Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 生物資源暨農學院
  3. 動物科學技術學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67974
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor蘇忠楨
dc.contributor.authorYu-Chun Chouen
dc.contributor.author周佑峻zh_TW
dc.date.accessioned2021-06-17T02:01:34Z-
dc.date.available2019-08-01
dc.date.copyright2017-08-01
dc.date.issued2017
dc.date.submitted2017-07-18
dc.identifier.citation郭猛德、林晉卿、郭春芳。2000。豬糞尿污泥之處理與利用。畜產研究 33:4,頁397-408。
郭猛德、蕭庭訓、王政騰。2008。養豬三段式廢水與污泥處理技術。畜牧半月刊 81:5,頁 29-38。
黃雅祺、劉華美。2012。美國生質能推動政策與法制之研究。經濟部能源局,能源論文,26。
謝政哲。2015。畜牧業廢棄污泥產製生質柴油之技術研究。國立臺灣大學生物資源暨農學院動物科學技術系碩士論文。
經濟部能源局。2016。2016年能源產業技術白皮書。Retrieved March 3, 2017
Ağdağ, O., and Sponza, D. (2007). Co-digestion of mixed industrial sludge with municipal solid wastes in anaerobic simulated landfilling bioreactors. J Hazard Mater 140, 75–85.
Amon, T., Amon, Kryvoruchko, Bodiroza, Pötsch, and Zollitsch (2006). Optimising methane yield from anaerobic digestion of manure: Effects of dairy systems and of glycerine supplementation. Int. Congr. Ser. 1293, 217-220.
Andrew, D. E., Lenore, S. C., Arnold, E. G. (1995) Standard Methods for the Examination of Water and Wastewater
Atabani, A.E., Silitonga, A.S., Badruddin, I., Mahlia, T.M.I., Masjuki, H.H., and Mekhilef (2012). A comprehensive review on biodiesel as an alternative energy resource and its characteristics. Renew Sustain Energy Rev 16, 2070–2093.
Ayoub, M., and Abdullah, A. (2012). Critical review on the current scenario and significance of crude glycerol resulting from biodiesel industry towards more sustainable renewable energy industry. Renew Sustain Energy Rev 16, 2671–2686.
Bajaj, A., Lohan, P., Jha, P., and Mehrotra, R. (2010). Biodiesel production through lipase catalyzed transesterification: An overview. Journal of Molecular Catalysis B: Enzymatic 62, 9–14.
Bujoczek, Oleszkiewicz, Sparling, and Cenkowski (2000). High Solid Anaerobic Digestion of Chicken Manure. J Agr Eng Res 76, 51–60.
Canakci, M. (2007). The potential of restaurant waste lipids as biodiesel feedstocks. Bioresource technology 98, 183-190.
Castrillón, Fernández-Nava, Ormaechea, and Marañón (2011). Optimization of biogas production from cattle manure by pre-treatment with ultrasound and co-digestion with crude glycerin. Bioresource Technol 102, 7845–7849.
Chen, C.-Y., Yeh, K.-L., Aisyah, R., Lee, D.-J., and Chang, J.-S. (2011). Cultivation, photobioreactor design and harvesting of microalgae for biodiesel production: A critical review. Bioresource Technol 102, 71–81.
Choi, O.K., Song, J.S., Cha, D.K., and Lee, J.W. (2014). Biodiesel production from wet municipal sludge: evaluation of in situ transesterification using xylene as a cosolvent. Bioresour. Technol. 166, 51–56.
De Mes, T., Stams, A., Reith, J., and Zeeman, G. (2003). Methane production by anaerobic digestion of wastewater and solid wastes. Bio-methane & Bio-hydrogen, 58-102.
Dufreche, S., Hernandez, French, Sparks, Zappi, and Alley (2007). Extraction of Lipids from Municipal Wastewater Plant Microorganisms for Production of Biodiesel. J Am Oil Chem Soc 84, 181–187.
Eisberg, N. (2006). Harvesting energy. Chemistry and industry, 24-25.
Fernández, Pérez, and Romero, L.I. (2008). Effect of substrate concentration on dry mesophilic anaerobic digestion of organic fraction of municipal solid waste (OFMSW). Bioresource Technol 99, 6075–6080.
Fountoulakis, M.S., Petousi, I., and Manios, T. (2010). Co-digestion of sewage sludge with glycerol to boost biogas production. Waste Manag 30, 1849–1853.
Freedman, B., Pryde, E., and Mounts, T. (1984). Variables affecting the yields of fatty esters from transesterified vegetable oils. Journal of the American Oil Chemists Society 61, 1638-1643.
Freedman, B., Butterfield, R., and Pryde, E. (1986). Transesterification kinetics of soybean oil. Journal of the American Oil Chemists’ Society 63, 1375–1380.
Fricke, K., Santen, H., Wallmann, R., Hüttner, A., and Dichtl, N. (2007). Operating problems in anaerobic digestion plants resulting from nitrogen in MSW. Waste Manage 27, 30–43.
Fukuda, H., Kondo, A., and Noda, H. (2001). Biodiesel fuel production by transesterification of oils. J Biosci Bioeng 92, 405–416.
Go, A., Sutanto, S., Ong, L., Tran-Nguyen, P., Ismadji, S., and Ju, Y.-H. (2016). Developments in in-situ (trans) esterification for biodiesel production: A critical review. Renew Sustain Energy Rev 60, 284–305.
Goering, CE, Schwab, AW, Daugherty, MJ, Pryde, EH, and Heakin, AJ (1982). Fuel properties of eleven vegetable oils. Trans AsAE 25, 1472–1477.
Guermoud, Ouadjnia, Abdelmalek, Taleb, and addou (2009). Municipal solid waste in Mostaganem city (Western Algeria). Waste Manage 29, 896–902.
Holm-Nielsen, J.B., Al Seadi, T., (2004). Manure-based biogas systems – Danish Experience in Resource Recovery and Reuse in Organic Solid Waste Management. IWA Publishing, pp. 377-394. ISBN 1 84339 054X (Chapter 17).
Holm-Nielsen, J.B., Seadi, A., and Oleskowicz-Popiel (2009). The future of anaerobic digestion and biogas utilization. Bioresource Technol 100, 5478–5484.
IPCC. 2013. Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change.
Khalid, A., Arshad, M., Anjum, M., Mahmood, T., and Dawson, L. (2011). The anaerobic digestion of solid organic waste. Waste Manage 31, 1737–1744.
Kim, J., Park, C., Kim, T.-H., Lee, M., Kim, S., Kim, S.-W., and Lee, J. (2003). Effects of various pretreatments for enhanced anaerobic digestion with waste activated sludge. Journal of Bioscience and Bioengineering 95, 271–275.
Kim, J., Oh, B., Chun, Y., and Kim, S. (2006). Effects of temperature and hydraulic retention time on anaerobic digestion of food waste. J Biosci Bioeng 102, 328–332.
Knothe, G., and Razon, L. (2017). Biodiesel fuels. Prog Energ Combust 58, 36–59.
Kolesárová, N., Hutňan, M., Bodík, I., and Špalková, V. (2011). Utilization of Biodiesel By-Products for Biogas Production. J Biomed Biotechnol 2011, 126798.
Kosa, M., and Ragauskas, A. (2011). Lipids from heterotrophic microbes: advances in metabolism research. Trends Biotechnol 29, 53–61.
Kroiss, H. (2004). What is the potential for utilizing the resources in sludge? Water Sci. Technol. 49, 1–10.
Kulkarni, M., and Dalai, A. (2006). Waste Cooking Oil - An Economical Source for Biodiesel: A Review. Industrial & Engineering Chemistry Research 45, 2901–2913.
Kwon, E., Kim, S., Jeon, Y., and Yi, H. (2012). Biodiesel Production from Sewage Sludge: New Paradigm for Mining Energy from Municipal Hazardous Material. Environ Sci Technol. 46, 10222-10228.
Lam, M., Lee, K., and Mohamed, A. (2010). Homogeneous, heterogeneous and enzymatic catalysis for transesterification of high free fatty acid oil (waste cooking oil) to biodiesel: A review. Biotechnology Advances 28, 500–518.
Lee, D., Behera, S., Kim, J., and Park, H.S. (2009). Methane production potential of leachate generated from Korean food waste recycling facilities: A lab-scale study. Waste Manage 29, 876–882.
Lee, and Lavoie, J.M. (2013). From first- to third-generation biofuels: Challenges of producing a commodity from a biomass of increasing complexity. Animal Frontiers 3, 6–11.
Li, Y., Park, S., and Zhu, J. (2011). Solid-state anaerobic digestion for methane production from organic waste. Renew Sustain Energy Rev 15, 821–826.
Liang, Y., Sarkany, N., and Cui, Y. (2009). Biomass and lipid productivities of Chlorella vulgaris under autotrophic, heterotrophic and mixotrophic growth conditions. Biotechnology Letters 31, 1043–1049.
Lotero, E., Liu, Y., Lopez, D.E., Suwannakarn, K., Bruce, D.A., and Goodwin, J.G. (2005). Synthesis of biodiesel via acid catalysis. Industrial & engineering chemistry research 44, 5353-5363.
Leung, D., Wu, X., and Leung, M.K.H. (2010). A review on biodiesel production using catalyzed transesterification. Appl Energ 87, 1083–1095.
Ma, F., Clements, L., and Hanna, M.A. (1998). The effects of catalyst, free fatty acids, and water on transesterification of beef tallow. Transactions of the ASAE-American Society of Agricultural Engineers 41, 1261-1264.
Ma, F., and Hanna, M.A. (1999). Biodiesel production: a review. Bioresource technology 70, 1-15.
Manzano-Agugliaro, Sanchez-Muros, M.J., Barroso, F.G., Martínez-Sánchez, Rojo, and Pérez-Bañón (2012). Insects for biodiesel production. Renew Sustain Energy Rev 16, 3744–3753.
Mondala, A., Liang, K., Toghiani, H., Hernandez, R., and French, T. (2009). Biodiesel production by in situ transesterification of municipal primary and secondary sludges. Bioresour. Technol. 100, 1203–1210.
Naik, S.N., Goud, V., Rout, P., and Dalai, A. (2009). Production of first and second generation biofuels: A comprehensive review. Renew Sustain Energy Rev 14, 578–597
Olkiewicz, Fortuny, Stüber, Fabregat, Font, and Bengoa, C. (2012). Evaluation of Different Sludges from WWTP as a Potential Source for Biodiesel Production. Procedia Eng 42, 634–643.
Pachauri N., and He B., (2006) Value-added Utilization of Crude Glycerol from Biodiesel Production: A Survey of Current Research Activities, in Proceeding of the ASABE Annual International Meeting.
Pastore, C., Lopez, A., Lotito, V., and Mascolo, G. (2013). Biodiesel from dewatered wastewater sludge: A two-step process for a more advantageous production. Chemosphere 92, 667–673.
Persson, M., Jönsson, O., Wellinger, A., (2006). Biogas upgrading to vehicle fuel standards and grid injection. IEA Bioenergy, Task 37 – Energy from Biogas and Landfill Gas.
Pryde, E. (1983). Vegetable oils as diesel fuels: overview. Journal of the American Oil Chemists’ Society 60, 1557-1558.
Pryde, E. (1984). Vegetable oils as fuel alternatives—symposium overview. Journal of the American Oil Chemists Society 61, 1609-1610.
Quispe, C., Coronado, C., and Jr., J. (2013). Glycerol: Production, consumption, prices, characterization and new trends in combustion. Renew Sustain Energy Rev 27, 475–493.
Rasi, Veijanen, and Rintala (2007). Trace compounds of biogas from different biogas production plants. Energy 32, 1375–1380.
Ren, N., Liu, M., Wang, A., Ding, J., and Li, H. (2003). Organic acids conversion in methanogenic-phase reactor of the two-phase anaerobic process. Huan jing ke xue 24, 89-93.
Revellame, E., Hernandez, R., French, W., Holmes, W., and Alley, E. (2010). Biodiesel from activated sludge through in situ transesterification. J Chem Technol Biot 85, 614–620.
Revellame, E., Hernandez, R., French, W., Holmes, W., Alley, E., and Robert, C. (2011). Production of biodiesel from wet activated sludge. J Chem Technol Biot 86, 61–68.
Robra, da Cruz, S., de Oliveira, A.M., Neto, A., and Santos, J.V. (2010). Generation of biogas using crude glycerin from biodiesel production as a supplement to cattle slurry. Biomass Bioenergy 34, 1330–1335.
Sawayama, S., Tada, C., Tsukahara, K., and Yagishita, T. (2004). Effect of ammonium addition on methanogenic community in a fluidized bed anaerobic digestion. J Biosci Bioeng 97, 65–70.
Shay, EG (1993). Diesel fuel from vegetable oils: status and opportunities. Biomass and Bioenergy 4, 227-242.
Siegert, I., and Banks, C. (2005). The effect of volatile fatty acid additions on the anaerobic digestion of cellulose and glucose in batch reactors. Process Biochem 40, 3412–3418.
Siddiquee, M., and Rohani, S. (2011). Lipid extraction and biodiesel production from municipal sewage sludges: A review. Renew Sustain Energy Rev 15, 1067–1072.
Siles, J.A., Martín, M.A., Chica, A.F., and Martín, A. (2010). Anaerobic co-digestion of glycerol and wastewater derived from biodiesel manufacturing. Bioresour. Technol. 101, 6315–6321.
Sitepu, I., Garay, L., Sestric, R., Levin, D., Block, D., German, B., and Boundy-Mills, K. (2014). Oleaginous yeasts for biodiesel: Current and future trends in biology and production. Biotechnol Adv 32, 1336–1360.
Spinosa, L., Ayol, A., Baudez, J.-C., Canziani, R., Jenicek, P., Leonard, A., Rulkens, W., Xu, G., and Dijk, L. (2011). Sustainable and Innovative Solutions for Sewage Sludge Management. Water 3, 702–717.
Sterling, M.C.Jr., Lacey, R.E., Engler, C.R., and Ricke, S.C. (2001). Effects of ammonia nitrogen on H2 and CH4 production during anaerobic digestion of dairy cattle manure. Bioresource Technol 77, 9–18.
Su, J.-J., Liu, B.-Y., and Chang, Y.-C. (2003). Emission of greenhouse gas from livestock waste and wastewater treatment in Taiwan. Agric Ecosyst Environ 95, 253–263.
Su, J.-J., Chang, Y.-C., Chen, Y.-J., Chang, K.-C., and Lee, S.-Y. (2013). Hydrogen sulfide removal from livestock biogas by a farm-scale bio-filter desulfurization system. Water Science and Technology 67, 1288-1293.
Su, J.-J., Chen, Y.-J., and Chang, Y.-C. (2014). A study of a pilot-scale biogas bio-filter system for utilization on pig farms. The Journal of Agricultural Science 152, 217-224.
Tran-Nguyen, P.L., Go, A.W., Ismadji, S., and Ju, Y.-H.H. (2015). Transesterification of activated sludge in subcritical solvent mixture. Bioresour. Technol. 197, 30–36.
Trzcinski, A., and Stuckey, D. (2010). Treatment of municipal solid waste leachate using a submerged anaerobic membrane bioreactor at mesophilic and psychrophilic temperatures: Analysis of recalcitrants in the permeate using GC-MS. Water Res 44, 671–680.
United States Environmental Protection Agency (EPA). 2015. Renewable Fuel Standard: Proposed Renewable Fuel Standards for 2017, and the Biomass-Based Diesel Volume for 2018. Retrieved March 3, 2017, from https://19january2017snapshot.epa.gov/renewable-fuel-standard-program/proposed-renewable-fuel-standards-2017-and-biomass-based-diesel_.html
Usher, P., Ross, A., Camargo-Valero, M., Tomlin, A., and Gale, W. (2014). An overview of the potential environmental impacts of large-scale microalgae cultivation. Adv Biochem Eng Biot 5, 331–349.
Wang, Y., Zhang, Y., Wang, J., and Meng, L. (2009). Effects of volatile fatty acid concentrations on methane yield and methanogenic bacteria. Biomass and Bioenergy 33, 848–853.
Ward, A., Hobbs, P., Holliman, P., and Jones, D. (2008). Optimisation of the anaerobic digestion of agricultural resources. Bioresource Technol 99, 7928–7940.
Weisz, PB, Haag, WO, and Rodewald, PG (1979). Catalytic production of high-grade fuel (gasoline) from biomass compounds by shape-selective catalysis. Science.
Weiland, P. (2006). State of the art of solid-state digestion–recent developments. In: Rohstoffe, F.N. (Ed.), Solid-State Digestion–State of the Art and Further R&D Requirements, vol. 24. Gulzower Fachgespräche, pp. 22–38.
Weiland, P. (2010). Biogas production: current state and perspectives. Appl Microbiol Biot 85, 849–860.
You, Y.-D., Shie, J.-L., Chang, C.-Y., Huang, S.-H., Pai, C.-Y., Yu, Y.-H., and Chang, C. (2008). Economic Cost Analysis of Biodiesel Production: Case in Soybean Oil. Energy Fuels 22, 182–189.
Zhu, B., Gikas, P., Zhang, R., Lord, J., Jenkins, B., and Li, X. (2009). Characteristics and biogas production potential of municipal solid wastes pretreated with a rotary drum reactor. Bioresource Technol 100, 1122–1129.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67974-
dc.description.abstract現今的人類活動促使大量對石化燃料的需求及廢水需要處理。污泥為廢水處理過程中會產生的廢棄物,其處理成本約佔總廢水處理成本的50~60%。本研究的目的為評估以屠宰場污泥餅轉酯化產製生質柴油及利用其副產物粗甘油進行厭氧共消化生產沼氣之可行性。在轉酯化試驗中,屠宰場污泥餅在55℃下與甲醇及濃硫酸或鹽酸進行轉酯化,試驗分為三種催化劑濃度 (2、4及8%) 與四個反應時間 (4、8、16及24小時)。在4%濃硫酸及鹽酸下反應24小時分別可得到最高2.78±0.19及2.67±0.08%的FAME產率。此外,以污泥餅產製的FAME主要皆由C16:0、C16:1、C18:0及C18:1之脂肪酸甲酯組成。在粗甘油厭氧共消化試驗中,利用以濃硫酸催化所得的粗甘油以三種不同添加量 (2、4及8%) 與養牛廢水進行共消化試驗,試驗在35℃下反應14天。雖然8%組有最高的甲烷產氣量,其過多的揮發性脂肪酸造成pH值過低進而使其化學需氧量、生化需氧量及懸浮固形物的去除率皆下降。添加2與4%粗甘油組相較於控制組分別提高了177與226%的甲烷產氣量,且無減低化學需氧量、生化需氧量及懸浮固形物的去除率。然而,研究結果顯示不論額外添加多少濃度的粗甘油,皆會降低槽體總固形物及揮發性固形物的去除率。總結而言,透過本研究所建立的轉酯化及厭氧共消化反應的整合平台,屠宰場污泥餅可以作為生產生質能源的原料。zh_TW
dc.description.abstractThe human activities nowadays had given rise to a huge demand on petroleum-based fuels and also contributed to numerous wastewaters to process. Sludge is a waste formed during wastewater treatment process and its treating cost 50−60% of total wastewater treatment. The aim of this study is to evaluate the feasibility of producing biodiesel and biogas by transesterification of slaughterhouse sludge cake and anaerobic co-digestion of its processing by-product, crude glycerol, respectively. For biodiesel producing experiments, sludge cake was transesterified with methanol and sulfuric acid or hydrochloric acid at 55℃. Three catalyst concentrations (2, 4, and 8%, v/v) under four reaction periods (4, 8, 16, and 24 hrs) were applied. The highest FAME yield of 2.78±0.19 and 2.67±0.08% can be achieved when 4% (v/v) of sulfuric acid and hydrochloric acid added for 24-h reaction, respectively. Methyl esters of palmitic acid (C16:0), palmitoleic acid (C16:1), stearic acid (C18:0), and oleic acid (C18:1) were found to be the major components of biodiesel in this study. To clarify the effects of crude glycerol addition on biogas production and wastewater treatment, different ratios (2, 4, and 8%, v/v) of crude glycerol from the previous experiment were mixed with dairy wastewater and inoculated with anaerobic dairy sludge. The mixture was then incubated at 35℃ for 14 days. Although 8% group showed the highest total methane production, low pH resulted from volatile fatty acid (VFA) accumulation decreased the removal efficiency of chemical oxygen demand (COD), biochemical oxygen demand (BOD), and suspended solids (SS). Addition of 2 and 4% of crude glycerol increased total methane production up to 177 and 226% compared to the control group, respectively. Moreover, both of them didn’t show negative effects on COD, BOD, and SS removal efficiency. Additionally, addition of crude glycerol decreased removal efficiency of total solids (TS) and volatile solids (VS) regardless of the volume added. In conclusion, slaughterhouse sludge cake has been proven to be a feedstock for producing bioenergy through transesterification and anaerobic co-digestion technical platform.en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:01:34Z (GMT). No. of bitstreams: 1
ntu-106-R04626018-1.pdf: 5287543 bytes, checksum: 92663f98e747768c3fd39c7059b3e3c9 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents謝誌 II
摘要 IV
Abstract V
目錄 VII
圖目錄 X
表目錄 XII
第壹章、前言 1
一、 研究動機及目的 1
第貳章、文獻回顧 2
一、 廢水處理 2
(一) 污水、廢水處理設施 2
(二) 國內及國外畜牧業廢水處理設施 2
(三) 廢水處理系統之污泥及污泥處理系統 5
(四) 國內及國外污泥處理方式 8
二、 生質柴油 8
(一) 生質柴油之起源 8
(二) 生質柴油的定義 9
(三) 生質柴油之特點 9
(四) 製作生質柴油之原料 10
(五) 生質柴油產製方式 12
(六) 影響轉酯化反應之因素 14
(七) 各國及國內之生質柴油生產、使用現況及政策 17
(八) 污泥產製生質柴油相關文獻探討 19
三、 粗甘油厭氧共消化 23
(一) 厭氧消化 23
(二) 厭氧消化步驟 23
(三) 影響厭氧消化之因子 24
(四) 沼氣之介紹及應用 26
(五) 厭氧共消化 27
(六) 粗甘油 27
(七) 粗甘油厭氧共消化相關文獻探討 29
第參章、材料與方法 31
一、 生質柴油 31
(一) 原料收集與製備 31
(二) 試驗設計 31
(三) 統計分析 31
(四) 生質柴油產製流程 32
(五) 脂肪酸甲酯 (Fatty acid methyl ester, FAME) 含量及組成分分析 34
二、 粗甘油與養牛廢水厭氧共消化 35
(一) 原料收集與製備 35
(二) 試驗設計 35
(三) 統計分析 36
(四) 厭氧共消化反應槽設計 36
(五) 厭氧共消化實驗流程 37
(六) 化學需氧量 (COD) 之檢測 38
(七) 生化需氧量 (BOD) 之檢測 39
(八) 懸浮固形物 (SS) 之檢測 41
(九) 總固形物 (TS) 及揮發性固形物 (VS) 之檢測 42
(十) pH值之檢測 43
(十一) 揮發性脂肪酸 (Volatile Fatty Acids, VFAs) 之檢測 43
(十二) 沼氣氣體組成之分析 44
第肆章、結果與討論 45
一、 屠宰場污泥餅轉酯化產製生質柴油試驗 45
(一) 污泥餅性質分析 45
(二) 以濃硫酸作為催化劑轉酯化試驗結果 45
(三) 以鹽酸作為催化劑轉酯化試驗結果 52
(四) 以濃硫酸及鹽酸作為轉酯化反應催化劑之比較 58
(五) 與各文獻結果之比較與討論 58
二、 粗甘油與養牛廢水厭氧共消化產製沼氣試驗 62
(一) 原料基本性質分析 62
(二) 沼氣產量分析 62
(三) 甲烷濃度分析 66
(四) 甲烷產量分析 67
(五) pH值分析 69
(六) 揮發性脂肪酸(Volatile fatty acids, VFAs)分析 70
(七) 沼氣生產效率分析 74
(八) 總固形物 (TS) 及揮發性固形物 (VS) 去除效率分析 75
(九) 單位揮發性固形物產沼氣效率 (Specific biogas production) 分析 77
(十) 水質分析 79
(十一) 與各文獻結果之比較與討論 83
第伍章、結論與未來研究方向 86
第陸章、參考文獻 87
附錄 96
dc.language.isozh-TW
dc.subject脂肪酸甲酯zh_TW
dc.subject沼氣zh_TW
dc.subject生質柴油zh_TW
dc.subject轉酯化zh_TW
dc.subject污泥zh_TW
dc.subject厭氧共消化zh_TW
dc.subject粗甘油zh_TW
dc.subjectBiogasen
dc.subjectTransesterificationen
dc.subjectBiodieselen
dc.subjectFAMEen
dc.subjectCrude glycerolen
dc.subjectAnaerobic co-digestionen
dc.subjectSludgeen
dc.title屠宰場污泥餅轉酯化及其副產物粗甘油進行厭氧共消化產製生質能源之研究zh_TW
dc.titleResearch of bioenergy production by transesterification of slaughterhouse sludge cake and anaerobic co-digestion of its processing by-product crude glycerolen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee徐世勳,周楚洋
dc.subject.keyword污泥,轉酯化,生質柴油,脂肪酸甲酯,粗甘油,厭氧共消化,沼氣,zh_TW
dc.subject.keywordSludge,Transesterification,Biodiesel,FAME,Crude glycerol,Anaerobic co-digestion,Biogas,en
dc.relation.page98
dc.identifier.doi10.6342/NTU201701654
dc.rights.note有償授權
dc.date.accepted2017-07-19
dc.contributor.author-college生物資源暨農學院zh_TW
dc.contributor.author-dept動物科學技術學研究所zh_TW
顯示於系所單位:動物科學技術學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
5.16 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved