Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68062
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor牟中原(Chung-Yuan Mou)
dc.contributor.authorJen-Hsuan Changen
dc.contributor.author張仁瑄zh_TW
dc.date.accessioned2021-06-17T02:12:00Z-
dc.date.available2023-01-27
dc.date.copyright2018-01-27
dc.date.issued2018
dc.date.submitted2018-01-03
dc.identifier.citation2.5 Reference
1. K. Takahashi and S. Yamanaka, Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors, Cell, 2006, 126, 663-676
2. K. Takahashi, K. Tanabe, M. Ohnuki, M. Narita, T. Ichisaka, K. Tomoda and S. Yamanaka, Induction of pluripotent stem cells from adult human fibroblasts by defined factors, Cell, 2007, 131, 861–872.
3. D. Cyranoski, Stem cells cruise to clinic, Nature, 2013, 494, 413.
4. M. Stadtfeld and K. Hochedlinger, Induced pluripotency: history, mechanisms, and applications, Genes Dev., 2010, 24, 2239-2263.
5. S. Yamanaka, A Fresh Look at iPS Cells, Cell 2009, 137, 13-17.
6. K. Takayama, M. Inamura, K. Kawabata. K. Katayama, M. Higuchi, K. Tashiro, A. Nonaka, F. Sakurai, T. Hayakawa, M. K. Furue and H. Mizuguchi, Efficient generation of functional hepatocytes from human embryonic stem cells and induced pluripotent stem cells by HNF4alpha transduction, Mol. Ther, 2012, 1, 127-137.
7. W. Chen, P. H. Tsai, Y. Hung, S. H. Chiou and C. Y. Mou, Nonviral cell labeling and differentiation agent for induced pluripotent stem cells based on mesoporous silica nanoparticles, ACS Nano, 2013, 7, 8423-8440.
8. T. Aoi, K. Yae, M. Nakagawa, T. Ichisaka, K. Okita, K. Takahashi, T. Chiba and S. Yamanaka, Generation of pluripotent stem cells from adult mouse liver and stomach cells, Science, 2008, 321, 699-702.
9. M. Stadtfeld, K. Brennand and K. Hochedlinger, Reprogramming of pancreatic beta cells into induced pluripotent stem cells, Curr. Biol., 2008, 18, 890-894.
10. J. Hanna, S. Markoulaki, P. Schorderet, B. W. Carey, C. Beard, M. Wernig, M. P. Creyghton, E. J. Steine, J. P. Cassady, R. Foreman, C. J. Lengner, J. A. Dausman and R. Jaenisch, Direct reprogramming of terminally differentiated mature B lymphocytes to pluripotency, Cell, 2008, 133, 250–264.
11. J. Kim, J. L. Chu, X. H. Shen, J. L. Wang and S. H. Orkin, An extended transcriptional network for pluripotency of embryonic stem cells, Cell, 2008, 133, 1290-1290.
12. J. Silva, O. Barrandon, J. Nichols, J. Kawaguchi, T. W. Theunissen and A. Smith, Promotion of reprogramming to ground state pluripotency by signal inhibition, Plos Biol., 2008, 6, 2237-2248.
13. X. Zeng, J. G. Hunsberger, A. Simeonov, N. Malik, Y. Pei and M. Rao, Concise review: modeling central nervous system diseases using induced pluripotent stem cells, Cell Stem Cell, 2014, 3, 1418-1428.
14. M. C. N. Marchetto, C. Carromeu, A. Acab, D. Yu, G. W. Yeo, Y. Mu, G. Chen, F. H. Gage and A. R. Muotri, A model for neural development and treatment of rett syndrome using human induced pluripotent stem cells, Cell, 2010, 143, 527-539.
15. I. H. Park, N. Arora, H. Huo, N. Maherali, T. Ahfeldt, A. Shimamura, M. W. Lensch, C. Cowan, K. Hochedlinger and G. Q. Daley, Disease-specific induced pluripotent stem cells, Cell, 2008, 134, 877- 886.
16. P. J. Hallett, M. Deleidi, A. Astradsson, G. A. Smith, O. Cooper, T. M. Osborn, M. Sundberg, M. A. Moore, E. Perez-Torres, A. L. Brownell, J. M. Schumacher, R. D. Spealman and O. Isacson, Successful function of autologous iPSC-derived dopamine neurons following transplantation in a non-human primate model of Parkinson's disease, Cell, 2015, 16, 269-274.
17. R. Lister, M. Pelizzola, Y. S. Kida, R. D. Hawkins, J. R. Nery, G. Hon, J. Antosiewicz-Bourget, R. O’Malley, R. Castanon, S. Klugman, M. Downes, R. Yu, R. Stewart, B. Ren, J. A. Thomson, R. M. Evans and J. R. Ecker, Hotspots of aberrant epigenomic reprogramming in human induced pluripotent stem cells, Nature, 2011, 471, 68-73.
18. S. M. Hussein, N. N. Batada, S. Vuoristo, R. W. Ching, R. Autio, E. Närvä, S. Ng, M. Sourour, R. Hämäläinen, C. Olsson, K. Lundin, M. Mikkola, R. Trokovic, M. Peitz, O. Brüstle, D. P. Bazett-Jones, K. Alitalo, R. Lahesmaa, A. Nagy and T. Otonkoski, Copy number variation and selection during reprogramming to pluripotency, Nature, 2011, 471, 58-62.
19. C. Y. Chung, J. T. Yang and Y. C. Kuo, Polybutylcyanoacrylate nanoparticles for delivering hormone response element-conjugated neurotrophin-3 to the brain of intracerebral hemorrhagic rats, Biomaterials, 2013, 34, 5562–5570.
20. D. H. Yang, T. Li, M. H. Xu, F. Gao, J. Yang, Z. Yang and W. D. Le, Graphene oxide promotes the differentiation of mouse embryonic stem cells to dopamine neurons, Nanomedicine, 2014, 9, 2445-2455.
21. F. Lu, S. H. Wu, Y. Hung and C. Y. Mou, Size effect on cell uptake in well-Suspended, uniform mesoporous silica nanoparticles, Small, 2009, 5, 1408–1413.
22. M. Vallet-Regi, A. Ramila, R. P. del Real and J. Perez-Pariente, A new property of MCM-41: drug delivery system, Chem. Mater., 2001, 13, 308-311.
23. Y. S. Lin, S. H. Wu, Y. Hung, Y. H. Chou, C. Chang, M. L. Lin, C. P. Tsai and C. Y. Mou, Multifunctional composite nanoparticles: magnetic, luminescent, and mesoporous, Chem. Mater., 2006, 18, 5170-5172.
24. X. Li, Q. R. Xie, J. Zhang, W. Xia and H. Gu, The packaging of siRNA within the mesoporous structure of silica nanoparticles, Biomaterials, 2011, 32, 9546-9556.
25. X. Li, Y. Chen, M. Wang, Y. Ma, W. Xia and H. Gu, A mesoporous silica nanoparticle - PEI - fusogenic peptide system for siRNA delivery in cancer therapy, Biomaterials, 2013, 34, 1391-1401.
26. C. Hom, J. Lu, M. Liong, H. Luo, Z. Li, J. I. Zink and F. Tamanoi, Mesoporous silica nanoparticles facilitate delivery of siRNA to shutdown signaling pathways in mammalian cells, Small, 2010, 6, 1185-1190.
27. H. K. Na, M. H. Kim, K. Park, S. R. Ryoo, K. E. Lee, H. Jeon, R. Ryoo, C. Heyon and D. H. Min, Efficient functional delivery of siRNA using mesoporous silica nanoparticles with ultralarge pores, Small, 2012, 8, 1752-1761.
28. H. Meng, W. X. Mai, H. Zhang, M. Xue, T. Xia, S. Lin, X. Wang, Y. Zhao, Z. Ji, J. I. Zink and A. E. Ne, Codelivery of an optimal drug/siRNA combination using mesoporous silica nanoparticles to overcome drug resistance in breast cancer in vitro and in vivo ACSNano, 2013, 7, 994-1005.
29. J. Shen, H. C. Kim, H. Su, F. Wang, J. Wolfram, D. Kirui, J. Mai, C. Mu, L. N. Ji, Z. W. Moa and H. Shen, Cyclodextrin and polyethylenimine functionalized mesoporous silica nanoparticles for delivery of siRNA cancer therapeutics, Theranostics, 2014, 4, 487-497.
30. H. S. Lee, E. J. Bae, S. H. Yi, J. W. Shim, A. Y. Jo, J. S. Kang, E. H. Yoon, Y. H. Rhee, C. H. Park, H. C. Koh, H. J. Kim, H. S. Choi, J. W. Han, Y. S. Lee, J. Kim, J. Y. Li, P. Brundin and S. H. Lee, Foxa2 and Nurr1 synergistically yield A9 nigral dopamine neurons exhibiting improved differentiation, function, and cell survival Stem Cells, 2010, 28, 501-512.
31. D. H. Yang, T. Li, Y. Wang, Y. J. Tang, H. J. Cui, Y. Tang, X. J. Zhang, D. G. Chen, N. Shen and W. D. Le, miR-132 regulates the differentiation of dopamine neurons by directly targeting Nurr1 expression, J. Cell Sci., 2012, 125, 1673-1682.
32. S. W. Law, O. M. Conneely, F. J. Demayo and B. W. Omalley, Identification of a new brain-specific transcription factor, Nurr1, Mol. Endocrinol., 1992, 6, 2129-2135.
33. R. H. Zetterstrom, L. Solomin, L. Jansson, B. J. Hoffer, L. Olson and T. Perlmann, Dopamine neuron agenesis in Nurr1-deficient mice, Science, 1997, 276, 248-250.
34. O. Saucedo-Cardenas, J. D. Quintana-Hau, W. D. Le, M. P. Smidt, J. J. Cox, F. DeMayo, J. P. H. Burbach and O. M. Conneely, Nurr1 is essential for the induction of the dopaminergic phenotype and the survival of ventral mesencephalic late dopaminergic precursor neurons, P. Natl. Acad. Sci. USA, 1998, 95, 4013-4018.
35. K. S. Kim, C. H. Kim, D. Y. Hwang, H. Seo, S. Chung, S. J. Hong, J. K. Lim, T. Anderson and O. Isacson, Orphan nuclear receptor Nurr1 directly transactivates the promoter activity of the tyrosine hydroxylase gene in a cell-specific manner, J. Neurochem., 2003, 85, 622-634.
36. J. E. Waters, M. V. Astle, L. M. Ooms, D. Balamatsia, R. Gurung and C. A. Mitchell, P-Rex1 - a multidomain protein that regulates neurite differentiation, J. Cell Sci., 2008, 121, 2892-2903.
37. K. B. Scotland, S. Chen, R. Sylvester and L. J. Gudas, Analysis of Rex1 (Zfp42) function in embryonic stem cell differentiation, Dev. Dynam., 2009, 238, 1863-1877.
38. L. Langroudi, M. Forouzandeh, M. Soleimani, A. Atashi and A. F. Golestaneh, Induction of differentiation by down-regulation of Nanog and Rex-1 in cord blood derived unrestricted somatic stem cells, Mol. Biol. Rep., 2016, 40, 4429-4437.
39. K. Saijo, B. Winner, C. T. Carson, J. G. Collier, L. Boyer, M. G. Rosenfeld, F. H. Gage and C. K. Glass, A Nurr1/CoREST pathway in microglia and astrocytes protects dopaminergic neurons from inflammation-induced death, Cell, 2009, 137, 47-59.
40. S. Shah, A. Solanki, P. K. Sasmal and K. B. Lee, Single vehicular delivery of siRNA and small molecules to control stem cell differentiation, J. Am. Chem. Soc., 2013, 135, 15682-15685.
41. Y. C. Kuo and C. C. Lin, Accelerated nerve regeneration using induced pluripotent stem cells in chitin-chitosan-gelatin scaffolds with inverted colloidal crystal geometry, Colloid Surface B, 2013, 103, 595-600.
42. J. Cheng, Q. Ding, J. Wang, L. Deng, L. Yang, L. Tao, H. H. Lei and S. P. Lu, 5-Azacytidine delivered by mesoporous silica nanoparticles regulates the differentiation of P19 cells into cardiomyocytes, Nanoscale, 2016, 8, 2011–2021.
43. C. A. Sommer, M. Stadtfeld, G. J. Murphy, K. Hochedlinger and D. N. Kotton, Induced pluripotent stem cell generation using a single lentiviral stem cell cassette, Stem Cells, 2009, 27, 543-549.
44. S. H. Chiou, B. H. Jiang, Y. L. Yu, S. J. Chou, P. H. Tsai, W. C. Chang, L. K. Chen, L. H. Chen, Y. Chien and G. Y. Chiou, Poly(ADP-ribose) polymerase 1 regulates nuclear reprogramming and promotes iPSC generation without c-Myc, J. Exp. Med., 2013, 210, 85-98.
45. S. H. Wu, Y. S. Lin, Y. Hung, Y. H. Chou, Y. H. Hsu, C. Chang and C. Y. Mou, Multifunctional mesoporous silica nanoparticles for intracellular labeling and animal magnetic resonance imaging studies, Chembiochem, 2008, 9, 53-57.
46. C. H. Lee, L. W. Lo, C. Y. Mou and C. S. Yang, Synthesis and characterization of positive-charge functionalized mesoporous silica nanoparticles for oral drug delivery of an anti-inflammatory drug, Adv. Funct. Mater., 2008, 18, 3283-3292.
47. E. Frohlich, The role of surface charge in cellular uptake and cytotoxicity of medical nanoparticles, Int. J. Nanomed., 2012, 7, 5577-5591.
48. N. Agrawal, P. V. N. Dasaradhi, A. Mohmmed, P. Malhotra, R. K. Bhatnagar and S. K. Mukherjee, RNA interference: Biology, mechanism, and applications, Mol. Biol. R., 2003, 67, 657-685.
49. J. Shen, M. Yu, Q. Meng, J. Li, Y. Lv and W. Lu, Fatty acid-based strategy for efficient brain targeted gene delivery, Pharm. Res., 2013, 30, 2573-2583
50. F. P. Chang, Y. Hung, J. H. Chang, C. H. Lin and C. Y. Mou , Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis, ACS Appl. Mater. Interfaces, 2014, 6, 6883-6890.
51. F. P. Chang, Y. P. Chen and C. Y. Mou, Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase, Small, 2014, 10, 4785–4795.
52. K. Kiefer, J. Clement, P. Garidel and R. Peschka-Suss, Transfection efficiency and cytotoxicity of nonviral gene transfer reagents in human smooth muscle and endothelial cells, Pharmaceut. Res., 2004, 21, 1009-1017.
53. J. Sanyong, K. Sandeep, K. A. Ashish, T. Kaushik and C. B. Uttam, Enhanced transfection efficiency and reduced cytotoxicity of novel lipid–polymer hybrid nanoplexes, Mol. Pharmaceutics, 2013, 10, 2416–2425
54. N. Kalcheva, J. Albala, K. Oguin, H. Rubino, C. Garner and B. Shafitzagardo, Genomic structure of human microtubule-associated protein-2 (Map-2) and characterization of additional Map-2 isoforms, P. Natl. Acad. Sci. USA, 1995, 92, 10894-10898.
55. R. L. Neve, P. Harris, K. S. Kosik, D. M. Kurnit and T. A. Donlon, Identification of cdna clones for the human microtubule-associated protein Tau and chromosomal localization of the genes for Tau and microtubule-associated protein-2, Mol. Brain. Res., 1986, 1, 271-280.
56. S. Lohrke, J. H. Brandstatter, B. B. Boycott and L. Peichl, Expression of neurofilament proteins by horizontal cells in the rabbit retina varies with retinal location, J Neurocytol., 1995, 24, 283-300.
57. J. M. Redwine and C. F. Evans, Markers of central nervous system glia and neurons in vivo during normal and pathological conditions, Curr. Top Microbiol., 2002, 265, 119-140.
58. D. Guerette, P. A. Khan, P. E. Savard and M. Vincent, Molecular evolution of type VI intermediate filament proteins, Bmc. Evol. Biol., 2007, 7, 1471-2148.
59. K. Michalczyk and M. Ziman, Nestin structure and predicted function in cellular cytoskeletal organisation, Histol. Histopathol., 2005, 20, 665-671.
60. A. Isaacs, M. Baker and M. Hutton, Determination of the gene structure of human GFAP and absence of coding region mutations associated with frontotemporal dementia with parkinsonism linked to chromosome 17, Genomics, 1998, 51, 152-154
61. T. Nagatsu, Tyrosine hydroxylase: Human isoforms, structure and regulation in physiology and pathology, Essays Biochem., 1995, 30, 15-35.
62. S. Kaufman, Tyrosine hydroxylase, Adv. Enzymol. Ramb., 1995, 70, 103-220.
63. E. Carboni, G. L. Tanda, R. Frau and G. Dichiara, Blockade of the noradrenaline carrier increases extracellular dopamine concentrations in the prefrontal cortex - evidence that dopamine is taken up in vivo by noradrenergic terminals, J. neurochem., 1990, 55, 1067-1070.
64. H. Baker, T. H. Joh, D. A. Ruggiero and D. J. Reis, Variations in number of dopamine neurons and tyrosine hydroxylase activity in hypothalamus of two mouse strains, J. Neurosci. Nurs., 1983, 3, 832-843.
3.5 Reference
1. E. Y. Son, J. K. Ichida, B. J. Wainger, J. S. Toma, V. F. Rafuse, C. J. Woolf and K. Eggan, Conversion of mouse and human fibroblasts into functional spinal motor neurons, Cell Stem Cell, 2011, 9, 205-218.
2. T. Vierbuchen, A. Ostermeier, Z. P. Pang, Y. Kokubu, T. C. Sudhof and M. Wernig, Direct conversion of fibroblasts to functional neurons by defined factors, Nature, 2010, 463, 1035-1041.
3. J. Xu, Y. Du and H. Deng, Direct lineage reprogramming: strategies, mechanisms, and applications, Cell Stem Cell, 2015, 16, 119-134.
4. M. Ieda, J. D. Fu, P. Delgado-Olguin, V. Vedantham, Y. Hayashi, B. G. Bruneau and D. Srivastava, Direct reprogramming of fibroblasts into functional cardiomyocytes by defined factors, Cell, 2010, 142, 375-386.
5. Y. Du, J. Wang, J. Jia, N. Song, C. Xiang, J. Xu, Z. Hou, X. Su, B. Liu, T. Jiang, D. Zhao, Y. Sun, J. Shu, Q. Guo, M. Yin, D. Sun, S. Lu, Y. Shi and H. Deng, Human hepatocytes with drug metabolic function induced from fibroblasts by lineage reprogramming, Cell Stem Cell, 2014, 14, 394-403.
6. M. D. A. Caiazzo, M.T. Dvoretskova, E. Lazarevic, D. Taverna, S. Leo, D. Sotnikova, T. D. Menegon, A. Roncaglia, P. Colciago, G. Russo, G. Carninci, P.; Pezzoli, G. Gainetdinov, R. R. Gustincich, S. Dityatev, A. Broccoli, V., Direct generation of functional dopaminergic neurons from mouse and human fibroblasts, Nature, 2011, 476, 224-227.
7. G. L. Colasante, G.; Rubio, A. Medrihan, L. Yekhlef, L. Sessa, A. Massimino, L. Giannelli, S. G. Sacchetti, S. Caiazzo, M. Leo, D. Alexopoulou, D. Dell'Anno, M. T. Ciabatti, E. Orlando, M. Studer, M. Dahl, A. Gainetdinov, R. R. Taverna, S. Benfenati and F. Broccoli, V., Conversion of fibroblasts into functional forebrain GABAergic interneurons by direct genetic reprogramming, Cell Stem Cell, 2015, 17, 719-734.
8. G. Masserdotti, S. Gascón and M. Götz, Direct neuronal reprogramming: learning from and for development, Developement, 2016, 143, 2494-2510.
9. X. Chen, M. Xiong, Dong, A. Haberman, J. Cao, H. Liu, W. Zhou and S. C. Zhang, Chemical control of grafted human PSC-derived neurons in a mouse model of Parkinson’s disease, Cell Stem Cell, 2016, 18, 817-826.
10. D. Biswas and P. Jiang, Chemically induced reprogramming of somatic cells to pluripotent stem cells and neural cells, International Journal of Molecular Science, 2016, 17, 226-235.
11. K. Babos and J. K.Ichida, Small molecules take a big step by converting fibroblasts into neurons, Cell Stem Cell, 2015, 17, 127-129.
12. X. Li, X. Zuo, J. Jing, Y. Ma, J. Wang, D. Liu, J. Zhu, X. Du, L. Xiong, Y. Du, J. Xu, X. Xiao, J. Wang, Z. Chai, Y. Zhao and H. Deng, Small-molecule-driven direct reprogramming of mouse fibroblasts into functional neurons, Cell Stem Cell, 2015, 17, 195-203.
13. D. K. Halder, G. H. Kim and I. Shin, Synthetic small molecules that induce neuronal differentiation in neuroblastoma and fibroblast cells, Molecular BioSystems, 2015, 11, 2727-2737.
14. J. C. Zheng, K. A. Kang, P. J. Hyeon, S. Kwon, S. Moon, J. H. Hwang, I. Kim, Y. I. Kim, Y. S. Yoon, B. S. Park, G. Lee. J. Hong and S. You, S., Combination of small molecules directly reprograms mouse fibroblasts into neural stem cells, Biochem Bioph Res Co, 2016, 476, 42-48.
15. D. Petrik, Y. Jiang, S. G. Birnbaum, C. M. Powell, M. S. Kim, J. Hsieh and A. J. Eisch, Functional and mechanistic exploration of an adult neurogenesis-promoting small molecule, FASEB journal : official publication of the Federation of American Societies for Experimental Biology, 2012, 26, 3148-3162.
16. H. J. Park, F. Yang and S. W. Cho, Nonviral delivery of genetic medicine for therapeutic angiogenesis, Adv Drug Deliver Rev, 2012, 64, 40-52.
17. C. E. Thomas, A. Ehrhardt and M. A. Kay, Progress and problems with the use of viral vectors for gene therapy, Nat Rev Genet, 2003, 4, 346-358.
18. B. I. Florea, C. Meaney, H. E. Junginger and G. Borchard, Transfection efficiency and toxicity of polyethylenimine in differentiated Calu-3 and nondifferentiated COS-1 cell cultures, AAPS pharmSci, 2002, 4, 1-11.
19. V. Kafil and Y. Omidi, Cytotoxic impacts of linear and branched polyethylenimine nanostructures in a431 cells, BioImpacts : BI, 2011, 1, 23-30.
20. W. Dong, G. H. Jin, S. F. Li, Q. M. Sun, D. Y. Ma and Z. C. Hua, Cross-linked polyethylenimine as potential DNA vector for gene delivery with high efficiency and low cytotoxicity, Acta Bioch Bioph Sin, 2006, 38, 780-787.
21. Y.-S. Lin, S.-H. Wu, Y. Hung, Y.-H. Chou, C. Chang, M.-L. Lin, C.-P. Tsai and C.-Y. Mou, Multifunctional composite nanoparticles: Magnetic, luminescent, and mesoporous, Chemistry of Materials, 2006, 18, 5170-5172.
22. M. Vallet-Regi, A. Ramila, R. P. del Real and J. Perez-Pariente, A new property of MCM-41: Drug delivery system, Chemistry of Materials, 2001, 13, 308-311.
23. W. Chen, P.-H. Tsai, Y. Hung, S.-H. Chiou and C.-Y. Mou, Nonviral cell labeling and differentiation agent for induced pluripotent stem cells based on mesoporous silica nanoparticles, Acs Nano, 2013, 7, 8423-8440.
24. F. Lu, S. H. Wu, Y. Hung and C. Y. Mou, Size effect on cell uptake in well-suspended, uniform mesoporous silica nanoparticles, Small, 2009, 5, 1408-1413.
25. L. L. Li, M. Y. Xie, J. Wang, X. Y. Li, C. Wang, Q. Yuan, D. W. Pang, Y. Lu and W. H. Tan, A vitamin-responsive mesoporous nanocarrier with DNA aptamer-mediated cell targeting, ChemComm 2013, 49, 5823-5825.
26. R. Zeheb, V. Chang and G. A. Orr, Selective retrieval of iminobiotin-derivatized plasma membrane proteins, Analytical Biochemistry, 1983, 129, 156-161.
27. M. C. Moe, M. Varghese, A. I. Danilov, U. Westerlund, J. Ramm-Pettersen, L. Brundin, M. Svensson, J. Berg-Johnsen and I. A. Langmoen, Multipotent progenitor cells from the adult human brain: neurophysiological differentiation to mature neurons, Brain, 2005, 128, 2189-2199.
4.5 Reference
1. J. S. Holcenberg, Enzyme therapy of cancer, future studies, Cancer Treat. Rep., 1981, 65, 61-65.
2. J. A. Jackson, H. R. Halvorson, J. W. Furlong, K. D. Lucast and J. D. Shore, A new extracorporeal reactor-dialyzer for enzyme therapy using immobilized L-asparaginase, J. Pharmacol. Exp. Ther., 1979, 209, 271-274.
3. M. N. Balasubramanian, E. A. Butterworth and M. S. Kilberg, Asparagine synthetase: regulation by cell stress and involvement in tumor biology, Am. J. Physiol-Endoc M., 2013, 304, 789-799.
4. R. J. DeBerardinis and N. S. Chandel, Fundamentals of cancer metabolism, Sci. Adv., 2016, 2, 1-18.
5. J. Zhang, J. Fan, S. Venneti, J. R. Cross, T. Takagi, B. Bhinder, H. Djaballah, M. Kanai, E. H. Cheng, A. R. Judkins, B. Pawel, J. Baggs, S. Cherry, J. D. Rabinowitz and C. B. Thompson, Asparagine plays a critical role in regulating cellular adaptation to glutamine depletion, Mol. Cell., 2014, 56, 205-218.
6. A. S. Krall, S. Xu, T. G. Graeber, D. Braas and H. R. Christofk, Asparagine promotes cancer cell proliferation through use as an amino acid exchange factor, Nat. Commun., 2016, 7, 11457.
7. Z. Wang, X. Shi, Y. Li, J. Fan, X. Zeng, Z. Xian, Z. Wang, Y. Sun, S. Wang, P. Song, S. Zhao, H. Hu and D. Ju, Blocking autophagy enhanced cytotoxicity induced by recombinant human arginase in triple-negative breast cancer cells, Cell Death Dis., 2014, 5.
8. T. H. Yeh, Y. R. Chen, S. Y. Chen, W. C. Shen, D. K. Ann, J. L. Zaro and L. J. Shen, Selective intracellular delivery of recombinant arginine deiminase (ADI) using pH-sensitive cell penetrating peptides to overcome ADI resistance in hypoxic breast cancer cells, Mol. Pharmaceut., 2016, 13, 262-271.
9. N. Savaraj, M. You, C. Wu, M. Wangpaichitr, M. T. Kuo and L. G. Feun, Arginine deprivation, autophagy, apoptosis (AAA) for the treatment of melanoma, Curr. Mol. Med., 2010, 10, 405-412.
10. M. Saruc, F. Nozawa, M. Yalniz, A. Itami and P. M. Pour, Effects of porcine pancreatic enzymes on the pancreas of hamsters. Part 1: basic studies, J. O. P., 2012, 13, 476-481.
11. V. I. Avramis and P. N. Tiwari, Asparaginase (native ASNase or pegylated ASNase) in the treatment of acute lymphoblastic leukemia, Int. J. nanomedicine, 2006, 1, 241-254.
12. B. Zhang, J. Fan, X. Zhang, W. Shen, Z. Cao, P. Yang, Z. Xu and D. Ju, Targeting asparagine and autophagy for pulmonary adenocarcinoma therapy, Appl. Microbiol. Biotechnol., 2016, 100, 9145-9161.
13. Z. Ivics, P. B. Hackett, R. H. Plasterk and Z. Izsvak, Molecular reconstruction of Sleeping beauty, a Tc1-like transposon from fish, and its transposition in human cells, Cell, 1997, 91, 501-510.
14. Z. Izsvak, Z. Ivics and R. H. Plasterk, Sleeping Beauty, a wide host-range transposon vector for genetic transformation in vertebrates, J. Mol. Biol., 2000, 302, 93-102.
15. A. D. Converse, L. R. Belur, J. L. Gori, G. Y. Liu, F. Amaya, E. Aguilar-Cordova, P. B. Hackett and R. S. McIvor, Counterselection and co-delivery of transposon and transposase functions for Sleeping Beauty-mediated transposition in cultured mammalian cells, Bioscience Rep., 2004, 24, 577-594.
16. S. R. Yant, L. Meuse, W. Chiu, Z. Ivics, Z. Izsvak and M. A. Kay, Somatic integration and long-term transgene expression in normal and haemophilic mice using a DNA transposon system, Nat. Genet., 2000, 25, 35-41.
17. K. Horie, A. Kuroiwa, M. Ikawa, M. Okabe, G. Kondoh, Y. Matsuda and J. Takeda, Efficient chromosomal transposition of a Tc1/mariner-like transposon Sleeping Beauty in mice, P. Natl. Acad. Sci. USA, 2001, 98, 9191-9196.
18. K. Horie, K. Yusa, K. Yae, J. Odajima, S. E. J. Fischer, V. W. Keng, T. Hayakawa, S. Mizuno, G. Kondoh, T. Ijiri, Y. Matsuda, R. H. A. Plasterk and J. Takeda, Characterization of Sleeping Beauty transposition and its application to genetic screening in mice, Mol. Cell. Biol., 2003, 23, 9189-9207.
19. K. J. Clark, A. M. Geurts, J. B. Bell and P. B. Hackett, Transposon vectors for gene-trap insertional mutagenesis in vertebrates, Genesis., 2004, 39, 225-233.
20. E. C. Olivares, R. P. Hollis, T. W. Chalberg, L. Meuse, M. A. Kay and M. P. Calos, Site-specific genomic integration produces therapeutic Factor IX levels in mice, Nat. Biotechnol., 2002, 20, 1124-1128.
21. K. Kawakami and A. Shima, Identification of the Tol2 transposase of the medaka fish Oryzias latipes that catalyzes excision of a nonautonomous Tol2 element in zebrafish Danio rerio, Gene, 1999, 240, 239-244.
22. A. Koga, A. Iida, M. Kamiya, R. Hayashi, H. Hori, Y. Ishikawa and A. Tachibana, The medaka fish Tol2 transposable element can undergo excision in human and mouse cells, J. Hum. Genet., 2003, 48, 231-235.
23. C. Miskey, Z. Izsvak, R. H. Plasterk and Z. Ivics, The Frog Prince: a reconstructed transposon from Rana pipiens with high transpositional activity in vertebrate cells, Nucleic Acids Res., 2003, 31, 6873-6881.
24. E. T. Prak and H. H. Kazazian, Jr., Mobile elements and the human genome, Nat. Rev. Genet., 2000, 1, 134-144.
25. A. H. Farley, E. T. Luning Prak and H. H. Kazazian, Jr., More active human L1 retrotransposons produce longer insertions, Nucleic Acids Res., 2004, 32, 502-510.
26. W. Chen, P.-H. Tsai, Y. Hung, S.-H. Chiou and C.-Y. Mou, Nonviral cell labeling and differentiation agent for induced pluripotent stem cells based on mesoporous silica nanoparticles, Acs Nano, 2013, 7, 8423-8440.
27. J. H. Chang, P. H. Tsai, W. Chen, S. H. Chiou and C. Y. Mou, Dual delivery of siRNA and plasmid DNA using mesoporous silica nanoparticles to differentiate induced pluripotent stem cells into dopaminergic neurons, J. Mater. Chem. B, 2017, 5, 3012-3023.
28. https://www.ncbi.nlm.nih.gov/genbank/.
29. F. P. Chang, Y. Hung, J. H. Chang, C. H. Lin and C. Y. Mou, Enzyme encapsulated hollow silica nanospheres for intracellular biocatalysis, Acs. Appl. Mater. Inter., 2014, 6, 6883-6890.
30. F. P. Chang, Y. P. Chen and C. Y. Mou, Intracellular implantation of enzymes in hollow silica nanospheres for protein therapy: cascade system of superoxide dismutase and catalase, Small, 2014, 10, 4785-4795.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68062-
dc.description.abstract基因轉染,指的是將外源基因插入特定細胞,藉由基因重組的方式讓細胞能夠朝著特定方向發展,或是能夠應用至基因治療。神經再生是被廣泛討論的議題,緣由是神經細胞一但受損,其自癒能力差,容易造成永久性傷害,如阿茲海默症、帕金森氏症等。因此,近幾年來研究學者於再生醫學的領域不斷在探討神經分化的相關研究,並且引入基因治療。提及基因治療,過去較廣泛使用病毒載體來進行基因轉染,進而讓細胞能表達特定基因,也進一步研究此特定基因後續影響的機制。也有不少研究,透過轉染基因至幹細胞中,促進幹細胞分化成特定功能性細胞。然而,病毒載體轉染基因雖已商業化,但仍有潛在風險,例如:基因隨機插入細胞染色體而造成基因突變、細胞癌化等,因此後來研究學者致力於開發非病毒載體,希望能將非病毒載體提升轉染基因的效率,進一步廣泛應用於臨床實驗。本論文中共分三個主題,第一、二部分則是與神經分化相關的研究。然而短暫 (transient) 表現的質粒 (plasmid) 攜帶基因進入細胞中,其效果有限,甚至必須做連續轉染 (serial transfection) 來增強基因轉殖效率。因此在本論文中第三部分我們引入轉位子 (transposon) 質粒,透過中孔洞奈米矽材將基因送入細胞,達到永久表現、甚至將細胞做成新的細胞克隆 (cell clones)。我們將此技術應用在肺癌細胞,希望能夠讓門冬酰胺酶 (asparaginase) 基因於癌細胞中表現、進一步能夠造成癌細胞凋亡,作為飢餓治療。
以下是本論文的三個主題:
(1) 透過中孔洞奈米矽材作為非病毒基因載體,轉染中樞神經重要基因 Nurr1 (Nuclear receptor related-1) 於誘導性多能性幹細胞 (induced pluripotent stem cells, 簡稱為 iPSCs),促進 iPSCs分化為多巴胺功能性神經細胞 (dopaminergic neurons)
(2) 透過中孔洞奈米矽材作為非病毒基因載體,同時轉染三種不同關鍵基因 Ascl1 (Achaete-scute homolog 1), Brn2 (POU domain transcription factor) 及 Myt1l (Myelin Transcription Factor 1 Like),以及攜帶一促進神經分化小分子 (Isoxazole 9, ISX-9) 將老鼠體細胞直接分化為多巴胺神經細胞
(3) 結合睡美人轉位子 (Sleeping Beauty transposon) 及中孔洞奈米矽材作為非病毒基因載體,應用於肺癌細胞的飢餓治療
以上三個主題分別於本論文中的第三、四及第五章。本論文第一章中分成兩部分:第一部分介紹病毒及非病毒載體作為基因療法的作用機制及相關背景,第二部分則概述中孔洞奈米矽材的歷史及合成方法。論文中第二章則分享實驗方法,包含中孔洞奈米矽材的合成鑑定、細胞實驗以及後續分析方法。最後一章則總結所有工作,以及分享本論文的成果對於未來能夠持續發展的研究。
zh_TW
dc.description.abstractGene delivery is a method of introducing the foreign genomic materials into the specific cells to carry out the gene therapy. Neural regeneration is an essential issue, because the neurons are difficult to repair after injury. The nonviral-based vehicles were needed for gene delivery, to avoid the integration effect of the chromosome, gene mutagenesis and immune issues associated with the viral vehicles. In my first research topic, mesoporous silica nanoparticles (MSNs) were used in the DNA delivery and co-delivery with siRNA for differentiation of dopaminergic neurons from induced pluripotent stem cells (iPSCs). In the second research topic, the MSNs were utilized to deliver three different genes and a small molecule for direct conversion of dopaminergic neurons from mouse fibroblasts. The results showed that MSNs as an efficient, minimally cytotoxicity and effective non-viral carriers for gene delivery, and MSNs had great potential in cell-oriented therapeutic applications. In the third research topic, we first combine the Sleeping Beauty transposon plasmid and MSNs for the delivery of asparaginase (ASN) gene into the cancer cells to prolong the ASN gene expression in the lung cancer cells. In addition, the stable cell clones could be successfully generated by the treatment of puromycin, and the ASN was expressed in the cells after doxycycline was added.
There are six chapters in this thesis:
Chapter 1: to give an introduction of gene therapy and the background of non-viral based nanoparticles, including mesoporous silica nanoparticles
Chapter 2: the experimental section of nanoparticles synthesis, in vitro studies of plasmid release and cell-associated experiments
Chapter 3: dual delivery of siRNA and plasmid DNA using mesoporous silica nanoparticles to differentiate induced pluripotent stem cells into dopaminergic neurons
Chapter 4: generation of functional dopaminergic neurons from reprogramming fibroblasts by nonviral-based mesoporous silica nanoparticles
Chapter 5: Sleeping Beauty transposon-mediated asparaginase gene delivery by a nanoparticle platform
Chapter 6: summary and the perspective of my studies.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:12:00Z (GMT). No. of bitstreams: 1
ntu-107-D02223109-1.pdf: 7016874 bytes, checksum: ba8dae6258a61794f78672c96bac4a1e (MD5)
Previous issue date: 2018
en
dc.description.tableofcontents致謝 2
中文摘要 4
Abstract 6
List of contents: 8
List of Figures: 14
List of Tables: 24
Abbreviations 26
Chapter 1. General Introduction 29
1.1 Gene therapy and the strategies 29
1.1.1 Viral infection 30
1.1.2 Non-viral gene delivery 31
1.2 Backgrounds of mesoporous silica Nanoparticles (MSNs) 33
1.2.1 Synthesis of MSNs 33
1.2.2 Biological applications of MSNs 35
1.3 Reference 38
Chapter 2. Dual Delivery of siRNA and Plasmid DNA using Mesoporous Silica Nanoparticles to Differentiate Induced Pluripotent Stem Cells into Dopaminergic Neurons 46
2.1 Abstract 46
2.2 Introduction 47
2.2.1 Induced pluripotent stem cells, development of non-viral transfection 47
2.2.2 The motivation of using mesoporous silica nanoparticles (MSNs) as a nanocarrier of plasmid and siRNA and the backgrounds of MSNs 48
2.2.3 Nurr1 gene, Rex1 gene, and dopaminergic neuron-related gene 48
2.2.4 The purpose of the research 49
2.3 Results and Discussion 52
2.3.1 Characterization of FMSN(+) 52
2.3.2 Study of DNA-siRNA-FMSN(+) (pNurr1-siRex1-FMSN(+)) complex using Gel electrophoresis 54
2.3.3 Study of in vitro plasmid release profile 57
2.3.4 Cellular Uptake and endosome escape of FMSN(+) 59
2.3.5 Cytotoxicity of FMSN(+) on iPSCs 61
2.3.6 Determination of mRNA-expression levels for neuron genes by qRT-PCR 63
2.3.7 Dual delivery of pNurr1 and siRex1 synergistically enhances a number of dopaminergic neurons 66
2.3.8 Significant cell morphology conversion, as observed by a microscope 80
2.4 Conclusion 82
2.5 Reference 83
Chapter 3. Generation of Functional Dopaminergic Neurons from Reprogramming Fibroblasts by Nonviral-based Mesoporous Silica Nanoparticles 93
3.1 Abstract 93
3.2 Introduction 94
3.2.1 The background of direct conversion by trans-differentiation 94
3.2.2 Mesoporous silica nanoparticles (MSNs) as a nanocarrier of small molecular and plasmids for direct conversion of somatic cells 95
3.3 Results and discussion 97
3.3.1 Characterizations of mesoporous silica nanoparticles 97
3.3.2 Mesoporous silica nanoparticles uptaken by MFs 100
3.3.3 Mesoporous silica nanoparticles mediate nontoxic bio-nanomaterial for MFs 102
3.3.4 mRNA expression level of neural reprogramming factors by qRT-PCR 103
3.3.5 Significant cell morphology conversion 106
3.3.6 Serial nonviral delivery of neural reprogramming factors promotes Tuj1+ and Dat+ cells efficiently and the expression of the neural lineage markers 107
3.3.6 Enhanced expression of dopamine transporter and maturation of functional neurons 110
3.4 Conclusion 114
3.5 Reference 115
Chapter 4. Sleeping Beauty Transposon-Mediated Asparaginase Gene Delivery by a Nanoparticle Platform 119
4.1 Abstract 119
4.2 Introduction 120
4.2.1 The introduction of enzyme therapy 120
4.2.2 Sleeping Beauty transposon as a plasmid vector and the motivation of this study 121
4.3 Results and discussion 123
4.3.1 Characterizations of mesoporous silica nanoparticles modified with amine group 123
4.3.2 Mesoporous silica nanoparticles uptaken by human lung cancer cells, endosome escape of FMSN 125
4.3.3 Cytotoxicity of ASN, PEI-layered MSN, PEI and pSB-ASN transfected by PEI-layered MSN in human adenocarcinoma cells 130
4.3.4 Transfection efficiency analysis 133
4.3.4 Protein-level identification of asparaginase 134
4.3.5 Generation of ASN-expressed cell clones 135
4.4 Conclusion 138
4.5 Reference 139
Chapter 5. Experimental section 143
5.1 Experimental method of chapter 3 (Topic 1) 143
5.1.1 The generation of iPSCs and Culture 143
5.1.2 The synthesis of FITC Conjugated Mesoporous Silica Nanoparticles, FMSNs, FMSN(+) 143
5.1.3 pNurr1-siRex1-FMSN(+) Adsorption and Agarose Gel Electrophoresis 144
5.1.4 Labeling of RITC-pNurr1 and in vitro plasmid release analysis 145
5.1.5 Cellular Cytotoxicity 145
5.1.6 Cellular uptake analysis by flow cytometry analysis 146
5.1.7 iPSCs Transfection and in vitro Neuron Differentiation 146
5.1.8 Quantitative Reverse Transcriptase Polymerase Chain Reaction 147
5.1.9 Immunofluorescence Staining 149
5.1.10 Quantification of the Relative Protein Level of Dopaminergic neurons using Flow Cytometry analysis 150
5.1.11 Western blotting 151
5.1.12 Measurement of dopamine release 151
5.1.13 Statistical analysis 152
5.1.14 Thermogravimetric analysis 152
5.1.15 X-ray diffraction 152
5.2 Experimental methods of chapter 4 (Topic 2) 153
5.2.1 Synthesis of APTMS Conjugated Mesoporous Silica Nanoparticles, MSN-NH2 153
5.2.2 Modification of MSN-NH2-biotin-avidin (abbreviated as MSN-avi) 153
5.2.3 ISX-9/Rh800 loading 154
5.2.4 Small molecule (Rh800) release 154
5.2.5 pABM-I@M Adsorption and Agarose Gel Electrophoresis 154
5.2.6 Cellular Cytotoxicity/ Cell proliferation 155
5.2.7 Flow cytometry analysis 155
5.2.8 FM4-64 staining of endosome after pABM-I@M delivery 155
5.2.9 MFs Transfection and generation of MF-neuron cells 156
5.2.10 Quantitative Reverse Transcriptase Polymerase Chain Reaction 157
5.2.11 Immunofluorescence Staining of MF-neuron 158
5.2.12 Measurement of dopamine release by enzyme-linked immunosorbent assay 159
5.3 Experimental methods of chapter 5 (Topic 3) 161
5.3.1 Synthesis of amine-group conjugated mesoporous silica nanoparticles 161
5.3.2 Molecular cloning 161
5.3.3 Cellular Cytotoxicity of PEI-layered MSN 162
5.3.4 Cell culture and transfection 162
5.3.5 Cell selection 163
5.3.6 Cell uptake analysis 163
5.3.7 Western blot 164
Chapter 6. Conclusions and Perspective 165
dc.language.isozh-TW
dc.title中孔洞奈米矽材於轉染基因上的應用zh_TW
dc.titleNon-Viral Gene Delivery by Mesoporous Silica Nanoparticlesen
dc.typeThesis
dc.date.schoolyear106-1
dc.description.degree博士
dc.contributor.oralexamcommittee陳逸聰(Yit-Tsong Chen),戴桓青(Hwan-Ching Tai),邱世華(Shih-Hwa Chiou),陳惠文(Huei-Wen Chen),凌嘉鴻(Steven Lin)
dc.subject.keyword中孔洞奈米矽材,基因轉染,誘導型多功能幹細胞,多巴胺神經,睡美人轉位子,門冬?胺?,肺腺癌細胞,zh_TW
dc.subject.keywordmesoporous silica nanoparticles,gene delivery,induced pluripotent stem cells,dopaminergic neurons,Sleeping beauty transposon,asparaginase,human adenocarcinoma cells,en
dc.relation.page166
dc.identifier.doi10.6342/NTU201800011
dc.rights.note有償授權
dc.date.accepted2018-01-04
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-107-1.pdf
  目前未授權公開取用
6.85 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved