請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6808完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 陳逸聰(Yit-Tsong Chem) | |
| dc.contributor.author | Wan-Ling Yang | en |
| dc.contributor.author | 楊婉鈴 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:18:33Z | - |
| dc.date.available | 2014-07-27 | |
| dc.date.available | 2021-05-17T09:18:33Z | - |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-13 | |
| dc.identifier.citation | 1. Farre, M., and Barcelo, D. (2003) Toxicity testing of wastewater and sewage sludge by biosensors, bioassays and chemical analysis, Trac-Trend Anal Chem 22, 299-310.
2. Wang, Y., Xu, H., Zhang, J. M., and Li, G. (2008) Electrochemical sensors for clinic analysis, Sensors-Basel 8, 2043-2081. 3. Viswanathan, S., Radecka, H., and Radecki, J. (2009) Electrochemical biosensors for food analysis, Monatsh Chem 140, 891-899. 4. Rodriguez-Mozaz, S., de Alda, M. J. L., and Barcelo, D. (2006) Biosensors as useful tools for environmental analysis and monitoring, Anal Bioanal Chem 386, 1025-1041. 5. Duan, X. F., Huang, Y., Cui, Y., Wang, J. F., and Lieber, C. M. (2001) Indium phosphide nanowires as building blocks for nanoscale electronic and optoelectronic devices, Nature 409, 66-69. 6. Hu, J. T., Odom, T. W., and Lieber, C. M. (1999) Chemistry and physics in one dimension: Synthesis and properties of nanowires and nanotubes, Accounts Chem Res 32, 435-445. 7. Liang, X. G., and Chou, S. Y. (2008) Nanogap detector inside nanofluidic channel for fast real-time label-free DNA analysis, Nano Lett 8, 1472-1476. 8. Morales, A. M., and Lieber, C. M. (1998) A laser ablation method for the synthesis of crystalline semiconductor nanowires, Science 279, 208-211. 9. Raymo, F. M., and Yildiz, I. (2007) Luminescent chemosensors based on semiconductor quantum dots, Phys Chem Chem Phys 9, 2036-2043. 10. Rosi, N. L., and Mirkin, C. A. (2005) Nanostructures in biodiagnostics, Chem Rev 105, 1547-1562. 11. Tansil, N. C., and Gao, Z. Q. (2006) Nanoparticles in biomolecular detection, Nano Today 1, 28-37. 12. Chen, K. I., Li, B. R., and Chen, Y. T. (2011) Silicon nanowire field-effect transistor-based biosensors for biomedical diagnosis and cellular recording investigation, Nano Today 6, 131-154. 13. Cui, Y., Wei, Q. Q., Park, H. K., and Lieber, C. M. (2001) Nanowire nanosensors for highly sensitive and selective detection of biological and chemical species, Science 293, 1289-1292. 14. Park, I. Y., Li, Z. Y., Li, X. M., Pisano, A. P., and Williams, R. S. (2007) Towards the silicon nanowire-based sensor for intracellular biochemical detection, Biosens Bioelectron 22, 2065-2070. 15. Chen, R. J., Choi, H. C., Bangsaruntip, S., Yenilmez, E., Tang, X. W., Wang, Q., Chang, Y. L., and Dai, H. J. (2004) An investigation of the mechanisms of electronic sensing of protein adsorption on carbon nanotube devices, J Am Chem Soc 126, 1563-1568. 16. Martel, R., Schmidt, T., Shea, H. R., Hertel, T., and Avouris, P. (1998) Single- and multi-wall carbon nanotube field-effect transistors, Appl Phys Lett 73, 2447-2449. 17. Tans, S. J., Verschueren, A. R. M., and Dekker, C. (1998) Room-temperature transistor based on a single carbon nanotube, Nature 393, 49-52. 18. Cui, Y., Zhong, Z. H., Wang, D. L., Wang, W. U., and Lieber, C. M. (2003) High performance silicon nanowire field effect transistors, Nano Lett 3, 149-152. 19. Patolsky, F., Timko, B. P., Zheng, G. F., and Lieber, C. M. (2007) Nanowire-based nanoelectronic devices in the life sciences, Mrs Bull 32, 142-149. 20. Li, C., Curreli, M., Lin, H., Lei, B., Ishikawa, F. N., Datar, R., Cote, R. J., Thompson, M. E., and Zhou, C. W. (2005) Complementary detection of prostate-specific antigen using ln2O3 nanowires and carbon nanotubes, J Am Chem Soc 127, 12484-12485. 21. Choi, A., Kim, K., Jung, H. I., and Lee, S. Y. (2010) ZnO nanowire biosensors for detection of biomolecular interactions in enhancement mode, Sensor Actuat B-Chem 148, 577-582. 22. Elfstrom, N., Juhasz, R., Sychugov, I., Engfeldt, T., Karlstrom, A. E., and Linnros, J. (2007) Surface charge sensitivity of silicon nanowires: Size dependence, Nano Lett 7, 2608-2612. 23. Grieshaber, D., MacKenzie, R., Voros, J., and Reimhult, E. (2008) Electrochemical biosensors-Sensor principles and architectures, Sensors-Basel 8, 1400-1458. 24. Mohammad, S. N. (2006) Self-catalysis: A contamination-free, substrate-free growth mechanism for single-crystal nanowire and nanotube growth by chemical vapor deposition, J Chem Phys 125. 25. Stern, E., Wagner, R., Sigworth, F. J., Breaker, R., Fahmy, T. M., and Reed, M. A. (2007) Importance of the debye screening length on nanowire field effect transistor sensors, Nano Lett 7, 3405-3409. 26. Renault, J. P., Bernard, A., Juncker, D., Michel, B., Bosshard, H. R., and Delamarche, E. (2002) Fabricating microarrays of functional proteins using affinity contact printing, Angew Chem Int Edit 41, 2320-2323. 27. Naujoks, N., and Stemmer, A. (2003) Localized functionalization of surfaces with molecules from solution using electrostatic attraction, Microelectron Eng 67-8, 736-741. 28. Piner, R. D., Zhu, J., Xu, F., Hong, S. H., and Mirkin, C. A. (1999) 'Dip-pen' nanolithography, Science 283, 661-663. 29. Park, I., Li, Z. Y., Pisano, A. P., and Williams, R. S. (2007) Selective surface functionalization of silicon nanowires via nanoscale Joule heating, Nano Lett 7, 3106-3111. 30. Masood, M. N., Chen, S., Carlen, E. T., and van den Berg, A. (2010) All-(111) surface silicon nanowires: Selective functionalization for biosensing applications, Acs Appl Mater Inter 2, 3422-3428. 31. Stern, E., Klemic, J. F., Routenberg, D. A., Wyrembak, P. N., Turner-Evans, D. B., Hamilton, A. D., LaVan, D. A., Fahmy, T. M., and Reed, M. A. (2007) Label-free immunodetection with CMOS-compatible semiconducting nanowires, Nature 445, 519-522. 32. Zhang, G. J., Chua, J. H., Chee, R. E., Agarwal, A., Wong, S. M., Buddharaju, K. D., and Balasubramanian, N. (2008) Highly sensitive measurements of PNA-DNA hybridization using oxide-etched silicon nanowire biosensors, Biosens Bioelectron 23, 1701-1707. 33. Singer, S. J., and Nicolson, G. L. (1972) The fluid mosaic model of the structure of cell membranes, Science 175, 720-731. 34. Miller, K. R. (2002) Prentice Hall biology, Prentice Hall, Upper Saddle River, NJ. 35. Tresset, G. (2009) The multiple faces of self-assembled lipidic systems, PMC Biophys 2, 3. 36. Karp, G. (2010) Cell and molecular biology : concepts and experiments, 6th ed., John Wiley, Hoboken, NJ. 37. Van Gelder, P., Dumas, F., and Winterhalter, M. (2000) Understanding the function of bacterial outer membrane channels by reconstitution into black lipid membranes, Biophys Chem 85, 153-167. 38. Castellana, E. T., and Cremer, P. S. (2006) Solid supported lipid bilayers: From biophysical studies to sensor design, Surf Sci Rep 61, 429-444. 39. Bezrukov, S. M., and Vodyanoy, I. (1993) Probing alamethicin channels with water-soluble polymers - effect on conductance of channel states, Biophys J 64, 16-25. 40. Sonnleitner, A., Schutz, G. J., and Schmidt, T. (1999) Free Brownian motion of individual lipid molecules in biomembranes, Biophys J 77, 2638-2642. 41. Ataka, K., Giess, F., Knoll, W., Naumann, R., Haber-Pohlmeier, S., Richter, B., and Heberle, J. (2004) Oriented attachment and membrane reconstitution of his-tagged cytochrome c oxidase to a gold electrode: In situ monitoring by surface-enhanced infrared absorption spectroscopy, J Am Chem Soc 126, 16199-16206. 42. Deniaud, A., Rossi, C., Berquand, A., Homand, J., Campagna, S., Knoll, W., Brenner, C., and Chopineau, J. (2007) Voltage-dependent anion channel transports calcium ions through biomimetic membranes, Langmuir 23, 3898-3905. 43. Diaz, A. J., Albertorio, F., Daniel, S., and Cremer, P. S. (2008) Double cushions preserve transmembrane protein mobility in supported bilayer systems, Langmuir 24, 6820-6826. 44. Friedrich, M. G., Kirste, V. U., Zhu, J. P., Gennis, R. B., Knoll, W., and Naumann, R. L. C. (2008) Activity of membrane proteins immobilized on surfaces as a function of packing density, J Phys Chem B 112, 3193-3201. 45. Giess, F., Friedrich, M. G., Heberle, J., Naumann, R. L., and Knoll, W. (2004) The protein-tethered lipid bilayer: A novel mimic of the biological membrane, Biophys J 87, 3213-3220. 46. Goennenwein, S., Tanaka, M., Hu, B., Moroder, L., and Sackmann, E. (2003) Functional incorporation of integrins into solid supported membranes on ultrathin films of cellulose: Impact on adhesion, Biophys J 85, 646-655. 47. Sharma, M. K., and Gilchrist, M. L. (2007) Templated assembly of biomembranes on silica microspheres using bacteriorhodopsin conjugates as structural anchors, Langmuir 23, 7101-7112. 48. Sharma, M. K., Jattani, H., and Gilchrist, M. L. (2004) Bacteriorhodopsin conjugates as anchors for supported membranes, Bioconjugate Chem 15, 942-947. 49. Smith, E. A., Coym, J. W., Cowell, S. M., Tokimoto, T., Hruby, V. J., Yamamura, H. I., and Wirth, M. J. (2005) Lipid bilayers on polyacrylamide brushes for inclusion of membrane proteins, Langmuir 21, 9644-9650. 50. Wagner, M. L., and Tamm, L. K. (2000) Tethered polymer-supported planar lipid bilayers for reconstitution of integral membrane proteins: Silane-polyethyleneglycol-lipid as a cushion and covalent linker, Biophys J 79, 1400-1414. 51. Wagner, M. L., and Tamm, L. K. (2001) Reconstituted syntaxin1A/SNAP25 interacts with negatively charged lipids as measured by lateral diffusion in planar supported bilayers, Biophys J 81, 266-275. 52. Domanov, Y. A., and Kinnunen, P. K. J. (2008) Islet amyloid polypeptide forms rigid lipid-protein amyloid fibrils on supported phospholipid bilayers, J Mol Biol 376, 42-54. 53. Horton, M. R., Reich, C., Gast, A. P., Radler, J. O., and Nickel, B. (2007) Structure and dynamics of crystalline protein layers bound to supported lipid bilayers, Langmuir 23, 6263-6269. 54. Jung, H. S., Yang, T., Lasagna, M. D., Shi, J. J., Reinhart, G. D., and Cremer, P. S. (2008) Impact of hapten presentation on antibody binding at lipid membrane interfaces, Biophys J 94, 3094-3103. 55. Nye, J. A., and Groves, J. T. (2008) Kinetic control of histidine-tagged protein surface density on supported lipid bilayers, Langmuir 24, 4145-4149. 56. Yang, T. L., Jung, S. Y., Mao, H. B., and Cremer, P. S. (2001) Fabrication of phospholipid bilayer-coated microchannels for on-chip immunoassays, Anal Chem 73, 165-169. 57. Egawa, H., and Furusawa, K. (1999) Liposome adhesion on mica surface studied by atomic force microscopy, Langmuir 15, 1660-1666. 58. Cremer, P. S., and Boxer, S. G. (1999) Formation and spreading of lipid bilayers on planar glass supports, J Phys Chem B 103, 2554-2559. 59. Tamm, L. K., and Mcconnell, H. M. (1985) Supported phospholipid-bilayers, Biophys J 47, 105-113. 60. Kataoka-Hamai, C., and Miyahara, Y. (2010) Field-effect detection using phospholipid membranes, Sci Technol Adv Mat 11. 61. Mingeot-Leclercq, M. P., Deleu, M., Brasseur, R., and Dufrene, Y. F. (2008) Atomic force microscopy of supported lipid bilayers, Nat Protoc 3, 1654-1659. 62. Jass, J., Tjarnhage, T., and Puu, G. (2000) From liposomes to supported, planar bilayer structures on hydrophilic and hydrophobic surfaces: An atomic force microscopy study, Biophys J 79, 3153-3163. 63. Misra, N., Martinez, J. A., Huang, S. C. J., Wang, Y. M., Stroeve, P., Grigoropoulos, C. P., and Noy, A. (2009) Bioelectronic silicon nanowire devices using functional membrane proteins, P Natl Acad Sci USA 106, 13780-13784. 64. Rajan, N. K., Routenberg, D. A., and Reed, M. A. (2011) Optimal signal-to-noise ratio for silicon nanowire biochemical sensors, Appl Phys Lett 98. 65. Zhang, D. H., Liu, Z. Q., Li, C., Tang, T., Liu, X. L., Han, S., Lei, B., and Zhou, C. W. (2004) Detection of NO2 down to ppb levels using individual and multiple In2O3 nanowire devices, Nano Lett 4, 1919-1924. 66. Mathews, C. K., Van Holde, K. E., and Ahern, K. G. (2000) Biochemistry, 3rd ed., Benjamin Cummings, San Francisco, Calif. 67. Garber, E. A. E., and Margoliash, E. (1990) Interaction of cytochrome c with cytochrome c oxidase - an understanding of the high- affinity to low-affinity transition, Biochim Biophys Acta 1015, 279-287. 68. Lynch, S. R., Sherman, D., and Copeland, R. A. (1992) Cytochrome c binding affects the conformation of cytochrome a in cytochrome c oxidase, J Biol Chem 267, 298-302. 69. Murgida, D. H., and Hildebrandt, P. (2008) Disentangling interfacial redox processes of proteins by SERR spectroscopy, Chem Soc Rev 37, 937-945. 70. Zhou, X. J., Moran-Mirabal, J. M., Craighead, H. G., and McEuen, P. L. (2007) Supported lipid bilayer/carbon nanotube hybrids, Nat Nanotechnol 2, 185-190. 71. Martinez, J. A., Misra, N., Wang, Y. M., Stroeve, P., Grigoropoulos, C. P., and Noy, A. (2009) Highly efficient biocompatible single silicon nanowire electrodes with functional biological pore channels, Nano Lett 9, 1121-1126. 72. Lin, T. W., Hsieh, P. J., Lin, C. L., Fang, Y. Y., Yang, J. X., Tsai, C. C., Chiang, P. L., Pan, C. Y., and Chen, Y. T. (2010) Label-free detection of protein-protein interactions using a calmodulin-modified nanowire transistor, P Natl Acad Sci USA 107, 1047-1052. 73. Lu, W., and Lieber, C. M. (2006) Semiconductor nanowires, J Phys D Appl Phys 39, R387-R406. 74. Patolsky, F., Zheng, G. F., and Lieber, C. M. (2006) Fabrication of silicon nanowire devices for ultrasensitive, label-free, real-time detection of biological and chemical species, Nat Protoc 1, 1711-1724. 75. Fan, Z. Y., Ho, J. C., Jacobson, Z. A., Yerushalmi, R., Alley, R. L., Razavi, H., and Javey, A. (2008) Wafer-scale assembly of highly ordered semiconductor nanowire arrays by contact printing, Nano Lett 8, 20-25. 76. Tsai, C. C., Chiang, P. L., Sun, C. J., Lin, T. W., Tsai, M. H., Chang, Y. C., and Chen, Y. T. (2011) Surface potential variations on a silicon nanowire transistor in biomolecular modification and detection, Nanotechnology 22. 77. Gangopadhyay, R., and De, A. (2000) Conducting polymer nanocomposites: A brief overview (vol 12, pg 608, 2000), Chem Mater 12, 2064-2064. 78. Goller, M. I., Barthet, C., McCarthy, G. P., Corradi, R., Newby, B. P., Wilson, S. A., Armes, S. P., and Luk, S. Y. (1998) Synthesis and characterization of surface-aminated polypyrrole-silica nanocomposites, Colloid Polym Sci 276, 1010-1018. 79. Vezenov, D. V., Noy, A., Rozsnyai, L. F., and Lieber, C. M. (1997) Force titrations and ionization state sensitive imaging of functional groups in aqueous solutions by chemical force microscopy, J Am Chem Soc 119, 2006-2015. 80. Leung, K., Nielsen, I. M. B., and Criscenti, L. J. (2009) Elucidating the bimodal acid-base behavior of the water-silica interface from first principles, J Am Chem Soc 131, 18358-18365. 81. Ong, S. W., Zhao, X. L., and Eisenthal, K. B. (1992) Polarization of water-molecules at a charged interface - 2nd harmonic studies of the silica water interface, Chem Phys Lett 191, 327-335. 82. Ishikawa, F. N., Curreli, M., Chang, H. K., Chen, P. C., Zhang, R., Cote, R. J., Thompson, M. E., and Zhou, C. W. (2009) A calibration method for nanowire biosensors to suppress device-to-device variation, Acs Nano 3, 3969-3976. 83. Ma, Z. Y., Janmey, P. A., Sharp, K. A., and Finkel, T. H. (2011) Improved method of preparation of supported planar lipid bilayers as artificial membranes for antigen presentation, Microsc Res Techniq 74, 1174-1185. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6808 | - |
| dc.description.abstract | 矽奈米線場效電晶體 (silicon nanowire field-effect transistor, SiNW-FET) 生物感測器,具有高靈敏度 (sensitivity)、專一選擇性 (selectivity)、即時回應 (real-time response)、及無標記偵測 (label-free detection) 等優異特性,在近年來的生醫檢測應用上,引起相當廣大的關注與期待。本論文致力於矽奈米線場效電晶體製備之改良,與發展其在生物膜蛋白研究領域上的應用。
傳統上矽奈米線場效電晶體的表面化學修飾,並非僅在矽奈米線的表面,而 是全基材表面的修飾 (all area modified, AAM)。而在本研究裡,我們成功地以“bottom-up”(由上而下) 的方法製作出具選擇性表面修飾(selective surface modification, SSM) 之矽奈米線場效電晶體。在此實驗中,首先以 3-胺丙基三甲氧基矽烷 (3-aminopropyltrimethoxysilane, APTMS) 修飾於矽奈米線的表面上,再以光刻法 (photolithography) 進行SSM SiNW-FET元件的製備。而透過一系列的實驗,我們確認了 APTMS 在經過製程技術的操作過後,依然存在並不受破壞。這種僅修飾矽奈米線感測表面之場效電晶體,仍然保持優異的電學性質 (具有歐姆接觸 (ohmic contact) 和高跨導 (high transconductance))。我們亦將 SSM SiNW-FET與傳統修飾方法製作 AAM SiNW-FET相互比較,實驗結果顯示 SSM SiNW-FET 於電訊號偵測時,具有 (1) 反應所需時間短和 (2) 所需樣品量少的優點。此實驗證明了:限制修飾區域,可以改善 SiNW-FET的靈敏度,提供一個具高靈敏度的生物感測平台。此外,我們亦致力於 SiNW-FET的表面上,鋪上生物脂雙層膜 (lipid bilayer) 以取代一般的化學修飾法。這種仿細胞膜的表面修飾,讓矽奈米線場效電晶體生物感測器,成為全新的生物膜相關研究之平台。在此實驗中,我們使用 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) 中性磷脂質分 子以微胞融合 (vesicle fusion) 的方式,於矽奈米線場效電晶體的表面鋪成生物脂雙層膜,並以螢光顯微鏡觀察脂雙層膜的覆蓋情形,以 AFM 確認脂雙層膜的 厚度,且透過一系列的電性實驗觀察脂雙層膜修飾後的性質。實驗結果顯示,矽奈米線場效電晶體的表面在形成脂雙層膜後,因其遮蔽了矽奈米線的表面,造成 電訊號強度的下降,對此我們設計出網絡式 (multiple-parallel-connection, MPC) 矽奈米線場效電晶體的系統,以增強訊號強度與偵測極限。結合脂雙層膜與 MPC的優點,我們將可在仿生物所處環境中,利用 SiNW-FET進行相關主題的研究。 | zh_TW |
| dc.description.abstract | Silicon nanowire field-effect transistors (SiNW-FETs) have drawn great attention because of their potential as a label-free, real-time, and ultra-sensitive sensor for biomolecular detections. As a biological sensor, the surface of a SiNW-FET device was conventionally all area modified (AAM) with receptors, covering not only the minute SiNW surface area but also the relatively massive surrounding substrate area. However, target molecules could be captured on the upstream substrate area before
reaching the SiNW surface in sensing measurements, thus jeopardizing the detection sensitivity. In this study, we have successfully fabricated SiNW-FETs with the selective surface modification (SSM) of receptors only on the SiNW sensing surface via gas-phase premodification and a bottom-up fabrication technique. Our results show that a SSM SiNW-FET, exhibiting desirable electrical characteristics with regard to ohmic contact and high transconductance, has the merits of faster response time, less sample requirements, and much improved detection sensitivity. Besides, we integrated SiNW-FET with a lipid bilayer to mimic the cell membrane for biological research, especially for the membrane protein studies. Our results show that a 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) lipid bilayer membrane with single or double lipid bilayers could be homogeneously formed on the SiNW-FET surface via a vesicle fusion method. However, because the shielding of the lipid bilayers on the underlying SiNW, signals were reduced in electrical measurement. To improve the signal acquisition from a lipid bilayer membrane covered SiNW-FET, we demonstrated that the electrical signals and the detection limit can be enhanced by utilizing a multiple-parallel-connection (MPC) SiNW-FET system. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:18:33Z (GMT). No. of bitstreams: 1 ntu-101-R99223152-1.pdf: 9618287 bytes, checksum: 562a62591f0a2dab76477ac6712e2f70 (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 口試委員會審定書........................................... i
誌謝.................................................... ii 摘要.....................................................iii Abstract................................................. v 目錄.................................................... vi 圖目錄..................................................viii 表目錄................................................... x 簡稱用語對照表............................................ xi 第一章 導論.............................................. 1 第一節 選擇性表面修飾之研究目標.............................. 1 1.1.1 矽奈米線場效電晶體生物感測器............................ 1 1.1.2 矽奈米線場效電晶體之元件製備............................ 4 1.1.3 研究動機............................................ 8 1.1.4 研究目標........................................... 11 第二節 生物脂雙層膜作為偵測平台之研究價值與目的................ 12 1.2.1 生物細胞膜......................................... 12 1.2.2 基板支撐之脂雙層膜................................... 15 1.2.3 網絡式矽奈米線場效電晶體.............................. 18 1.2.4 研究動機........................................... 20 1.2.5 研究目標........................................... 22 第二章 實驗方法.......................................... 23 第一節 實驗方法: 電晶體製程與選擇性表面修飾................... 23 2.1.1 矽奈米線合成........................................ 23 2.1.2 晶片製程........................................... 26 2.1.3 表面修飾........................................... 31 2.1.4 微流體通道製備...................................... 35 2.1.5 實驗儀器........................................... 36 2.1.6 電性量測系統........................................ 38 第二節 實驗方法: 脂雙層膜與晶片的結合及其特性鑑定.............. 41 2.2.1 生物脂雙層膜的製備................................... 41 2.2.2 螢光影像........................................... 44 2.2.3 原子力顯微影像偵測................................... 47 2.2.4 網絡式矽奈米線場效電晶體的製作......................... 48 2.2.5 電性量測系統........................................ 50 第三章 實驗結果與討論..................................... 51 第一節 選擇性表面修飾之奈米線場效電晶體生物感測器............... 51 3.1.1 矽奈米線合成........................................ 51 3.1.2 氣相修飾之矽奈米線................................... 53 3.1.3 選擇性表面修飾矽奈米線場效電晶體之電性量測............... 58 3.1.4 電訊號偵測結果...................................... 64 第二節 生物脂雙層膜與電晶體的結合及特性....................... 68 3.2.1 脂雙層膜之螢光影像................................... 68 3.2.2 脂雙層膜之原子力顯微影像.............................. 73 3.2.3 網絡式矽奈米線場效電晶體之元件電性量測................... 76 3.2.4 電訊號偵測結果...................................... 79 第四章 總結.............................................. 81 參考文獻................................................. 83 | |
| dc.language.iso | zh-TW | |
| dc.title | 矽奈米線場效電晶體在生化研究上的應用:
1.利用選擇性表面修飾法減低偵測所需樣品量及時間 2.結合生物脂雙層膜與矽奈米線場效電晶體作為偵測平台 | zh_TW |
| dc.title | Applications of silicon nanowire field-effect transistors on biochemistry
study: 1. Minimizing sample volume and detection time via selective surface modification 2. Coupling supported lipid bilayer to a silicon nanowire transistor as a biosensing platform | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳俊顯(Chun-Hsine Chen),潘建源(Chien-Yuan Pan) | |
| dc.subject.keyword | 矽奈米線場效電晶體,生物脂雙層膜, | zh_TW |
| dc.subject.keyword | silicon nanowire field-effect transistor,supported lipid bilayer, | en |
| dc.relation.page | 89 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-07-13 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 9.39 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
