Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 數學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68070
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蔡忠潤(Chung-Jun Tsai)
dc.contributor.authorChung-Ming Panen
dc.contributor.author潘仲銘zh_TW
dc.date.accessioned2021-06-17T02:12:07Z-
dc.date.available2018-02-26
dc.date.copyright2018-02-26
dc.date.issued2017
dc.date.submitted2017-12-29
dc.identifier.citation[1] Nicholas Buchdahl. On compact Kähler surfaces. 49(1):287-302, 1999.
[2] Huai-Dong Cao. Deformation of Kähler matrics to Kähler-Einstein metrics on compact Kähler manifolds. Inventiones mathematicae, 81(2):359-372, 1985.
[3] Paul Gauduchon. Le théorème de l'excentricité nulle. Comptes Rendus Hebdomadaires des S{’e}ances de l'Académie des Sciences. Séries A et B, 285:387-390, 1977.
[4] Paul Gauduchon and Liviu Ornea. Locally conformally Kähler metrics on Hopf surfaces. 48(4):1107-1127, 1998.
[5] Matt Gill. Convergence of the parabolic complex Monge-Ampère equation on compact Hermitian manifolds. Communications in analysis and geometry, 19(2):277-304, 2011.
[6] Kunihiko Kodaira. On the structure of complex analytic surfaces, I. American Journal of Mathematics, 86:751-798, 1964.
[7] Andrei Teleman. The pseudo-effective cone of a non-Kählerian surface and applications. Mathematische Annalen, 335(4):965-989, 2006.
[8] Valentino Tosatti and Ben Weinkove. On the evolution of a Hermitian metric by its Chern-Ricci form. Journal of Differential Geometry, 99(1):125-163, 2015.
[9] Shing-Tung Yau. On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation, I. Communications on pure and applied mathematics, 31(3):339-411, 1978.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68070-
dc.description.abstract本文主要在研究陳里奇流在具有埃米爾特點積的複流型上,並介紹了一些Tosatti與Weinkove所證明的重要的結果。此外,我們也研討了陳里奇流在一些非凱勒曲面上的行為。第一部分中我們主要介紹了一些陳里奇流的現代結果與我們的結果。第二部分為讀者方便起見,收錄了一些基本的術語合常用的記號。第三至第七部分則介紹了一些Tosatti與Weinkove的定理證明。最後,我們嘗試了在廣義的霍普夫曲面上,使用用特殊的戈迪雄點積調查陳里奇流。zh_TW
dc.description.abstractIn this master thesis, we study the Chern-Ricci flow on the complex Hermitian manifolds and introduce the results proved by Tosatti and Weinkove.
Moreover, we investigate the Chern-Ricci flow on some non-Kähler surfaces.
In the first section, we introduce some modern results of the Chern-Ricci flow and our result. In the second part, we include some well-known notation and conventions for reader’s convenience. From the third part to the seventh part, we introduce the proofs of some modern theorems proved by Tosatti and Weinkove. Finally, we investigate the Chern-Ricci flow starting with a special Gauduchon metric on the general Hopf surfaces.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:12:07Z (GMT). No. of bitstreams: 1
ntu-106-R04221008-1.pdf: 910274 bytes, checksum: 20ec91d9cd07995c747bd11849e17bd8 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents1 Introduction 2
2 Notation and Conventions 6
3 Evolution of r{hat{g}} g 8
4 Parabolic Monge-Ampere Flow and Maximal Existence Time 14
5 Negative First Chern Class and Kähler-Einstein Metric 22
6 Finite Maximal Existence Time 26
7 Classification of Surfaces with respect to the Chern-Ricci flow 31
8 Hopf Surfaces 36
Reference 42
dc.language.isoen
dc.subject陳里奇曲率張量zh_TW
dc.subject安立奎-小平分類定理zh_TW
dc.subject霍普夫曲面zh_TW
dc.subject複流型zh_TW
dc.subject凱勒-愛因斯坦點積zh_TW
dc.subjectComplex manifoldsen
dc.subjectChern-Ricci curvatureen
dc.subjectKahler-Einstein metricen
dc.subjectEnriques-Kodaira classificationen
dc.subjectHopf surfacesen
dc.title複流型上的陳里奇流zh_TW
dc.titleChern-Ricci flow on Complex Manifoldsen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree碩士
dc.contributor.oralexamcommittee崔茂培(Mao-Pei Tsui),馬梓銘(Ziming Nikolas Ma)
dc.subject.keyword複流型,陳里奇曲率張量,凱勒-愛因斯坦點積,安立奎-小平分類定理,霍普夫曲面,zh_TW
dc.subject.keywordComplex manifolds,Chern-Ricci curvature,Kahler-Einstein metric,Enriques-Kodaira classification,Hopf surfaces,en
dc.relation.page42
dc.identifier.doi10.6342/NTU201701568
dc.rights.note有償授權
dc.date.accepted2017-12-29
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept數學研究所zh_TW
顯示於系所單位:數學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
888.94 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved