycle progression from mitotic control. Nature. 2004;430:797-802.
[153] Li CY, Suardet L, Little JB. Potential Role of Waf1/Cip1/P21 as a Mediator of Tgf-Beta Cytoinhibitory Effect. Journal of Biological Chemistry. 1995;270:4971-4.
[154] Wu JF, Niu J, Li XP, Wang XW, Guo ZK, Zhang FX. TGF-beta 1 induces senescence of bone marrow mesenchymal stem cells via increase of mitochondrial ROS production. Bmc Dev Biol. 2014;14.
[155] Lin S, Yang JH, Elkahloun AG, Bandyopadhyay A, Wang L, Cornell JE, et al. Attenuation of TGF-beta signaling suppresses premature senescence in a p21-dependent manner and promotes oncogenic Ras-mediated metastatic transformation in human mammary epithelial cells. Molecular Biology of the Cell. 2012;23:1569-81.
[156] Nicolas FJ, Hill CS. Attenuation of the TGF-beta-Smad signaling pathway in pancreatic tumor cells confers resistance to TGF-beta-induced growth arrest. Oncogene. 2003;22:3698-711.
[157] Rabinow BE, Ding YS, Qin C, Mchalsky ML, Schneider JH, Ashline KA, et al. Biomaterials with Permanent Hydrophilic Surfaces and Low-Protein Adsorption Properties. J Biomat Sci-Polym E. 1994;6:91-109.
[158] Liu SX, Kim JT, Kim S. Effect of polymer surface modification on polymer-protein interaction via hydrophilic polymer grafting. Journal of Food Science. 2008;73:E143-E50.
[159] Martins MCL, Wang D, Ji J, Feng L, Barbosa MA. Albumin and fibrinogen adsorption on PU-PHEMA surfaces. Biomaterials. 2003;24:2067-76.
[160] Mount NM, Ward SJ, Kefalas P, Hyllner J. Cell-based therapy technology classifications and translational challenges. Philos Trans R Soc Lond B Biol Sci. 2015;370:20150017.
[161] Weissman IL. Translating stem and progenitor cell biology to the clinic: barriers and opportunities. Science. 2000;287:1442-6.
[162] Zhang J, Huang XW, Wang HJ, Liu XY, Zhang T, Wang YC, et al. The challenges and promises of allogeneic mesenchymal stem cells for use as a cell-based therapy. Stem Cell Research & Therapy. 2015;6.
[163] Mangir N, Akbal C, Tarcan T, Simsek F, Turkeri L. Mesenchymal stem cell therapy in treatment of erectile dysfunction: Autologous or allogeneic cell sources? Int J Urol. 2014;21:1280-5.
[164] Karantalis V, Schulman IH, Balkan W, Hare JM. Allogeneic Cell Therapy A New Paradigm in Therapeutics. Circ Res. 2015;116:12-5.
[165] dos Santos FF, Andrade PZ, da Silva CL, Cabral JMS. Bioreactor design for clinical-grade expansion of stem cells. Biotechnol J. 2013;8:644-54.
[166] Liu N, Li Y, Yang ST. Expansion of embryonic stem cells in suspension and fibrous bed bioreactors. J Biotechnol. 2014;178:54-64.
[167] Yeo D, Kiparissides A, Cha JM, Aguilar-Gallardo C, Polak JM, Tsiridis E, et al. Improving Embryonic Stem Cell Expansion through the Combination of Perfusion and Bioprocess Model Design. PloS one. 2013;8.
[168] Lee WYW, Lui PPY, Rui YF. Hypoxia-Mediated Efficient Expansion of Human Tendon-Derived Stem Cells In Vitro. Tissue Eng Pt A. 2012;18:484-98.
[169] Andreeva ER, Andrianova IV, Sotnezova EV, Buravkov SV, Bobyleva PI, Romanov YA, et al. Human Adipose-Tissue Derived Stromal Cells in Combination with Hypoxia Effectively Support Ex Vivo Expansion of Cord Blood Haematopoietic Progenitors. PloS one. 2015;10.
[170] Longo U
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68121-
dc.description.abstract一個適宜的體外腫瘤模型可促進抗癌藥物的開發與相關市場的發展。近年來,癌細胞與間葉幹細胞或纖維母細胞的三維共培養模型已逐漸被提出,其效果也被證實較二維或癌細胞單獨培養模型更貼近體內的腫瘤情形。生醫高分子幾丁聚醣能有效地調節間葉幹細胞與癌細胞的幹細胞特性,且能使細胞在培養時懸浮聚集成球。幾丁聚醣對於癌細胞、間葉幹細胞與纖維母細胞的幹細胞特性之調控,在此論文中透過CD44的蛋白表現被初步地檢驗。立基於以上數個幾丁聚醣特點,我們提出一個新穎的體外共培養且具核殼結構的多細胞球腫瘤模型。此腫瘤模型特點在於間葉幹細胞或纖維母細胞能聚集於多細胞球體之球核位置,癌細胞則包覆於外形成多細胞球體的球殼。球核內之間葉幹細胞或纖維母細胞能有效地支持球殼的癌細胞進而提升其細胞粒線體活性與對抗抗癌藥物的耐受性。再者,癌細胞也能保護間葉幹細胞或纖維母細胞,使其免於抗癌藥物的攻擊。
由實驗結果發現,幾丁聚醣的存在並不會影響纖維母細胞的CD44蛋白表現,只會調控具有幹細胞的‟自我更新”特性。因此,我們推測幾丁聚醣也能調節纖維母細胞的增殖能力而達到‟自我更新”的目的。當老化之人類包皮纖維母細胞培養在幾丁聚醣上時,細胞能懸浮聚集成球且同時延緩其老化,提升增殖能力與遷移能力。當纖維母細胞懸浮培養於聚乙烯醇或聚甲基丙烯酸羥乙基酯基材上時,並無延緩老化之效果。進一步分析細胞的老化相關蛋白表現,幾丁聚醣能有效地向下調節細胞內與培養環境中的轉化生長因子-β之表現。幾丁聚醣調控轉化生長因子-β的訊號傳遞,進而達到延緩細胞老化和提高其增殖能力的效果。最後,此模型也應用於人類膝關節腔內之前十字韌帶細胞與滑膜纖維母細胞。數據顯示,幾丁聚醣除有效地延緩細胞之老化外,也能提升其功能相關蛋白和遷移能力。
zh_TW
dc.description.abstractAn ideal in vitro drug screening model is important for the drug development. In addition to monoculture systems, coculture systems have been used to mimic the in vivo tumor tissues because cell-cell and cell-extracellular matrix interactions can be studied. In this study, suspension core/shell coculture multicellular spheroids on chitosan are developed. Based on the characteristic of chitosan inhibiting cell adhesion, SW620 (colon cancer cell line), 3A6 (mesenchymal stem-like cell line) and Hs68 (foreskin fibroblast line) cells can aggregate to form 3D coculture spheroids with intimate cell contacts. CD44 is extensively expressed within adult bone marrow and has been considered as an important marker for cancer stem cells in some types of tumors. Therefore, it is used to understand the variations of stem cells and cancer cells when cells culturing on chitosan firstly. When cells are cocultured on chitosan, 3A6 and Hs68 cells always locate in the core of spheroids and are completely enveloped by SW620 cells following the differential adhesion hypothesis. Moreover, the core cells can stimulate the shell SW620 cells to enhance activity and resistance against the cytotoxicity effect of chemotherapy drugs. Therefore, based on the specificity of the core/shell coculture multicellular spheroids, a novel in vitro tumor model is proposed.
Fibroblasts have been extensively used as a model to study cellular senescence. The second purpose of this study is to investigate whether the human foreskin fibroblast aging process can be regulated by using the chitosan. Senescent cells are collected and seeded on chitosan to form multicellular spheroids. The protein expression of senescence-associated secretory phenotypes (SASPs) and senescence-associated molecular markers of these cells in multicellular spheroids are downregulated significantly. Following chitosan treatment, fibroblasts reseed on TCPS show lower SA β-gal activity, and higher cellular motility and proliferation ability. Cells can form suspending multicellular spheroids on many biomaterials, but only chitosan is capable of delaying senescence of fibroblasts. Therefore, in addition to the structure of multicellular spheroids, chitosan itself should play an important role in delaying fibroblast senescence. In addition to the intracellular TGF-β expression, the extracellular TGF-β expression is also downregulated by chitosan. TGF-β signaling pathway is involved in the chitosan-mediating fibroblast senescence process. Finally, whether the senescence-delaying effect of chitosan can be applied to other cells, such as human synovial membrane derived cells (SCs) and anterior cruciate ligament fibroblasts (ACLs) is examined. From the studied data, we find that chitosan not only delays the senescence but also enhances the functions of SCs and ACLs, which is benefit for chitosan applying on the cell therapy.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:13:00Z (GMT). No. of bitstreams: 1
ntu-106-D02548002-1.pdf: 7471008 bytes, checksum: 04e7679026c47d7461a6fdbe00af506c (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents摘要 I
ABSTRACT IV
GRAPHICAL ABSTRACT VI
TABLE OF CONTENTS VII
LIST OF TABLES X
LIST OF FIGURES XI
CHAPTER 1 INTRODUCTION 1
1.1. Background 1
1.2. Purposes 2
1.3. Experimental Design 3
CHAPTER 2 LITERATURE REVIEW 4
2.1. Chitosan 4
2.2. Three Dimensional (3D) Culture for in vitro Tumor Models 5
2.3. Coculture System for in vitro Tumor Models 6
2.4. CD44 in Mesenchymal Stem Cells and Cancer Cells 7
2.5. Senescence 8
2.6. Senescence on Human Synovial Membrane Derived Cells and Anterior Cruciate Ligament Fibroblasts 10
CHAPTER 3 MATERIALS AND METHODS 11
3.1. Biomaterial Preparation 11
3.2. Material Identification 12
3.3. Cells 12
3.4. Cell Viability (mitochondria activity) 16
3.5. Surface Protein Expression 17
3.6. Intracellular Protein Expression 17
3.7. Senescence-associated β-galactosidase (SA β-gal) 18
3.8. Cell Survival 19
3.9. Proliferation Ability 19
3.10. Mobility 20
3.11. Cell sorting with the size and auto-fluorescence 20
3.12. Extracellular Protein Expression 20
3.13. Safranin O Staining 21
3.14. Statistical Analysis 21
CHAPTER 4 RESULTS 22
4.1. Coculture System: Core/shell Multicellular Spheroids as an in vitro Tumor Model 22
4.1.1. Basic Identification of Chitosan Coating TCPS 22
4.1.2. Basic Characteristic of Cells Cultured on Chitosan 23
4.1.3. CD44 Expression of Cells Cultured on Chitosan 23
4.1.4. Cadherin Expression of Cells 26
4.1.5. Cell Distribution of Coculture Cells Cultured on Chitosan 26
4.1.6. The effect of calcium-dependent adhesion molecules on cell distribution 27
4.1.7. Cell distribution of multicellular spheroids on PVA and polyHEMA 29
4.1.8. Cell Mitochondria Activity and Drug Resistance of the in vitro Tumor Model 29
4.2. (Monoculture) Delaying the Senescence of Primary Human Fibroblasts 33
4.2.1. Senescence-like Changes in Human Foreskin Fibroblasts 33
4.2.2. Chitosan Treatment to Senescent Human Foreskin Fibroblasts 34
4.2.3. The Effect of Chitosan Treatment on Senescent Human Foreskin Fibroblasts 34
4.2.4. Effect of chitosan treatment on different cell population 36
4.2.5. PVA and pHEMA Treatment to Senescent Human Foreskin Fibroblasts 37
4.2.6. Senescence-related Protein Expression of Fibroblasts after Biomaterial Treatment 38
4.2.7. Human Foreskin Fibroblasts Cultured in Chitosan- containing Cultured Medium 39
4.2.8. Interaction between chitosan and TGF-β 40
4.2.9. Senescence-like Changes in Human Synovial Membrane Derived Cells and Anterior Cruciate Ligament Fibroblasts 42
4.2.10. The Effect of Chitosan Treatment on Senescent Human Synovial Membrane Derived Cells and Anterior Cruciate Ligament Fibroblasts 43
CHAPTER 5 DISCUSSIONS 45
5.1. Coculture System: Core/shell Multicellular Spheroids as an in vitro Tumor Model 45
5.1.1 The CD44 expression of Cells Cultured on Chitosan 45
5.1.2 Cell Distribution of Coculture Cells Cultured on Chitosan 48
5.1.3 Cell Mitochondria activity and Drug Resistance of the in vitro Tumor Model 52
5.2. (Monoculture) Delaying the Senescence of Primary Human Fibroblasts 55
5.2.1 Chitosan Treatment on Senescent Human Foreskin Fibroblasts 55
5.2.2 Chitosan Delaying the Fibroblast Senescence through TGF-β Pathway 58
5.2.3 Chitosan Treatment on Human Synovial Membrane Derived Cells and Anterior Cruciate Ligament Fibroblasts 63
CHAPTER 6 CONCLUSIONS 67
REFERENCE 68
TABLES 82
FIGURES 85
APPENDIX EDUCATION AND PUBLICATION LIST 114
dc.language.isoen
dc.subject纖維母細胞zh_TW
dc.subject幾丁聚醣zh_TW
dc.subject核殼共培養多細胞球zh_TW
dc.subject腫瘤模型zh_TW
dc.subject老化zh_TW
dc.subject轉化生長因子-βzh_TW
dc.subjectfibroblastsen
dc.subjectTGF-βen
dc.subjectsenescenceen
dc.subjecttumor modelsen
dc.subjectcore/shell coculture multicellular spheroidsen
dc.subjectchitosanen
dc.title幾丁聚醣於癌細胞共培養系統與纖維母細胞老化延遲之影響zh_TW
dc.titleThe Effect of Chitosan Treatment on Coculture System of Cancer Cells and Senescence-Delaying of Fibroblastsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee王至弘(Jyh-Horng Wang),邱信程,洪士杰,林宏殷,李亦淇
dc.subject.keyword幾丁聚醣,核殼共培養多細胞球,腫瘤模型,老化,纖維母細胞,轉化生長因子-β,zh_TW
dc.subject.keywordchitosan,core/shell coculture multicellular spheroids,tumor models,senescence,fibroblasts,TGF-β,en
dc.relation.page115
dc.identifier.doi10.6342/NTU201704456
dc.rights.note有償授權
dc.date.accepted2017-12-12
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept醫學工程學研究所zh_TW
顯示於系所單位:醫學工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
7.3 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved