請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68090完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 江介宏(Jie-Hong Roland Jiang) | |
| dc.contributor.author | Shih-Yu Chen | en |
| dc.contributor.author | 陳識宇 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:12:28Z | - |
| dc.date.available | 2018-01-04 | |
| dc.date.copyright | 2018-01-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-12-26 | |
| dc.identifier.citation | [1] Scott B. Peterson, J.F. Whitacre, and Jay Apt. The economics of using plug-in hybrid electric vehicle battery packs for grid storage. Journal of Power Sources, 195(8):2377 – 2384, 2010.
[2] C. A. Hill, M. C. Such, D. Chen, J. Gonzalez, and W. M. Grady. Battery energy storage for enabling integration of distributed solar power generation. IEEE Transactions on Smart Grid, 3(2):850–857, June 2012. [3] K. W. E. Cheng, B. P. Divakar, H. Wu, K. Ding, and H. F. Ho. Battery-management system (bms) and soc development for electrical vehicles. IEEE Transactions on Vehicular Technology, 60(1):76–88, Jan 2011. [4] H. Rahimi-Eichi, U. Ojha, F. Baronti, and M. Y. Chow. Battery management system: An overview of its application in the smart grid and electric vehicles. IEEE Industrial Electronics Magazine, 7(2):4–16, June 2013. [5] Sebastian Steinhorst, Zili Shao, Samarjit Chakraborty, Matthias Kauer, Shuai Li, Martin Lukasiewycz, Swaminathan Narayanaswamy, Muhammad Usman Rafique, and Qixin Wang. Distributed reconfigurable battery system management architectures. In Design Automation Conference (ASP-DAC), 2016 21st Asia and South Pacific, pages 429–434. IEEE, 2016. [6] Hahnsang Kim and Kang G Shin. On dynamic reconfiguration of a large-scale battery system. In Real-Time and Embedded Technology and Applications Symposium, 2009. RTAS 2009. 15th IEEE, pages 87–96. IEEE, 2009. [7] Song Ci, Jiucai Zhang, Hamid Sharif, and Mahmoud Alahmad. Dynamic reconfigurable multi-cell battery: A novel approach to improve battery performance. In Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE, pages 439–442. IEEE, 2012. [8] Ye Li and Yehui Han. Used-battery management with integrated battery building block system. In Applied Power Electronics Conference and Exposition (APEC), 2015 IEEE, pages 3177–3182. IEEE, 2015. [9] Fa Chen, Wei Qiao, and Liyan Qu. A modular and reconfigurable battery system. In Applied Power Electronics Conference and Exposition (APEC), 2017 IEEE, pages 2131–2135. IEEE, 2017. [10] Taesic Kim, Wei Qiao, and Liyan Qu. Series-connected self-reconfigurable multicell battery. In Applied Power Electronics Conference and Exposition (APEC), 2011 Twenty-Sixth Annual IEEE, pages 1382–1387. IEEE, 2011. [11] Taesic Kim, Wei Qiao, and Liyan Qu. Power electronics-enabled self-x multicell batteries: A design toward smart batteries. IEEE Transactions on Power Electronics, 27(11):4723–4733, 2012. [12] Taesic Kim, Wei Qiao, and Liyan Qu. A series connected self-reconfigurable multicell battery capable of safe and effective charging/discharging and balancing operations. In Applied Power Electronics Conference and Exposition (APEC), 2012 Twenty-Seventh Annual IEEE, pages 2259–2264. IEEE, 2012. [13] Ni Lin and Song Ci. Toward dynamic programming-based management in reconfigurable battery packs. In Applied Power Electronics Conference and Exposition (APEC), 2017 IEEE, pages 2136–2140. IEEE, 2017. [14] Liang He, Lipeng Gu, Linghe Kong, Yu Gu, Cong Liu, and Tian He. Exploring adaptive reconfiguration to optimize energy efficiency in large-scale battery systems. In Real-Time Systems Symposium (RTSS), 2013 IEEE 34th, pages 118–127. IEEE, 2013. [15] Liang He, Yu Gu, Ting Zhu, Cong Liu, and Kang G Shin. Share: Soh-aware reconfiguration to enhance deliverable capacity of large-scale battery packs. In Proceedings of the ACM/IEEE Sixth International Conference on Cyber- Physical Systems, pages 169–178. ACM, 2015. [16] Fangjian Jin and Kang G Shin. Pack sizing and reconfiguration for management of large-scale batteries. In Cyber-Physical Systems (ICCPS), 2012 IEEE/ACM Third International Conference on, pages 138–147. IEEE, 2012. [17] Liang He, Eugene Kim, and Kang G Shin. Resting weak cells to improve battery pack’s capacity delivery via reconfiguration. Cell, 3:4, 2016. [18] GL Plett and MJ Klein. Simulating battery packs comprising parallel cell modules and series cell modules. In Proc. of Electric Vehicle Symposium, 2009. [19] S. Mertens. The Easiest Hard Problem: Number Partitioning. eprint arXiv:cond-mat/0310317, October 2003. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68090 | - |
| dc.description.abstract | 鋰離子電池在網絡實體系統上廣泛的應用,吸引眾多關於高能源效率之電池系統的研究。可重組式電池組被提出作為提升系統可靠性及能源效率之解決方案。近期研究中,關於如何在重組過程中同時最大化使用時間及最小化開關次數,尚未被完整的研究。此篇論文中,基於簡化電池模型的假設,我們設計一個開關控制演算法,使電池組供給常負載達到最長使用時間且開關次數至多為最小值之兩倍。此演算法更進一步地被推廣至動態負載。模擬結果顯示我們所提出的演算法有良好的結果。 | zh_TW |
| dc.description.abstract | The broad applications of lithium-ion batteries in cyber-physical systems attract intensive research on building energy-efficient battery systems. Reconfigurable battery packs have been proposed to improve reliability and energy efficiency. Despite recent efforts, how to simultaneously maximize battery usage time and minimize switching count during reconfiguration is rarely addressed. In this work, we devise a control algorithm that, under a simplified battery model, achieves the longest usage time under a given constant power-load while the switching count is at most twice above the minimum. It is further generalized for arbitrary power-loads. Simulation experiments show promising benefits of the proposed algorithm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:12:28Z (GMT). No. of bitstreams: 1 ntu-106-R04943150-1.pdf: 8590819 bytes, checksum: fd339ace3b005251dd15ffc537d56097 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Abstract v
List of Figures vii List of Tables viii 1 Introduction 1 2 Preliminaries 5 2.1 Battery Model 5 2.2 Battery Pack Architecture 6 3 Problem Formulation 9 4 Control Algorithm for Constant Loads 12 4.1 Ideal Battery Model 12 4.2 Control Algorithm for One-Column Pack 14 4.2.1 Hardness of Switching Count Minimization 19 4.2.2 2-Approximation of Switching Count 20 4.3 Control Algorithm for Multi-Column Pack 22 5 Extensions and Improvements 25 5.1 Coping with Non-Ideal Model 25 5.2 Extension to Dynamic Loads 26 5.3 Improvement to Switching Count Reduction 28 6 Simulation Results 29 6.1 Battery Pack Simulator 29 6.2 Switch Control Algorithm Implementation 30 6.3 Simulation Settings 31 6.4 Simulation Results of Constant Loads 35 6.5 Simulation Results of Dynamic Loads 40 7 Conclusions 48 Bibliography 49 | |
| dc.language.iso | en | |
| dc.subject | 電池組使用時間計算 | zh_TW |
| dc.subject | 可重組式電池組 | zh_TW |
| dc.subject | 開關控制最佳化 | zh_TW |
| dc.subject | 近似演算法 | zh_TW |
| dc.subject | approximation algorithm | en |
| dc.subject | battery pack usage time calculation | en |
| dc.subject | optimal switch control | en |
| dc.subject | reconfigurable battery packs | en |
| dc.title | 動態負載下可重組式電池組之控制演算法 | zh_TW |
| dc.title | Control Algorithm of Reconfigurable Battery Pack under Dynamic Loads | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳和麟(Ho-Lin Chen),凌守弘 | |
| dc.subject.keyword | 可重組式電池組,電池組使用時間計算,開關控制最佳化,近似演算法, | zh_TW |
| dc.subject.keyword | reconfigurable battery packs,battery pack usage time calculation,optimal switch control,approximation algorithm, | en |
| dc.relation.page | 52 | |
| dc.identifier.doi | 10.6342/NTU201704509 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-12-27 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 8.39 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
