請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68046完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 賴亮全(Liang-Chuan Lai) | |
| dc.contributor.author | Ching-Ching Yeh | en |
| dc.contributor.author | 葉京青 | zh_TW |
| dc.date.accessioned | 2021-06-17T02:11:44Z | - |
| dc.date.copyright | 2018-02-22 | |
| dc.date.issued | 2018 | |
| dc.date.submitted | 2018-01-08 | |
| dc.identifier.citation | 1. Masson N and Ratcliffe PJ. Hypoxia signaling pathways in cancer metabolism: the importance of co-selecting interconnected physiological pathways. Cancer Metabolism. 2014; 2:3. 2. Wang W, He YF, Sun QK, Wang Y, Han XH, Peng DF, Yao YW, Ji CS and Hu B. Hypoxia-inducible factor 1alpha in breast cancer prognosis. Clinica Chimica Acta. 2014; 428:32-37. 3. Curran CS and Keely PJ. Breast tumor and stromal cell responses to TGF-beta and hypoxia in matrix deposition. Matrix Biology. 2013; 32:95-105. 4. Gulledge CJ and Dewhirst MW. Tumor oxygenation: a matter of supply and demand. Anticancer Research. 1996; 16:741-749. 5. Dong Y, Liang G, Yuan B, Yang C, Gao R and Zhou X. MALAT1 promotes the proliferation and metastasis of osteosarcoma cells by activating the PI3K/Akt pathway. Tumor Biology. 2015; 36:1477-1486. 6. Bae KM, Dai Y, Vieweg J and Siemann DW. Hypoxia regulates SOX2 expression to promote prostate cancer cell invasion and sphere formation. American Journal of Cancer Research. 2016; 6:1078-1088. 7. Knowles HJ and Harris AL. Hypoxia and oxidative stress in breast cancer. Hypoxia and tumourigenesis. Breast Cancer Research. 2001; 3:318-322. 8. Jiang Y, Wu GH, He GD, Zhuang QL, Xi QL, Zhang B, Han YS and Fang J. The effect of silencing HIF-1alpha gene in BxPC-3 cell line on glycolysis-related gene expression, cell growth, invasion, and apoptosis. Nutrition And Cancer 2015; 67:1314-1323. 9. Ruan X, Li P, Cangelosi A, Yang L and Cao H. A Long Non-coding RNA, lncLGR, Regulates Hepatic Glucokinase Expression and Glycogen Storage during Fasting. Cell Reports. 2016; 14:1867-1875. 10. da Motta LL, Ledaki I, Purshouse K, Haider S, De Bastiani MA, Baban D, Morotti M, Steers G, Wigfield S, Bridges E, Li JL, Knapp S, Ebner D, Klamt F, Harris AL and McIntyre A. The BET inhibitor JQ1 selectively impairs tumour response to hypoxia and downregulates CA9 and angiogenesis in triple negative breast cancer. Oncogene. 2017; 36:122-132. 11. Volm M and Koomagi R. Hypoxia-inducible factor (HIF-1) and its relationship to apoptosis and proliferation in lung cancer. Anticancer Research. 2000; 20:1527-1533. 12. Zhang W, Shi X, Peng Y, Wu M, Zhang P, Xie R, Wu Y, Yan Q, Liu S and Wang J. HIF-1alpha promotes epithelial-mesenchymal transition and metastasis through direct regulation of ZEB1 in colorectal cancer. PLoS One. 2015; 10:e0129603. 13. He Q, Gao Z, Yin J, Zhang J, Yun Z and Ye J. Regulation of HIF-1{alpha} activity in adipose tissue by obesity-associated factors: adipogenesis, insulin, and hypoxia. American Journal Of Physiology-Endocrinology And Metabolism. 2011; 300:E877-885. 14. Ren T, Zhang W, Liu X, Zhao H, Zhang J, Zhang J, Li X, Zhang Y, Bu X, Shi M, Yao L and Su J. Discoidin domain receptor 2 (DDR2) promotes breast cancer cell metastasis and the mechanism implicates epithelial-mesenchymal transition programme under hypoxia. Journal Of Pathology. 2014; 234:526-537. 15. Bol GM, Raman V, van der Groep P, Vermeulen JF, Patel AH, van der Wall E and van Diest PJ. Expression of the RNA helicase DDX3 and the hypoxia response in breast cancer. PLoS One. 2013; 8:e63548. 16. Perkel JM. Visiting 'noncodarnia'. Biotechniques. 2013; 54:301, 303-304. 17. Pan JJ, Xie XJ, Li X and Chen W. Long Non-coding RNAs and Drug Resistance. Asian Pacific Journal of Cancer Prevention. 2015; 16:8067-8073. 18. Wang Y, Liu X, Zhang H, Sun L, Zhou Y, Jin H, Zhang H, Zhang H, Liu J, Guo H, Nie Y, Wu K, Fan D, Zhang H and Liu L. Hypoxia-inducible lncRNA-AK058003 promotes gastric cancer metastasis by targeting gamma-synuclein. Neoplasia. 2014; 16:1094-1106. 19. Jing L, Yuan W, Ruofan D, Jinjin Y and Haifeng Q. HOTAIR enhanced aggressive biological behaviors and induced radio-resistance via inhibiting p21 in cervical cancer. Tumor Biology. 2015; 36:3611-3619. 20. Shi SJ, Wang LJ, Yu B, Li YH, Jin Y and Bai XZ. LncRNA-ATB promotes trastuzumab resistance and invasion-metastasis cascade in breast cancer. Oncotarget. 2015; 6:11652-11663. 21. Liu B, Sun L, Liu Q, Gong C, Yao Y, Lv X, Lin L, Yao H, Su F, Li D, Zeng M and Song E. A cytoplasmic NF-kappaB interacting long noncoding RNA blocks IkappaB phosphorylation and suppresses breast cancer metastasis. Cancer Cell. 2015; 27:370-381. 22. Hou P, Zhao Y, Li Z, Yao R, Ma M, Gao Y, Zhao L, Zhang Y, Huang B and Lu J. LincRNA-ROR induces epithelial-to-mesenchymal transition and contributes to breast cancer tumorigenesis and metastasis. Cell Death Disease. 2014; 5:e1287. 23. Sas-Chen A, Aure MR, Leibovich L, Carvalho S, Enuka Y, Korner C, Polycarpou-Schwarz M, Lavi S, Nevo N, Kuznetsov Y, Yuan J, Azuaje F, Oslo Breast Cancer Research Consortium SauerTorillGeislerJurgenHofvindSolveigBathenTone FAMGCKK, Ulitsky I, Diederichs S, Wiemann S, et al. LIMT is a novel metastasis inhibiting lncRNA suppressed by EGF and downregulated in aggressive breast cancer. EMBO Molecular Medicine. 2016; 8:1052-1064. 24. Kallen AN, Zhou XB, Xu J, Qiao C, Ma J, Yan L, Lu L, Liu C, Yi JS, Zhang H, Min W, Bennett AM, Gregory RI, Ding Y and Huang Y. The imprinted H19 lncRNA antagonizes let-7 microRNAs. Molecular Cell. 2013; 52:101-112. 25. Xu TP, Liu XX, Xia R, Yin L, Kong R, Chen WM, Huang MD and Shu YQ. SP1-induced upregulation of the long noncoding RNA TINCR regulates cell proliferation and apoptosis by affecting KLF2 mRNA stability in gastric cancer. Oncogene. 2015; 34:5648-5661. 26. Kurdistani SK, Arizti P, Reimer CL, Sugrue MM, Aaronson SA and Lee SW. Inhibition of tumor cell growth by RTP/rit42 and its responsiveness to p53 and DNA damage. Cancer Research. 1998; 58:4439-4444. 27. Salnikow K, Costa M, Figg WD and Blagosklonny MV. Hyperinducibility of hypoxia-responsive genes without p53/p21-dependent checkpoint in aggressive prostate cancer. Cancer Research. 2000; 60:5630-5634. 28. Salnikow K, Kluz T, Costa M, Piquemal D, Demidenko ZN, Xie K and Blagosklonny MV. The regulation of hypoxic genes by calcium involves c-Jun/AP-1, which cooperates with hypoxia-inducible factor 1 in response to hypoxia. Journal of Molecular Cell Biology. 2002; 22:1734-1741. 29. Lai LC, Su YY, Chen KC, Tsai MH, Sher YP, Lu TP, Lee CY and Chuang EY. Down-regulation of NDRG1 promotes migration of cancer cells during reoxygenation. PLoS One. 2011; 6:e24375. 30. Taketomi Y, Sugiki T, Saito T, Ishii S, Hisada M, Suzuki-Nishimura T, Uchida MK, Moon TC, Chang HW, Natori Y, Miyazawa S, Kikuchi-Yanoshita R, Murakami M and Kudo I. Identification of NDRG1 as an early inducible gene during in vitro maturation of cultured mast cells. Biochemical And Biophysical Research Communications. 2003; 306:339-346. 31. Li Y, Pan P, Qiao P and Liu R. Downregulation of N-myc downstream regulated gene 1 caused by the methylation of CpG islands of NDRG1 promoter promotes proliferation and invasion of prostate cancer cells. International Journal Of Oncology. 2015; 47:1001-1008. 32. Lee JC, Chung LC, Chen YJ, Feng TH and Juang HH. N-myc downstream-regulated gene 1 downregulates cell proliferation, invasiveness, and tumorigenesis in human oral squamous cell carcinoma. Cancer Letters. 2014; 355(2):242-252. 33. Piquemal D, Joulia D, Balaguer P, Basset A, Marti J and Commes T. Differential expression of the RTP/Drg1/Ndr1 gene product in proliferating and growth arrested cells. Biochimica Et Biophysica Acta-General Subjects. 1999; 1450:364-373. 34. Sahni S, Bae DH, Lane DJ, Kovacevic Z, Kalinowski DS, Jansson PJ and Richardson DR. The metastasis suppressor, N-myc downstream-regulated gene 1 (NDRG1), inhibits stress-induced autophagy in cancer cells. Journal of Biological Chemistry. 2014; 289:9692-9709. 35. Li EY, Huang WY, Chang YC, Tsai MH, Chuang EY, Kuok QY, Bai ST, Chao LY, Sher YP and Lai LC. Aryl hydrocarbon receptor activates NDRG1 transcription under hypoxia in breast cancer cells. Scientific Reports. 2016; 6:20808. 36. Redmond KL, Crawford NT, Farmer H, D'Costa ZC, O'Brien GJ, Buckley NE, Kennedy RD, Johnston PG, Harkin DP and Mullan PB. T-box 2 represses NDRG1 through an EGR1-dependent mechanism to drive the proliferation of breast cancer cells. Oncogene. 2010; 29:3252-3262. 37. Ambrosio S, Amente S, Sacca CD, Capasso M, Calogero RA, Lania L and Majello B. LSD1 mediates MYCN control of epithelial-mesenchymal transition through silencing of metastatic suppressor NDRG1 gene. Oncotarget. 2017; 8:3854-3869. 38. Luo EC, Chang YC, Sher YP, Huang WY, Chuang LL, Chiu YC, Tsai MH, Chuang EY and Lai LC. MicroRNA-769-3p down-regulates NDRG1 and enhances apoptosis in MCF-7 cells during reoxygenation. Scientific Reports. 2014; 4:5908. 39. Gong C, Popp MW and Maquat LE. Biochemical analysis of long non-coding RNA-containing ribonucleoprotein complexes. Methods. 2012; 58:88-93. 40. Wang Q, Li LH, Gao GD, Wang G, Qu L, Li JG and Wang CM. HIF-1alpha up-regulates NDRG1 expression through binding to NDRG1 promoter, leading to proliferation of lung cancer A549 cells. Molecular Biology Reports. 2013; 40:3723-3729. 41. Gomez-Maldonado L, Tiana M, Roche O, Prado-Cabrero A, Jensen L, Fernandez-Barral A, Guijarro-Munoz I, Favaro E, Moreno-Bueno G, Sanz L, Aragones J, Harris A, Volpert O, Jimenez B and del Peso L. EFNA3 long noncoding RNAs induced by hypoxia promote metastatic dissemination. Oncogene. 2015; 34:2609-2620. 42. Zhang S, Wang W, Liu G, Xie S, Li Q, Li Y and Lin Z. Long non-coding RNA HOTTIP promotes hypoxia-induced epithelial-mesenchymal transition of malignant glioma by regulating the miR-101/ZEB1 axis. Biomedicine Pharmacotherapy. 2017; 95:711-720. 43. Luo F, Liu X, Ling M, Lu L, Shi L, Lu X, Li J, Zhang A and Liu Q. The lncRNA MALAT1, acting through HIF-1alpha stabilization, enhances arsenite-induced glycolysis in human hepatic L-02 cells. Biochimica Et Biophysica Acta-General Subjects. 2016; 1862:1685-1695. 44. Negishi M, Wongpalee SP, Sarkar S, Park J, Lee KY, Shibata Y, Reon BJ, Abounader R, Suzuki Y, Sugano S and Dutta A. A new lncRNA, APTR, associates with and represses the CDKN1A/p21 promoter by recruiting polycomb proteins. PLoS One. 2014; 9:e95216. 45. McHugh CA, Chen CK, Chow A, Surka CF, Tran C, McDonel P, Pandya-Jones A, Blanco M, Burghard C, Moradian A, Sweredoski MJ, Shishkin AA, Su J, Lander ES, Hess S, Plath K, et al. The Xist lncRNA interacts directly with SHARP to silence transcription through HDAC3. Nature. 2015; 521:232-236. 46. Takimoto M, Tomonaga T, Matunis M, Avigan M, Krutzsch H, Dreyfuss G and Levens D. Specific binding of heterogeneous ribonucleoprotein particle protein K to the human c-myc promoter, in vitro. Journal of Biological Chemistry. 1993; 268:18249-18258. 47. Loh TJ, Moon H, Cho S, Jang H, Liu YC, Tai H, Jung DW, Williams DR, Kim HR, Shin MG, Liao DJ, Zhou J, Shi W, Zheng X and Shen H. CD44 alternative splicing and hnRNP A1 expression are associated with the metastasis of breast cancer. Oncology Reports. 2015; 34:1231-1238. 48. Roy R, Durie D, Li H, Liu BQ, Skehel JM, Mauri F, Cuorvo LV, Barbareschi M, Guo L, Holcik M, Seckl MJ and Pardo OE. hnRNPA1 couples nuclear export and translation of specific mRNAs downstream of FGF-2/S6K2 signalling. Nucleic Acids Research. 2014; 42:12483-12497. 49. Hirose T, Virnicchi G, Tanigawa A, Naganuma T, Li R, Kimura H, Yokoi T, Nakagawa S, Benard M, Fox AH and Pierron G. NEAT1 long noncoding RNA regulates transcription via protein sequestration within subnuclear bodies. Molecular Biology of The Cell. 2014; 25:169-183. 50. Lok CN and Ponka P. Identification of a hypoxia response element in the transferrin receptor gene. Journal of Biological Chemistry. 1999; 274:24147-24152. 51. Kietzmann T, Roth U and Jungermann K. Induction of the plasminogen activator inhibitor-1 gene expression by mild hypoxia via a hypoxia response element binding the hypoxia-inducible factor-1 in rat hepatocytes. Blood. 1999; 94:4177-4185. 52. Shih JW, Chiang WF, Wu ATH, Wu MH, Wang LY, Yu YL, Hung YW, Wang WC, Chu CY, Hung CL, Changou CA, Yen Y and Kung HJ. Long noncoding RNA LncHIFCAR/MIR31HG is a HIF-1alpha co-activator driving oral cancer progression. Nature Communications. 2017; 8:15874. 53. Reiter NJ, Chan CW and Mondragon A. Emerging structural themes in large RNA molecules. Current Opinion In Structural Biology. 2011; 21(3):319-326. 54. Tsai MC, Manor O, Wan Y, Mosammaparast N, Wang JK, Lan F, Shi Y, Segal E and Chang HY. Long noncoding RNA as modular scaffold of histone modification complexes. Science. 2010; 329(5992):689-693. 55. Wang H, Zheng H, Wang C, Lu X, Zhao X and Li X. Insight into HOTAIR structural features and functions as landing pads for transcription regulation proteins. Biochemical and Biophysical Research Communications. 2017; 485(3):679-685. 56. Kramer A, Green J, Pollard J, Jr. and Tugendreich S. Causal analysis approaches in Ingenuity Pathway Analysis. Bioinformatics. 2014; 30:523-530. 57. Quandt K, Frech K, Karas H, Wingender E and Werner T. MatInd and MatInspector: new fast and versatile tools for detection of consensus matches in nucleotide sequence data. Nucleic Acids Research. 1995; 23:4878-4884. 58. Zuker M and Stiegler P. Optimal computer folding of large RNA sequences using thermodynamics and auxiliary information. Nucleic Acids Research. 1981; 9(1):133-148 | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/68046 | - |
| dc.description.abstract | 缺氧的環境對侵襲性腫瘤而言是一個重要的因子並伴隨著不同的訊號傳遞途徑。近年來,各國研究學者們紛紛發現長鏈非編碼核酸(long non-conding RNA, lncRNA)能夠調節基因表現進而促進或抑制侵襲性腫瘤的進程。本實驗團隊藉由高通量次世代定序技術(next generation sequencing, NGS)找到了在缺氧下表現量顯著差異的lncRNA NDRG1-OT1_v4。藉由基因微陣列技術我們找到被NDRG1-OT1_V4抑制的下游基因之一N-myc downregulated gene 1 (NDRG1)。同時我們發現在大量表現NDRG1-OT1_V4會顯著地抑制NDRG1的核糖核酸及蛋白質表現量。在先前的研究中我們發現NDRG1蛋白質表現量會被顯著地抑制是藉由促進NDRG1參與泛素化調控路徑,但是我們仍舊不明白核糖核酸階層的抑制機制。 本篇我們發現NDRG1-OT1_V4在缺氧的細胞中是藉由抑制NDRG1促進子活性造成NDRG1表現量被抑制。接著我們發現NDRG1-OT1_V4第150–263核苷酸的位置主要是藉由增加促進子與hnRNPA1連結能力進而抑制NDRG1促進子及核糖核酸表現量。另一方面,在NDRG-OT1_v4第264–392核苷酸的位置能藉由與缺氧促進因子(hypoxia induced factor-1 alpha)結合而促進NDRG1促進子活性並增加NDRG1表現量。最終,我們首度發現長鏈非編碼核糖核酸中的不同片段對於同一個基因有著南轅北轍的調節方式。 | zh_TW |
| dc.description.abstract | Hypoxia is a crucial factor in aggressiveness of solid tumor by driving multiple signaling pathways. Recent researchers indicated that long non-coding RNA (lncRNA) could promote or inhibit tumor aggressiveness by regulating gene expression. Previous studies in our laboratory found the expression of lncRNA NDRG1-OT1_v4 significantly increased under hypoxia by next-generation sequencing (NGS). Moreover, it was discovered that the NDRG1-OT1_v4 inhibited NDRG1 at both mRNA and protein levels of NDRG1. At the protein level, NDRG1-OT1_v4 improved NDRG1 degradation via ubiquitin-mediated proteolysis pathway. However, the repressive mechanism of NDRG1 at RNA level was still unknown. In this studies, we found that NDRG1-OT1_v4 decreased the NDRG1 promoter activities when we overexpressed NDRG1-OT1_v4 under hypoxia. The fragment (150-263 nt) of NDRG1-OT1_v4 repressed NDRG1 promoter activity significantly by increasing the binding affinity of hnRNPA1. On the other hand, another fragment (264-392 nt) of NDRG1-OT1_v4 improved NDRG1 promoter activity by recruiting HIF-1 alpha. In conclusion, we found a novel mechanism that different fragments of same lncRNA could cause opposite effects on the identical target gene. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T02:11:44Z (GMT). No. of bitstreams: 1 ntu-107-R04441013-1.pdf: 1574111 bytes, checksum: 6350cc15ddfaf90ab4df123a353b6564 (MD5) Previous issue date: 2018 | en |
| dc.description.tableofcontents | 致謝 i 摘要 iii Abstract iv List of Tables viii List of Figures ix Chapter 1. Introduction 1 Hypoxia was an indispensable factor in the process of tumor formation 1 Mechanism of long non-coding RNA in cancer 2 The relationship between NDRG1 and hypoxia 2 The aim of study 3 Chapter 2. Materials and Methods 4 Cell culture and treatments 4 Plasmid DNA construction and transfection 4 RNA extraction and quantitative RT-PCR 5 Luciferase report assay 5 Nucleus/cytosol fractionation 6 RNA pull down assay (RPD assay) 6 Western blot and silver staining 7 Mass Spectrometer (MS) 7 Sited-directed mutagenesis 8 RNA immunoprecipitation assay (RIP) 8 RNA silencing 9 Statistical analysis 9 Chapter 3. Results 10 The endogenous expression levels of NDRG1-OT1_v4 were up-regulated under hypoxia in breast cell lines. 10 Different fragments of NDRG1-OT1_v4 had different function on NDRG1. 10 hnRNPA1 increased interaction with NDRG1-OT1_v4 fragment (150-263 bp) under hypoxia. 11 hnRNPA1 assisted the repression of NDRG1-OT1_v4 fragment (150-263 bp) on NDRG1 promoter activity. 12 HIF-1 alpha assisted the activation of NDRG1-OT1_v4 fragment (264-392 bp) on NDRG1 promoter activity. 13 Chapter 4. Discussion 14 The NDRG1-OT1_v4 increased under hypoxia in most breast cancer cell lines. 14 The NDRG1-OT1_v4-inhibited NDRG1 expression. 15 The NDRG1-OT1_v4 (150–263 bp) fragment could inhibit NDRG1 promoter activity by binding to hnRNPA1. 15 The NDRG1-OT1_v4 (264–392 bp) improved NDRG1 promoter activity by interacting with HIF-1 alpha. 16 The NDRG1-OT1_v4 (150–263 bp) and the NDRG1-OT1_v4 (264–392 bp) had opposite effect of its down-stream gene. 16 Limitation of study 17 Future work 18 Tables 19 Figures 22 References 33 | |
| dc.language.iso | zh-TW | |
| dc.subject | 異質核核醣核蛋白質A1(hnRNPA1) | zh_TW |
| dc.subject | 缺氧促進因子(HIF-1 alpha) | zh_TW |
| dc.subject | 長鏈非編碼核糖核酸 | zh_TW |
| dc.subject | NDRG1 | zh_TW |
| dc.subject | NDRG1-OT1_v4 | zh_TW |
| dc.subject | 缺氧 | zh_TW |
| dc.subject | hnRNPA1 | en |
| dc.subject | LncRNA | en |
| dc.subject | NDRG1-OT1_v4 | en |
| dc.subject | NDRG1 | en |
| dc.subject | HIF-1 alpha | en |
| dc.subject | Hypoxia | en |
| dc.title | 長鏈非編碼核糖核酸NDRG1-OT1_v4不同片段在缺氧的乳癌細胞中對NDRG1轉錄調控有不同的影響 | zh_TW |
| dc.title | Different Effects of LncRNA NDRG1-OT1_v4 Fragments on Regulating NDRG1 Transcription in Breast Cancer Cells Under Hypoxia | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 106-1 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 莊曜宇(Eric Y. Chuang),蔡孟勳(Mong-Hsun Tsai),胡孟君(Meng-Chun Hu) | |
| dc.subject.keyword | 缺氧,長鏈非編碼核糖核酸,NDRG1-OT1_v4,NDRG1,缺氧促進因子(HIF-1 alpha),異質核核醣核蛋白質A1(hnRNPA1), | zh_TW |
| dc.subject.keyword | Hypoxia,LncRNA,NDRG1-OT1_v4,NDRG1,HIF-1 alpha,hnRNPA1, | en |
| dc.relation.page | 40 | |
| dc.identifier.doi | 10.6342/NTU201800010 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2018-01-08 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 生理學研究所 | zh_TW |
| 顯示於系所單位: | 生理學科所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-107-1.pdf 未授權公開取用 | 1.54 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
