請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68088完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 羅筱鳳 | |
| dc.contributor.author | Yu-Chen Wang | en |
| dc.contributor.author | 王佑楨 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:12:27Z | - |
| dc.date.available | 2023-03-01 | |
| dc.date.copyright | 2018-03-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-12-27 | |
| dc.identifier.citation | 王裕權、謝桑煙、陳博惠. 2002. 不同苗齡之甘藍及結球白菜移植苗對育苗品質及產量之影響. 台南區農業改良場研究彙報 39:32-41.
古在豊樹. 2012. 人工光型植物工廠. 財團法人豐年社. 臺北市. 沈再發. 2009. 培養液組成之理論和實際(上). 農業試驗所技術服務 78:26-30. 李裕娟、楊純明. 2004. 紫蘇的介紹. 農業試驗所技術服務 60:16-19. 呂鋒州. 2002. 善用紫蘇. 元氣齋出版社. 臺北市. 洪明谷、宋妤. 2013. 光強度對‘瑞喜’結球白菜種苗生長之影響. 興大園藝 38: 27-38. 姚銘輝. 2011. 光度單位轉換問題之探討. 農業試驗所技術服務 85:26-29. 康世緯、方煒. 2015. 以模型分析綠光與黃橙光對波士頓萵苣鮮重之影響. 臺灣園藝61:105-114. 陳品如. 2012. 植物工廠之菠菜水耕栽培. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北市. 鄭又瑄. 2011. 以氧自由基吸收能力法(ORAC)及FC試劑還原能力法(FCR)分析國內蔬菜之抗氧化能力. 國立臺灣大學園藝暨景觀學系碩士論文. 臺北市. 蔡旻都、陳皓君. 2006. 蔬果中類黃酮之抗氧作用與生物活性. J. Chinese Chem. Soc. 64: 301-315. 劉毅、楊生超、陳軍文、張廣輝. 2012. 植物黄酮葡糖苷酸衍生物生物合成與調控分子機理. 分子植物育種10:1097-1103. 樊繼蓮、許長成、趙世杰、楊玉芳. 1997. 紫蘇葉片光合效率的日變化. 作物學報 23:567-572. Anjana, S.U. and M. Lqbal. 2007. Nitrate accumulation in plants, factors affecting the process, and human health implications. A review. Agron. Sustainable Dev. 27:45-57. Blankenship, R.E. 2010. Photosynthesis: the light reactions, p. 164-197. In: L. Taiz and E. Zeiger (eds.). Plant physiology. 5th ed. Sinauer Associates Inc., Sunderland, MA. Boardman, N.K. 1977. Comparative photosynthesis of sun and shade plants. Annu. Rev. Plant Physiol. 42:281-311. Boroujerdnia, M., A.A. Naser, and S.D. Farideh. 2007. Effect of cultivars, harvesting time and level of nitrogen fertilizer on nitrate and nitrite content, yield in romaine lettuce. Asian J. Plant Sci. 6: 550-553. Brandt, K., L.P. Christensen, J. Hansen-Møller, S.L. Hansen, J. Haraldsdottir, L. Jespersen, S.Purup, A. Kharazmi, V. Barkholt, H. Frøkiaer, and M. Kobaek-Larsen. 2004. Health promoting compounds in vegetables and fruits: A systematic approach for identifying plant components with impact on human health. Trends Food Sci. Technol. 15:384-393. Briskin, D.P. and M.C. Gawienowski. 2001. Differential effects of light and nitrogen on production of hypericins and leaf glands in Hypericum perforatum. Plant Physiol. Biochem. 39:1075-1081. Chen, X.L., W.Z. Guo, X.Z. Xue, L.C. Wang, and X.J. Qiao. 2014. Growth and quality responses of ‘Green Oak Leaf’ lettuce as affected by monochromatic or mixed radiation provides by fluorescent lamp (FL) and light-emitting diode (LED). Scientia Horticulturae 172:168-175. Cheng, H.Y., M.T. Hsieh, F.S. Tsai, C.R. Wu, and C.S. Chiu. 2010. Neuroprotective effect of luteolin on amyloid beta protein (25-35) induced toxicity in cultured rat cortical neurons. Phytotherapy Res. 24:102-108. Dufault, R.J. 1994. Long-term consequences and significance of short-term pretransplant nutritional conditioning. HortTechnology 4:41-42. Feng, Y., J. Wang, and W. Sang. 2007. Biomass allocation, morphology and photosynthesis of invasive and noninvasive exotic species grown at four irradiance levels. Acta Oecologica 31:40-47. Frechilla, S., L.D. Talbott, R.A. Bogomolini, and E. Zeiger. 2000. Reversal of blue light-stimulated stomatal opening by green light. Plant Cell Physiol. 41:171-176. Garton, R.W. and I.E. Widders. 1990. Nitrogen and phosphorus preconditioning of small-plug seedlings influence processing tomato productivity. HortScience 25:655-657. Gershenzon, J. and J. Engelberth. 2010. Secondary metabolites and plant defense, p. 369-400. In: L. Taiz and E. Zeiger (eds.). Plant physiology. 5th ed. Sinauer Associates Inc., Sunderland, MA. Ghasemzadeh, A. and N. Ghasemzadeh. 2011. Effect of shading on synthesis and accumulation of polyphenolic compounds in ginger (Zingiber officinale Roscoe) varieties. J. Medicinal Plant Res. 4:2435-2442. Heo, J.W., D.H. Kang, H.S. Bang, S.G. Hong, C. Chun, and K.K. Kang. 2012. Early growth, pigmentation, protein content, and phenylalanine ammonia-lyase activity of red curled lettuces grown under different lighting conditions. Kor. J. Hort. Sci. Technol. 30:6-12. Hogewoning, S.W., G. Trouwborst, H. Maljaars, H. Poorte, W. Ieperen, and J. Harbinson. 2010. Blue light dose-responses of leaf photosynthesis, morphology, and chemical composition of Cucumis sativus grown under different combinations of red and blue light. J. Exp. Bot. 61:3107-3117. Hooper, L. and A. Cassidy. 2006. A review of the health care potential of bioactive compounds. J. Sci. Food Agr. 86:1805-1813. Huang, D.J., B.X. Ou, and R.L. Prior. 2005. The chemistry behind antioxidant capacity assays. J. Agric. Food Chem. 53:1841-1856. Hwang, C.G., Y.G. Yoo, and B.R. Jeong. 2014. Changes in content of total polyphenol and activities of antioxidizing enzymes in Perilla frutescens var. acuta Kudo and Salvia plebeia R. Br. as affected by light intensity. Hort. Environ. Biotechnol. 55:489-497. Ito, M., M. Toyoda, and G. Honda. 1999. Chemical composition of the essential oil of perilla frutescens. Natural Medicines 53:32-36. Jain, M., R. Gadre, and S. Tiwary. 2016. Osmotic stress induced changes in chlorophyll biosynthesis and antioxidative system in light grown maize leaves. J. Bio Innov 5:123-137. Johkan, M., K. Shoji, F. Goto, S. Hashida, and T. Yoshihara. 2010. Blue light-emitting diode light irradiation of seedlings improves seedling quality and growth after transplanting in red leaf lettuce. HortScience 45:1809-1814. Johnson, R.W., M.A. Dixon, and D.R. Lee. 1992. Water relations of the tomato during fruit growth. Plant Cell Environ. 15:947-953. Jun, H.I., B.T. Kim, G.S. Song, and Y.S. Kim. 2014. Structural characterization of phenolic antioxidants from purple perilla (Perilla frutescens var. acuta) leaves. Food Chem. 148:267-372. Karimi, E., H.Z.E. Jaafar, A. Ghasemzadeh, and M.H. Ibrahim. 2013. Light intensity effects on production and antioxidant activity of flavonoids and phenolic compounds in leaves, stems and roots of three varieties of Labisia pumila Benth. Austral. J. Crop Sci. 7:1016-1023. Khomdram, S.D. and P.K. Singh. 2011. Polyphenolic compounds and free radical scavenging activity in eight Lamiaceae herbs of Manipur. Notulae Scientia Biologicae 3:108-113. Kiferle, C., R. Maggini, and A. Pardossi. 2013. Influence of nitrogen nutrition on growth and accumulation of rosmarinic acid in sweet basil (Ocimum basilicum L.) grown in hydroponic culture. Austral. J. Crop Sci. 7:321-327. Kim, H.H., G.D. Goins, R.M. Wheeler, and J.C. Sager. 2004. Green-light supplementation for enhanced lettuce growth under red and blue-light-emitting diodes. HortScience 39:1617-1622. Kim, Y.S. 1995. Studies on the distance from stem-base to solution, and the planting density for the growth of Perilla frutescens by deep flow culture. Acta Hort. 396:75-82. Klein, R.M. 1992. Effects of green light on biological systems. Biol. Rev. 67:199-284. Kováčik J. and B. Klejdus. 2014. Induction of phenolic metabolites and physiological changes in chamomile plants in relation to nitrogen nutrition. Food Chem. 142:334-341. Kováčik, J., B. Klejdus, F. Štork, J. Hedbavny. 2011. Nitrate deficiency reduces cadmium and nickel accumulation in chamomile plants. J. Agricultural Food Chem. 59: 5139-5149. Kumari, R., S. Singh, and S.B.Agrawal. 2009. Effects of supplemental ultraviolet-B radiation on growth and physiology of Acorus calamus L.(sweet flag). Acta Biol. Cracov. Bot. 51:19-27. Lee, J.H., I.Y. Baek, N.S. Kang, C.S. Jung, M.H. Lee, K.Y. Park, and T.J. Ha. 2009a. Optimization of extraction conditions and comparison of rosmarinic and caffeic acids from leaves of Perilla frutescens varieties. Food Sci. Biotechnol. 18:793-798. Lee, M.H., C.K. Jung, S.B. Pae, C.D. Hwang, C.H. Park, K.B. Shim, K.Y. Park, H.K. Kim, S.K. Park, and T.J. Ha. 2009b. Variation of caffeic acid, rosmarinic acid, luteolin and apigenin contents in perilla germplasm. Korean J. Breed. Sci. 41:391-396. Lewis, C.E., J.R.L. Walker, J.E. Lancaster, and A.J. Conner. 1998. Light regulation of anthocyanin, flavonoid and phenolic acid biosynthesis in potato minitubers in vitro. Aust. J. Plant Physiol. 25:915-922. Lichtenthaler, H.K. 1987. Chlorophylls and carotenoids: pigments of photosynthetic biomembranes. Methods Enzymology 148:350-382. Lillo, C. 1994. Light regulation of nitrate reductase in green leaves of higher plants. Physiologia Plant. 90:616-620. Lin, K.H., M.Y. Huang, W.D. Huang, M.H. Hsu, Z.W. Yang, and C.M. Yang. 2013. The effect of red, blue, and white light-emitting diodes on the growth, development, and edible quality of hydroponically grown lettuce (Lactuca sativa L. var. capitata). Scientia Horticulturae 150:86-91. Liu, R., T. Zhang, H. Yang, X. Lan, and J. Ying. 2011. The flavonoid apigenin protects brain neurovascular coupling against amyloid beta (25-35) induced toxicity in mice. J. Alzheimers Dis.24: 85-100. Luo, M., H. Lu, H. Ma, L. Zhao, X. Liu, and S. Jiang. 2007. Seperation and determination of flavonoids in Lamiophlomis rotata by capillary electrophoresis using borate as electrolyte. J. Pharm. Biomed. Anal. 44:881-886. Ma, Z., S. Li, M. Zhang, S. Jiang, and Y. Xiao. 2010. Light intensity affects growth, photosynthetic capability, and total flavonoid accumulation of Anoectochilus plants. HortScience 45:863-867. Macgregor, D. R., Deak, K. I., Ingram, P. A. and Malamy, J. E. 2008. Root system architecture in Arabidopsis grown in culture is regulated by sucrose uptake in the aerial tissues. Plant Cell 20:2643-2660. Matsuki, M. 1996. Regulation of plant phenolic synthesis: From biochemistry to ecology and evolution. Austral. J. Bot. 44:613-634. Meng, L., Y. Lozano, I. Bombarda, E.M. Gaydou, and B. Li. 2009. Polyphenol extraction from eight Perilla frutescens cultivars. C. R. Chimie 12:602-611. Meyer, S., Z.G. Cerovic, Y. Goulas, P. Montpied, S. Demotes-Mainard, L.P. Bidel, I. Moya, and E. Dreyer. 2006. Relationships between optically assessed polyphenols and chlorophyll contents, and leaf mass per area ratio in woody plants: a signature of the carbon-nitrogen balance within leaves? Plant Cell Environ. 29:1338-1348. Moreno, S., T. Scheyer, C.S. Romano, and A.A. Vojnova. 2006. Antioxidant and antimicrobial activities of rosemary extracts linked to their polyphenol composition. Free Radical Res. 40:223-231. Müller, F., J. Sitzmann, W.H. Schnitzler, and J. Graβmann. 2010. Determination of toxic perilla ketone, secondary plant metabolites and antioxidative capacity in five Perilla frutescens L. varieties. Food Chem. Toxicol. 48:264-270. Niinemets, Ü. and J.D. Tenhunen. 1997. A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ. 20:845-866. Nishizawa, A., G. Honda, and M. Tabata. 1992. Genetic control of peltate glandular trichome formation in Perilla frutescens. Planta Medica 58:188-191. Osakabe, N., A. Yasuda, M. Natsume, and T. Yoshikawa. 2004. Rosmarinic acid inhibits epidermal inflammatory responses: anticarcinogenic effect of Perilla frutescens extract in the murine two-stage skin model. Carcinogenesis 25: 549-557. Pavlica, S. and R. Gebhardt. 2010. Protective effects of flavonoids and two metabolites against oxidative stress in neuronal PC12 cells. Life Sci. 86: 79-86. Peng, Y., J. Ye, and J. Kong. 2005. Determination of phenolic compounds in Perilla frutescens L. by capillary electrophoresis with electrochemical detection. J. Agric. Food Chem. 53:8141-8147. Pennington, J.A.T. and R.A. Fisher. 2009. Classification of fruits and vegetables. J. Food Compos. Anal. 22:23-31. Petersen, M. and M.S. Simmonds. 2003. Rosmamarinic acid. Phytochemistry 62: 121-125. Rendeiro, C., J.D.T. Guerreiro, C.M. Williams, and J.P.E. Spencer. 2012. Flavonoids as modulators of memory and learning: molecular interactions resulting in behavioural effects. Proc. Nutr. Soc. 71: 246-262. Rice-Evans, C.A., J. Miller, and G. Paganga. 1997. Antioxidant properties of phenolic compounds. Trends Plant Sci. 2:152-159. Rouphael, Y., M. Cardarelli, L. Lucini, E. Rea, and G. Colla. 2012. Nutrient solution concentration affects growth, mineral composition, phenolic acids, and flavonoids in leaves of artichoke and cardoon. HortScience 47:1424-1429. Saita, E., Y. Kishimoto, M. Tani, M. Iizuka, M. Toyozaki, N. Sugihara, and K. Kondo. 2012. Antioxidant activities of Perilla frutescens against low-density lipoprotein oxidation in vitro and in human subjects. J. Oleo Sci. 61:113-120. Sanbongi, C., H. Takano, N. Osakabe, N.Sasa, M. Natsume, R. Yanagisaawa, K.I. Inoue, K. Sadakane, T. Ichinose, and T. Yoshikawa. 2004. Rosmarinic acid in perilla extract inhibits allergic inflammation induced bymite allergen, in a mouse model. Clin. Exp. Allergy 34:971-977. Savvas, D. and K. Adamidis. 1999. Automated management of nutrient solutions based on target electrical conductivity, pH, and nutrient concentration ratios. J. Plant Nutr. 22:1415-1432. Son, K.H. and M.M. Oh. 2013. Leaf shape, growth, and antioxidant phenolic compounds of two lettuce cultivars grown under various combinations of blue and red light-emitting diodes. HortScience 48:988-995. Son, K.H., J.H. Park, D. Kim, and M.M. Oh. 2012. Leaf shape index, growth, and phytochemicals in two leaf lettuce cultivars grown under monochromatic light-emitting diodes. Korean J. Hort. Sci. Technol. 30:664-672. Stefanelli, D., S. Winkler, C. Frisina, and R. Jones. 2014. Reduction in nitrogen prior to harvest increases phenolic content of baby red lettuce leaves. Agr. Sci. 5:546-554. Tabatabaie, S.J., J. Nazari,. H. Nazemiyeh, S. Zehtab, and F. Azarmi. 2007. Influence of various electrical conductivity levels on the growth and essential oil content of peppermint (Menta piperita L.) grown in hydroponics. Acta Hort. 147:197-201. Toshiaki, M., Y. Furuta, H. Wakushima, H. Fujii, K.I. Saito and Y. Kano. 2003. Anti-allergic effect of Perilla frutescens and its active constituents. Phytotherapy Res. 17:240-243. Urbas, P., and K. Zobel. 2000. Adaptive and inevitable morphological plasticity of three herbaceous species in a multi-species community: field experiment with manipulated nutrients and light. Acta Oecol. 21:139-147. Valladares, F. and Ü. Niinemets. 2008. Shade tolerance, a key plant feature of complex nature and consequences. Annu. Rev. Ecol. Evol. Syst. 39:237-257. Vergeer, L.H.T., T.L. Aarts, and J.D. Groot. 1995. The ‘wasting disease’ and the effect of abiotic factors (light intensity, temperature, salinity) and infection with Labyrinthula zosterae on the phenolic content of Zostera marina shoots. Aquatic Bot. 52:35-44. Wang, M., W. Jiang, and H. Yu. 2010. Effects of exogenous epibrassinolide on photosynthetic characteristics in tomato (Lycopersicon esculentum Mill) seedlings under weak light stress. J. Agric. Food Chem. 58:3642-3645. Wilson, J., J.E. Garst, R.D. Linnabary, and R.B. Channell. 1977. Perilla ketone: a potent lung toxin from the mint plant, Perilla frutescens Britton. Science 197:573-574. Xu, J., H. Wang, X. Lu, K. Ding, and L. Zhang. 2014. Posttraumatic administration of luteolin protects mice from traumatic brain injury: implication of autophagy and inflammation. Brain Res. 1582: 237-246. Yamazaki, M., J. Nakajima, M. Yamanashi, M. Sugiyama, Y. Makita, K. Springob, M. Awazuhara, and K. Saito. 2003. Metabolomics and differential gene expression in anthocyanin chemo-varietal forms of Perilla frutescens. Phytochemistry 62: 987-995. Yang, S.Y., C.O. Hong, G.P. Lee, C.T. Kim, and K.W. Lee. 2013. The hepatoprotection of caffeic acid and rosmarinic acid, major compounds of Perilla frutescens, against t-BHP-induced oxidative liver damage. Food Chem. Toxixol. 55:92-99. Yu, H.C., K. Kosuna, and M. Haga. 1997. Perilla: The Genus Perilla. 1th ed. Harwood Academic Publishers, Amsterdam, the Netherlands. Zhao, L., L. Hou, H. Sun, X. Yan, and X. Sun. 2011. Apigenin isolated from the medicinal plant Elsholtzia rugulosa prevents β amyloid (25-35) induces toxicity in rat cerebral microvascular endothelial cells. Molecules 16: 4005-4019. Zhou, W., W. Liu, and Q. Yang. 2013. Reducing nitrate content in lettuce by pre-harvest continuous light delivered by red and blue light-emitting diodes. J. Plant Nutr. 36:481-490. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68088 | - |
| dc.description.abstract | 紫蘇(Perilla frutescens L.)為富含酚類之香草作物,具有抗氧化、抗過敏、消炎及抗菌等作用,可作為鮮食、藥用、萃取精油及保健食品。綠葉紫蘇之鮮葉常用於日本料理,但其進口價格高,且有農藥殘留疑慮。於植物工場內能調控環境條件,且可不使用農藥,穩定生產安全衛生的作物。本研究旨在探討植物工場栽培綠葉紫蘇的環境條件及其酚類含量,期有助於生產高品質之綠葉紫蘇鮮葉。綠葉紫蘇以白光發光二極體(light-emitting diode, LED)育苗需20~21天,於育苗後期12天分別以電導度0.6或1.2 dS∙m-1之Kim養液栽培,或以電導度0.6 dS∙m-1之Kim養液栽培6天後,再改以電導度1.2 dS∙m-1之Kim養液栽培6天;結果以電導度1.2 dS∙m-1處理之21天齡苗莖徑、地上部乾重及壯苗指數0.032較大,定植後25天之株高、莖徑、地上部鮮重22.6 g與乾重以及地下部乾重亦皆顯著較高。綠葉紫蘇育成期以電導度1.2、1.5及1.8 dS∙m-1之Kim養液栽培,當養液電導度為1.8 dS∙m-1時,其葉片葉綠素與類胡蘿蔔素含量顯著較低;三種電導度處理之產量與葉片之迷迭香酸、木犀草素、芹菜素、咖啡酸、總類黃酮含量、抗氧化力及硝酸鹽含量間皆無顯著差異,故以電導度1.2 dS∙m-1為後續試驗之Kim養液濃度。綠葉紫蘇育成期以光強度89、123、165、204及250 μmol∙m-2∙s-1之T5螢光燈栽培,於光強度204 μmol∙m-2∙s-1下,其株高、莖徑、地上部鮮重20 g與乾重、葉片葉綠素與類胡蘿蔔素之含量皆較高,葉片迷迭香酸含量6492 μg•g-1 DW、木犀草素含量7.6 μg•g-1 DW、總類黃酮含量318.5 μg•g-1 DW與抗氧化力5638 μg GAE∙g-1 DW亦皆較高。綠葉紫蘇育成期以紅綠藍光比值為R44G3B53、R55G2B43、R63G3B34、R65G8B27、R67G2B31之五種LED以及色溫6500K之T5螢光燈栽培;T5螢光燈處理之株高、莖徑、地上部鮮重與乾重皆顯著較五種LED高;但六種光源下葉片迷迭香酸、芹菜素、總類黃酮、維生素C含量、抗氧化力以及硝酸鹽、葉綠素與類胡蘿蔔素含量間皆無顯著差異。綠葉紫蘇連續採收葉寬7~10 cm之可售葉時,同時摘除側芽則葉片鮮重與品質較穩定,單株可採收四次共9片葉,單葉鮮重為0.96~1.04 g。綜之,建議於綠葉紫蘇育苗後期12天以電導度1.2 dS∙m-1之Kim養液栽培,育成期及採收期則以上述養液與光強度204 μmol∙m-2∙s-1、色溫6500K之T5螢光燈栽培,連續採收可售葉應同時摘除側芽。 | zh_TW |
| dc.description.abstract | Perilla (Perilla frutescens L.) is an herbal plant rich of phenolic compounds with anti-oxidant, anti-allergic and anti-inflammatory effects. Perilla can be used as fresh spices, traditional Chinese medicine, essential oil or functional foods. Leaves of green perilla are often used in Japanese cuisine. However, the price of imported leaves is high, and there is pesticide residues problem. Crop production could be stable in the controlled environment of plant factory without pesticides application. In order to produce clean and high quality green perilla leaves, this study aimed at the suitable environmental conditions in plant factory for cultivating green perilla, and the accumulation of antioxidant phenolics. The seedling stage of green perilla lasted for 20~21 days. Green perilla seedlings were cultivated under three electric conductivities (EC) of Kim nutrient solution in the last 12 days of seedling stage. In nutrient solution with EC 1.2 dS∙m-1, green perilla had higher plant height, stem diameter, shoot dry weight, and seedling index 0.032. On 25 days after transplanting, plant height, stem diameter, shoot fresh weight 22.6 g and plant dry weight of green perilla were also higher. After transplanting, green perilla was cultivated in nutrient solution with EC 1.2, 1.5, or 1.8 dS∙m-1 after transplanting. The contents of chlorophylls and carotenoids were lower in the 1.8 dS∙m-1 treatment. No difference existed among three EC in nutrient solution on plant growth, contents of nitrate, rosmarinic acid, luteolin, apigenin, caffeic acid and total flavonoids, and antioxidant capacity in leaves. Thus, EC 1.2 dS∙m-1 was selected and used in the following experiments. After transplanting, green perilla was cultivated under 89, 123, 165, 204, and 250 μmol∙m-2∙s-1 of T5 fluorescent lamp. Under 204 μmol∙m-2∙s-1, the plant height, stem diameter, shoot fresh weight 20 g, plant dry weight of green perilla and contents of chlorophylls and carotenoids in leaves were higher on 24 days after transplanting. The contents of rosmarinic acid, luteolin, and total flavonoids, and antioxidant capacity in leaves were also higher under 204 μmol∙m-2∙s-1, which were 6492 μg•g-1 DW, 7.6 μg•g-1 DW, 318.5 μg•g-1 DW, and 5638 μg GAE∙g-1 DW, respectively. After transplanting, green perilla was cultivated under five light-emitting diode R44G3B53, R55G2B43, R63G3B34, R65G8B27, and R67G2B31, and T5 fluorescent lamp (6500K). Plant height, stem diameter, and shoot fresh and dry weight of green perilla were higher under T5 fluorescent lamp (6500K). There was no difference among 6 light sources on contents of rosmarinic acid, apigenin, total flavonoids, vitamin C, nitrate, chlorophylls, and carotenoids, and antioxidant capacity in leaves. When leaves were harvested successively, the fresh weight and quality of marketable leaves were more stable if removing lateral buds at the same time. The accumulated harvested leaves per plant was nine with fresh weight 0.96~1.04 g per leaf. In conclusion, it is recommended to cultivate green perilla in Kim nutrient solution with EC 1.2 dS∙m-1 during last 12 days of seedling stage. After transplanting, Kim nutrient solution with EC 1.2 dS∙m-1 and 204 μmol∙m-2∙s-1 of T5 fluorescent lamp (6500K) are suggested. When harvesting marketable leaves successively, the lateral buds should be removed. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:12:27Z (GMT). No. of bitstreams: 1 ntu-106-R03628105-1.pdf: 2068941 bytes, checksum: 907c090c49d425bbaf03074f596b6573 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 摘要…………………………………………………………………………………..ii
Abstract………………………………………………………………………………iv 目錄………………………………………………………………………………….vi 圖目錄……………………………………………………………………………….viii 表目錄…………………………………………………………………………….....ix 第一章、前言 (Introduction)………………………………………………………1 第二章、前人研究 (Literature Review)…………………………………………...2 ㄧ、紫蘇簡介…………………………………………………………………....2 二、紫蘇之成分與保健效益…………………………………………………....3 三、紫蘇之酚類物質……………………………………………………………4 四、影響植物生長與酚類含量之因子…………………………………………6 五、植物工場周年生產作物……………………………………………………11 第三章、材料與方法 (Materials and Methods)…………………………………...12 ㄧ、綠葉紫蘇育苗期養液電導度試驗…………………………………………12 二、綠葉紫蘇育成期光強度試驗………………………………………………14 三、綠葉紫蘇育成期養液電導度試驗………………………............................19 四、綠葉紫蘇育成期光質試驗一…………………………………....................20 五、綠葉紫蘇育成期光質試驗二………………………………………............21 六、綠葉紫蘇採收期採收方法試驗…………………………………………....22 七、統計分析…………………………………………………………………....24 第四章、結果 (Results)……………………………………………………………25 ㄧ、綠葉紫蘇育成期養液電導度試驗…………………………………………25 二、綠葉紫蘇育苗期養液電導度試驗…………………………………………26 三、綠葉紫蘇育成期光強度試驗………………………………………………27 四、綠葉紫蘇育成期光質試驗一………………………………………………29 五、綠葉紫蘇育成期光質試驗二………………………………………………30 六、綠葉紫蘇採收期採收方法試驗……………………………………………31 第五章、討論 (Discussion)………………………………………………………..33 ㄧ、綠葉紫蘇育成期養液電導度試驗…………………………………………33 二、綠葉紫蘇育苗期養液電導度試驗…………………………………………34 三、綠葉紫蘇育成期光強度試驗………………………………………………35 四、綠葉紫蘇育成期光質試驗一與二…………………………………………38 五、綠葉紫蘇採收期採收方法試驗……………………………………………40 第六章、結論 (Conclusion)………………………………………………………..41 參考文獻(References)……………………………………………………………....73 附錄(Appendix)……………………………………………………………………..81 | |
| dc.language.iso | zh-TW | |
| dc.subject | 光質 | zh_TW |
| dc.subject | 迷迭香酸 | zh_TW |
| dc.subject | 木犀草素 | zh_TW |
| dc.subject | 芹菜素 | zh_TW |
| dc.subject | 咖啡酸 | zh_TW |
| dc.subject | 光強度 | zh_TW |
| dc.subject | 電導度 | zh_TW |
| dc.subject | luteolin | en |
| dc.subject | rosmarinic acid | en |
| dc.subject | electric conductivity | en |
| dc.subject | light quality | en |
| dc.subject | light intensity | en |
| dc.subject | caffeic acid | en |
| dc.subject | apigenin | en |
| dc.title | 植物工場水耕綠葉紫蘇及其酚類含量之研究 | zh_TW |
| dc.title | Study on Hydroponically Cultivated Perilla frutescens and
the Phenolics Contents in the Plant Factory | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 楊雯如,林淑怡 | |
| dc.subject.keyword | 光強度,光質,電導度,迷迭香酸,木犀草素,芹菜素,咖啡酸, | zh_TW |
| dc.subject.keyword | light intensity,light quality,electric conductivity,rosmarinic acid,luteolin,apigenin,caffeic acid, | en |
| dc.relation.page | 83 | |
| dc.identifier.doi | 10.6342/NTU201704499 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-12-28 | |
| dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
| dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
| 顯示於系所單位: | 園藝暨景觀學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.02 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
