Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 生醫電子與資訊學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6810
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor郭柏齡(Po-Ling Kuo)
dc.contributor.authorYu-Ren Liouen
dc.contributor.author劉宥妊zh_TW
dc.date.accessioned2021-05-17T09:18:36Z-
dc.date.available2014-07-27
dc.date.available2021-05-17T09:18:36Z-
dc.date.copyright2012-07-27
dc.date.issued2012
dc.date.submitted2012-07-13
dc.identifier.citation1. Machesky, L.M., Lamellipodia and filopodia in metastasis and invasion. Febs Letters, 2008. 582(14): p. 2102-2111.
2. Gertler, F. and J. Condeelis, Metastasis: tumor cells becoming MENAcing. Trends in Cell Biology, 2011. 21(2): p. 81-90.
3. Tzvetkova-Chevolleau, T., et al., The motility of normal and cancer cells in response to the combined influence of the substrate rigidity and anisotropic microstructure. Biomaterials, 2008. 29(10): p. 1541-1551.
4. Guo, W.H., et al., Substrate rigidity regulates the formation and maintenance of tissues. Biophysical Journal, 2006. 90(6): p. 2213-2220.
5. Discher, D.E., P. Janmey, and Y.L. Wang, Tissue cells feel and respond to the stiffness of their substrate. Science, 2005. 310(5751): p. 1139-1143.
6. Guo, W. and Y. Wang, The substrate rigidity regulates the formation and maintenance of tissues. Molecular Biology of the Cell, 2004. 15: p. 3A-3A.
7. Wang, Y.L., Traction forces and rigidity sensing of adherent cells. Conf Proc IEEE Eng Med Biol Soc, 2009. 2009: p. 3339-40.
8. Buxboim, A., I.L. Ivanovska, and D.E. Discher, Matrix elasticity, cytoskeletal forces and physics of the nucleus: how deeply do cells 'feel' outside and in? J Cell Sci, 2010. 123(Pt 3): p. 297-308.
9. Ridley, A.J., et al., Cell migration: Integrating signals from front to back. Science, 2003. 302(5651): p. 1704-1709.
10. Jemal, A., et al., Cancer Statistics, 2010. Ca-a Cancer Journal for Clinicians, 2010. 60(5): p. 277-300.
11. Geho, D.H., et al., Physiological mechanisms of tumor-cell invasion and migration. Physiology, 2005. 20: p. 194-200.
12. Mattila, P.K. and P. Lappalainen, Filopodia: molecular architecture and cellular functions. Nature Reviews Molecular Cell Biology, 2008. 9(6): p. 446-454.
13. Vacquier, V.D., The connection of blastomeres of sea urchin embryos by filopodia. Exp Cell Res, 1968. 52(2): p. 571-81.
14. Faix, J. and K. Rottner, The making of filopodia. Current Opinion in Cell Biology, 2006. 18(1): p. 18-25.
15. Knight, M.M., et al., Live cell imaging using confocal microscopy induces intracellular calcium transients and cell death. American Journal of Physiology-Cell Physiology, 2003. 284(4): p. C1083-C1089.
16. Landry, S., et al., Monitoring live cell viability: Comparative study of fluorescence, oblique incidence reflection and phase contrast microscopy imaging techniques. Optics Express, 2004. 12(23): p. 5754-5759.
17. Wang, C.C., et al., Asymmetric cancer-cell filopodium growth induced by electric-fields in a microfluidic culture chip. Lab on a Chip, 2011. 11(4): p. 695-699.
18. Lee, C.H., H.Y. Mong, and W.C. Lin, Noninterferometric wide-field optical profilometry with nanometer depth resolution. Optics Letters, 2002. 27(20): p. 1773-1775.
19. Lin, J.Y., et al., Wide-field super-resolution optical sectioning microscopy using a single spatial light modulator. Journal of Optics a-Pure and Applied Optics, 2009. 11(1): p. -.
20. Lo, C.M., et al., Cell movement is guided by the rigidity of the substrate. Biophysical Journal, 2000. 79(1): p. 144-152.
21. Georges, P.C. and P.A. Janmey, Cell type-specific response to growth on soft materials. Journal of Applied Physiology, 2005. 98(4): p. 1547-1553.
22. Yu, H.M., J.K. Mouw, and V.M. Weaver, Forcing form and function: biomechanical regulation of tumor evolution. Trends in Cell Biology, 2011. 21(1): p. 47-56.
23. Suresh, S., Biomechanics and biophysics of cancer cells. Acta Materialia, 2007. 55(12): p. 3989-4014.
24. Kostic, A., C.D. Lynch, and M.P. Sheetz, Differential Matrix Rigidity Response in Breast Cancer Cell Lines Correlates with the Tissue Tropism. Plos One, 2009. 4(7).
25. Paszek, M.J., et al., Tensional homeostasis and the malignant phenotype. Cancer Cell, 2005. 8(3): p. 241-254.
26. Moore, S.W., P. Roca-Cusachs, and M.P. Sheetz, Stretchy proteins on stretchy substrates: the important elements of integrin-mediated rigidity sensing. Dev Cell, 2010. 19(2): p. 194-206.
27. Chan, C.E. and D.J. Odde, Traction Dynamics of Filopodia on Compliant Substrates. Science, 2008. 322(5908): p. 1687-1691.
28. Papakonstanti, E.A. and C. Stournaras, Cell responses regulated by early reorganization of actin cytoskeleton. Febs Letters, 2008. 582(14): p. 2120-2127.
29. Park, J.S., et al., The effect of matrix stiffness on the differentiation of mesenchymal stem cells in response to TGF-beta. Biomaterials, 2011. 32(16): p. 3921-3930.
30. 李超煌. 差動共焦顯微術及其應用. 台灣大學電機工程研究所 博士論文 1997.
31. 王俊杰, 非干涉式廣視野光學測繪術及其應用. 國立中正大學物理研究所 博士論文, 2007.
32. 許慈軒, 以超解析率明視野光學顯微術觀測癌細胞絲狀偽足的動態變化. 國立陽明大學光電工程研究所 碩士論文, 2007.
33. Neil, M.A.A., R. Juskaitis, and T. Wilson, Method of obtaining optical sectioning by using structured light in a conventional microscope. Optics Letters, 1997. 22(24): p. 1905-1907.
34. 高于媝, 利用結構式照明奈米繪測術觀測癌細胞絲狀偽足在直流電場下的方向性生長. 國立中正大學物理學研究所 碩士論文, 2010.
35. Cretu, A., P. Castagnino, and R. Assoian, Studying the effects of matrix stiffness on cellular function using acrylamide-based hydrogels. J Vis Exp, 2010(42).
36. Tse, J.R. and A.J. Engler, Preparation of hydrogel substrates with tunable mechanical properties. Curr Protoc Cell Biol, 2010. Chapter 10: p. Unit 10 16.
37. Kandow, C.E., et al., Polyacrylamide hydrogels for cell mechanics: steps toward optimization and alternative uses. Methods Cell Biol, 2007. 83: p. 29-46.
38. Wang, C.C., K.L. Lee, and C.H. Lee, Wide-field optical nanoprofilometry using structured illumination. Optics Letters, 2009. 34(22): p. 3538-3540.
39. Klee, D. and H. Hocker, Polymers for biomedical applications: Improvement of the interface compatibility. Biomedical Applications: Polymer Blends, 1999. 149: p. 1-57.
40. Wilkes, C.E., et al., PVC handbook. 2005, Munich ; Cincinnati: Hanser. xxvi, 723 p.
41. Crespo, J.E., et al., Substitution of di(2-ethylhexyl) phthalate by di(isononyl) cyclohexane-1,2-dicarboxylate as a plasticizer for industrial vinyl plastisol formulations. Journal of Applied Polymer Science, 2007. 104(2): p. 1215-1220.
42. Wadey, B.L., An innovative plasticizer for sensitive applications. Journal of Vinyl & Additive Technology, 2003. 9(4): p. 172-176.
43. RodriguezFernandez, O.S. and M. Gilbert, Aminosilane grafting of plasticized poly(vinyl chloride) .2. Grafting and crosslinking reactions. Journal of Applied Polymer Science, 1997. 66(11): p. 2121-2128.
44. Storck, J., H. AbDelRazek, and E.R. Zimmermann, Effect of polyvinyl chloride plastic on the growth and physiology of human umbilical vein endothelial cells. Biomaterials, 1996. 17(18): p. 1791-1794.
45. Buckley, M.R., et al., Mapping the depth dependence of shear properties in articular cartilage. Journal of Biomechanics, 2008. 41(11): p. 2430-2437.
46. INSTRON, Instron 8848 MicroTester Reference Manual.
47. Choi, W., et al., Tomographic phase microscopy. Nature Methods, 2007. 4(9): p. 717-719.
48. Wong, J.Y., et al., Directed movement of vascular smooth muscle cells on gradient-compliant hydrogels. Langmuir, 2003. 19(5): p. 1908-1913.
49. Engler, A.J., et al., Matrix elasticity directs stem cell lineage specification. Cell, 2006. 126(4): p. 677-689.
50. Jung, C.H., et al., Patterning of cells on a PVC film surface functionalized by ion irradiation. Polymers for Advanced Technologies, 2010. 21(2): p. 135-138.
51. Ahmed, S., et al., Poly(vinylmethylsiloxane) Elastomer Networks as Functional Materials for Cell Adhesion and Migration Studies. Biomacromolecules, 2011. 12(4): p. 1265-1271.
52. Gehler, S., et al., Brain-derived neurotrophic factor regulation of retinal growth cone filopodial dynamics is mediated through actin depolymerizing factor/cofilin. Journal of Neuroscience, 2004. 24(47): p. 10741-10749.
53. Medeiros, N.A., D.T. Burnette, and P. Forscher, Myosin II functions in actin-bundle turnover in neuronal growth cones. Nature Cell Biology, 2006. 8(3): p. 215-226.
54. Hotulainen, P. and P. Lappalainen, Stress fibers are generated by two distinct actin assembly mechanisms in motile cells. Journal of Cell Biology, 2006. 173(3): p. 383-394.
55. Liu, Z.A., et al., Blebbistatin inhibits contraction and accelerates migration in mouse hepatic stellate cells. British Journal of Pharmacology, 2010. 159(2): p. 304-315.
56. Pasapera, A.M., et al., Myosin II activity regulates vinculin recruitment to focal adhesions through FAK-mediated paxillin phosphorylation. Journal of Cell Biology, 2010. 188(6): p. 877-890.
57. Burridge, K. and R. Doughman, Front and back by Rho and Rac. Nature Cell Biology, 2006. 8(8): p. 781-782.
58. Ehrlicher, A.J., et al., Mechanical strain in actin networks regulates FilGAP and integrin binding to filamin A. Nature, 2011. 478(7368): p. 260-U154.
59. Provenzano, P.P. and P.J. Keely, Mechanical signaling through the cytoskeleton regulates cell proliferation by coordinated focal adhesion and Rho GTPase signaling. Journal of Cell Science, 2011. 124(8): p. 1195-1205.
60. Katsumi, A., et al., Effects of cell tension on the small GTPase Rac. Journal of Cell Biology, 2002. 158(1): p. 153-164.
61. del Pozo, M.A., et al., Adhesion to the extracellular matrix regulates the coupling of the small GTPase Rac to its effector PAK. Embo Journal, 2000. 19(9): p. 2008-2014.
62. Gallegos, L., M.R. Ng, and J.S. Brugge, The myosin-II-responsive focal adhesion proteome: a tour de force? Nature Cell Biology, 2011. 13(4): p. 344-+.
63. Kuo, J.C., et al., Analysis of the myosin-II-responsive focal adhesion proteome reveals a role for beta-Pix in negative regulation of focal adhesion maturation. Nature Cell Biology, 2011. 13(4): p. 383-U109.
64. Chen, C.S., et al., Geometric control of cell life and death. Science, 1997. 276(5317): p. 1425-1428.
65. Friedl, P. and S. Alexander, Cancer Invasion and the Microenvironment: Plasticity and Reciprocity. Cell, 2011. 147(5): p. 992-1009.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6810-
dc.description.abstract本論文利用結構式照明奈米繪測術(SINAP)觀察肺癌細胞在不同基材硬度刺激下絲狀偽足的生長與動態變化。
細胞的移動能力在許多生理反應過程中都扮演著重要的角色,例如組織發育、傷口癒合、腫瘤血管新生、過敏反應以及癌症轉移。之前的研究主要是集中在環境中化學信號對於細胞移動能力的影響,但近年來,有越來越多的研究指出,細胞所生存的微環境會給予細胞許多物理性的刺激,如環境硬度被認為可以影響細胞的移動能力。
以往對於細胞移動能力的觀察,是利用長時間追蹤同一顆細胞,並計算出他在一定時間中可以移動的距離做為此細胞的移動能力,但這種記錄方式需要長時間的累積,在實際醫療的應用上並沒有辦法給予即時的資訊,並且在實體內的實行上也有一定的困難。因此我們希望可以利用細胞外觀的特徵來和細胞的移動能力做連結。在本篇論文中,我們將觀察細胞絲狀偽足的生長及動態和基材硬度的關係,有許多研究已經發現絲狀偽足的生長和細胞的移動能力有正相關,並且我們所使用的細胞株CL1-5相對於其同種類細胞株CL1-0有較高的轉移能力,之前的研究也指出,這種具有高轉移能力的CL1-5其絲狀偽足的數目要比其他低轉移能力的細胞株更多,因此我們相信絲狀偽足的生長及動態會受到基材硬度的影響。
實驗中主要是利用李超煌博士所研發的超解析顯微術-結構式照明奈米繪測術(SINAP)觀察絲狀偽足結構。絲狀偽足的直徑大約只有100-300奈米,超越一般光學顯微鏡的繞射限制。而經由SINAP顯微術所得到的影像,其橫向解析度可以達140奈米,而縱像解析度更可以到達6奈米,加上搭配廣視野顯微鏡,不需要利用掃描方式取得二維影像,大幅加快了取像速度,且不需要事先對樣品進行螢光染色,非常適合用來長時間觀察絲狀偽足的動態變化。
由於SINAP顯微術需搭配正立顯微鏡來進行樣品的成像,因此所觀察之樣品其底下基材必須具有高折射率的特性,然而先前對於基材硬度對細胞影響的實驗所用可調硬度之基材材料大多為水膠,而水膠的折射率和細胞生存環境相近,並沒有辦法在SINAP系統中成像,因此我們實驗的第一步必須要找出一種折射率高,且可以調整其硬度的基材以符合我們實驗的需求。在本實驗中我們所使用的PVC具有高折射率,並可藉由加入塑化劑DINCH來調整其硬度。實驗結果證實PVC可以成功的應用到SINAP系統中,而其硬度符合生理環境硬度之範圍,且其生物相容性和傳統常被使用的生物材料差異不大,因此做為本實驗所選用的基材。
觀察絲狀偽足在不同硬度刺激下生長的實驗結果發現,在軟基材上,細胞具有較多且較長的絲狀偽足;而在硬基材上抑制了肌球蛋白(myosin II)的活性同時抑制張力絲(stress fiber)收縮能力,亦可以發現絲狀偽足在數量及長度上都有明顯的增加,模擬了在軟基材上的效果。因此判斷基材硬度可能是藉由影響張力絲的形成,而張力絲和絲狀偽足的形成機制又互相抗拮,進而影響絲狀偽足的生長。另一方面,我們也觀察絲狀偽足在不同硬度下其伸縮速度。實驗結果發現在不同硬度下所記錄的伸縮速度並無不同,可能和取像時間太長有關,之後必須對此做改善。
藉由此實驗的結果,可以了解到基材硬度對於絲狀偽足數量和長度上的影響,進一步研究其調控機制將對於未來在癌症轉移的治療及診斷上能有所幫助。
zh_TW
dc.description.abstractIn this thesis, we observed the filopodia formation and dynamics of lung cancer cells (CL1-5) on substrates with different stiffness by structured illumination nano-profilometry (SINAP).
Cell migration plays a key role in various physiological and pathological processes, such as tissue development, wound healing, angiogenesis, inflammation, and cancer metastasis. Most of the previous studies focused on the effects of environmental chemical cues on the cell migration. Recently, some studies have reported that the cell migration could also respond to the environmental mechanical stimuli; for example, the substrate stiffness is one of the most important mechanical stimuli.
The traditional method to measure the cell motility is to trace the moving distance of a cell for an accumulated time. This method however should take a long time thus hard to be exerted in vivo and in real-time. Therefore, a way to improve is to observe the cell morphology and relate it to the cell motility. Evidences have shown that the formation of filopodia is related to the cell migration. Furthermore, the CL1-5, which has been shown to be the high invasive lung cancer cell line, has more filopodia than CL1-0, which is low invasive lung cancer cell line. In this study, we made the correlation between the formation of filopodia and the substrate stiffness. We speculated that the substrate stiffness could modulate the filopodia formation and dynamics through the effects on cell adhesions.
The structured illumination nano-profilometry (SINAP), which is developed by Dr. Lee’s group, has lateral resolution of 140 nm and depth resolution of 6 nm. This super-resolution microscopy is advanced in the observation of filopodia, whose diameters are only between 100 and 300 nm. Without fluorescence labeling and two-dimensional scanning, the imaging of SINAP is high speed and very suitable for live-cells observation. However, these techniques require culturing cells on materials of refractive index close to that of glass, while most studies regarding the effects of mechanical cues on cellular dynamics were conducted on hydrogel-based substrates.
Here we report the development of culturing substrates of tunable rigidity and refractive index suitable for SINAP studies. Polyvinyl chloride (PVC)-based substrates were mixed with a softener called Di(isononyl) Cyclohexane-1,2-Dicarboxylate (DINCH). The volume ratios of PVC to DINCH were varied from 1:1 to 3:1. The Young’s moduli of the resulting substrates ranged from 20 kPa to 60 kPa. Human lung adenocarcinoma cells CL1-5 were cultured on the composite substrates and cell viability was examined using the MTT assay. The results showed that the PVCs were successfully applied to the SINAP system and had high biocompatibility. Thus in this thesis, the observation of filopodia formation and dynamics were conducted on the PVC substrates.
The results of cells on different stiffness showed that the cells on soft substrates had more filopodial density and length than those on the stiff substrates. Inhibiting the contractility of the stress fibers with blebbistatin treatment increased the density and length of filopodia on stiff substrates, and mimicked the situation of the cells on the soft substrates. Therefore, a possible but indirect mechanism of the effects of the substrate stiffness on filopodia formation might be the formation of the stress fibers, which antagonize to the formation of the filopodia. On the other respects, we also measured the stretching rate of filopodia on different stiffness. The results showed no difference in the protrusion rate and retraction rate between the soft and stiff substrates. This might resulted from the interval times we took between images. Thus in the future, we should shorten the interval time to observe the filopodia with higher stretching speed.
From this study, we can understand the effects of the substrate stiffness on the filopodial density and length. Further studies are needed to determine the underlying mechanism of these effects. With their medical importance, the results would shed new light on the therapy and diagnosis of the cancer disease.
en
dc.description.provenanceMade available in DSpace on 2021-05-17T09:18:36Z (GMT). No. of bitstreams: 1
ntu-101-R99945014-1.pdf: 12286215 bytes, checksum: 34480f6778297794d20dd37a759417fe (MD5)
Previous issue date: 2012
en
dc.description.tableofcontentsABSTRACT v
CONTENTS viii
LIST OF FIGURES xi
LIST OF TABLE xiv
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 The Important Role of Cell Migration 2
1.3 Introduction of Filopodia 5
1.3.1 Structure of Filopodia 5
1.3.2 The Role of Filopodia in Cell Migration 6
1.3.3 Methods for Filopodia Observation 7
1.4 Introduction of Biomechanics 9
1.4.1 The Cell Motility in Response to Mechanical Stimuli 9
1.4.2 Role of Substrate Stiffness in Cancer 10
1.4.3 The Effects of substrate stiffness on Filopodia 13
Chapter 2 Structured Illumination nano-profilometry (SINAP) 16
2.1 Differential Confocal Microscopy 16
2.2 Wide-Field Optical Sectioning Microscopy 18
2.3 Structured Illumination Microscopy 20
Chapter 3 Culturing Cells on Flexible Substrates of High Refractive Indexes 25
3.1 Introduction of plasticizer-poly(vinyl chloride) (PVC) 26
3.2 Materials and Methods 29
3.2.1 Substrate Preparation 29
3.2.2 Cell Culture 30
3.2.3 Cell Viability 31
3.2.4 Substrate Stiffness 31
3.2.5 Refractive Index Measurement 32
3.3 Result 34
3.3.1 Cell viability 34
3.3.2 Substrate stiffness 35
3.3.3 Optic properties 36
3.4 Conclusion 39
Chapter 4 Experimental Procedures for Filopodia Observation 41
4.1 SINAP System Setup 41
4.2 Cell-Cultured Chip Preparation 43
4.3 Drug Treatment 44
4.4 Immunofluorescence 45
4.5 Confocal Images acquisition 45
4.6 Data analysis 46
Chapter 5 Results 47
5.1 High-Refractive-Index PVC Substrates under the SINAP 47
5.2 Filopodia Density and Length on Substrates with Different Stiffness 49
5.3 Stretching Rate of Filopodia on Substrates with Different Stiffness 51
5.4 Filopodial Density and Length on Substrates with Different Stiffness with Blebbistatin Treatment 58
Chapter 6 Discussion, Conclusion, and Future Work 63
6.1 Discussion 63
6.1.1 Increase in Filopodial Density and Length on Soft Substrates 63
6.1.2 Correlation between Filopodial Stretching and Substrate Stiffness 65
6.2 Conclusion 66
6.3 Future Work 68
dc.language.isoen
dc.title利用結構式照明奈米測繪術(SINAP)觀測癌細胞在不同硬度下絲狀偽足的差異zh_TW
dc.titleCharacteristics of Cancer-Cell Filopodia on Substrates with Different Stiffness Observed by Structured Illumination Nano-Profilometryen
dc.typeThesis
dc.date.schoolyear100-2
dc.description.degree碩士
dc.contributor.oralexamcommittee宋孔彬(Kung-Bin Sung),李超煌(Chau-Hwang Lee)
dc.subject.keyword絲狀偽足,結構式照明奈米繪測術,肺癌細胞,基材硬度,zh_TW
dc.subject.keywordFilopodia,SINAP,Lung Cancer Cell,Substrate Stiffness,en
dc.relation.page73
dc.rights.note同意授權(全球公開)
dc.date.accepted2012-07-13
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept生醫電子與資訊學研究所zh_TW
顯示於系所單位:生醫電子與資訊學研究所

文件中的檔案:
檔案 大小格式 
ntu-101-1.pdf12 MBAdobe PDF檢視/開啟
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved