請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67963
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張俊彥(Chun-Yen Chang) | |
dc.contributor.author | Chia-Ching Wu | en |
dc.contributor.author | 吳佳靜 | zh_TW |
dc.date.accessioned | 2021-06-17T02:00:53Z | - |
dc.date.available | 2022-07-27 | |
dc.date.copyright | 2017-07-27 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-19 | |
dc.identifier.citation | 1. Ahern, J. (1999). Spatial concepts, planning strategies, and future scenarios: a framework method for integrating landscape ecology and landscape planning. In Landscape Ecological Analysis (pp. 175-201). Springer New York.
2. Ahern, J. (2006). Theories, methods and strategies for sustainable landscape planning. From landscape research to landscape planning. Aspects of integration, education and application. Springer, Dordrecht, NL, 119-131. 3. Alanen, E. L., Hyvönen, T., Lindgren, S., Härmä, O., & Kuussaari, M. (2011). Differential responses of bumblebees and diurnal Lepidoptera to vegetation succession in long‐term set‐aside. Journal of Applied Ecology, 48(5), 1251-1259. 4. Albrecht, M., Duelli, P., Müller, C., Kleijn, D., & Schmid, B. (2007). The Swiss agri‐environment scheme enhances pollinator diversity and plant reproductive success in nearby intensively managed farmland. Journal of Applied Ecology, 44(4), 813-822. 5. Alison, J., Duffield, S. J., Noordwijk, C. G., Morecroft, M. D., Marrs, R. H., Saccheri, I. J., & Hodgson, J. A. (2016). Spatial targeting of habitat creation has the potential to improve agri‐environment scheme outcomes for macro‐moths. Journal of Applied Ecology, 53(6), 1814-1822. 6. Altieri, M. A. (1999). The ecological role of biodiversity in agroecosystems. Agriculture, Ecosystems & Environment, 74(1), 19-31. 7. Anderson, T. J., Berry, A. J., Amos, J. N., & Cook, J. M. (1988). Spool-and-line tracking of the New Guinea spiny bandicoot, Echymipera kalubu (Marsupialia, Peramelidae). Journal of Mammalogy, 69(1), 114-120. 8. Baeta, R., Bélisle, M., & Garant, D. (2012). Agricultural intensification exacerbates female-biased primary brood sex-ratio in tree swallows. Landscape ecology, 27(10), 1395-1405. 9. Bailey, D., Schmidt‐Entling, M. H., Eberhart, P., Herrmann, J. D., Hofer, G., Kormann, U., & Herzog, F. (2010). Effects of habitat amount and isolation on biodiversity in fragmented traditional orchards. Journal of Applied Ecology, 47(5), 1003-1013. 10. Bengtsson, J., Ahnström, J., & WEIBULL, A. C. (2005). The effects of organic agriculture on biodiversity and abundance: a meta‐analysis. Journal of applied ecology, 42(2), 261-269. 11. Benton, T. G., Vickery, J. A., & Wilson, J. D. (2003). Farmland biodiversity: is habitat heterogeneity the key?. Trends in Ecology & Evolution, 18(4), 182-188. 12. Blair, R. (2004). The effects of urban sprawl on birds at multiple levels of biological organization. Ecology and Society, 9(5), 2. 13. Clough, Y., Holzschuh, A., Gabriel, D., Purtauf, T., Kleijn, D., Kruess, A., ... & Tscharntke, T. (2007b). Alpha and beta diversity of arthropods and plants in organically and conventionally managed wheat fields. Journal of Applied Ecology, 44(4), 804-812. 14. Clough, Y., Kruess, A., & Tscharntke, T. (2007a). Local and landscape factors in differently managed arable fields affect the insect herbivore community of a non‐crop plant species. Journal of Applied Ecology, 44(1), 22-28. 15. Cole, L. J., Brocklehurst, S., Elston, D. A., & McCracken, D. I. (2012). Riparian field margins: can they enhance the functional structure of ground beetle (Coleoptera: Carabidae) assemblages in intensively managed grassland landscapes?. Journal of Applied Ecology, 49(6), 1384-1395. 16. Concepción, E. D., Díaz, M., & Baquero, R. A. (2008). Effects of landscape complexity on the ecological effectiveness of agri-environment schemes. Landscape Ecology, 23(2), 135-148. 17. Concepción, E. D., Díaz, M., Kleijn, D., Baldi, A., Batary, P., Clough, Y., ... & Marshall, E. J. P. (2012). Interactive effects of landscape context constrain the effectiveness of local agri‐environmental management. Journal of Applied Ecology, 49(3), 695-705. 18. Cooper, T., Arblaster, K., Baldock, D., Farmer, M., Beaufoy, G., Jones, G., ... & Wascher, D. (2007). Final report for the study on HNV indicators for evaluation. Institute for European Environmental Policy, London, 35. 19. Dainese, M., Montecchiari, S., Sitzia, T., Sigura, M., & Marini, L. (2017). High cover of hedgerows in the landscape supports multiple ecosystem services in Mediterranean cereal fields. Journal of Applied Ecology, 54(2), 380-388. 20. Department of Agriculture, Environment and Rural Affairs. Farmlands and grasslands. (3 May 2017). Retrieved from https://www.daera-ni.gov.uk/articles/farmlands-and-grasslands. 21. Devictor, V., & Jiguet, F. (2007). Community richness and stability in agricultural landscapes: the importance of surrounding habitats. Agriculture, ecosystems & environment, 120(2), 179-184. 22. Dorresteijn, I., Teixeira, L., Von Wehrden, H., Loos, J., Hanspach, J., Stein, J. A. R., & Fischer, J. (2015). Impact of land cover homogenization on the Corncrake (Crex crex) in traditional farmland. Landscape Ecology, 30(8), 1483-1495. 23. Douglas, D. J., Vickery, J. A., & Benton, T. G. (2009). Improving the value of field margins as foraging habitat for farmland birds. Journal of Applied Ecology, 46(2), 353-362. 24. Dramstad, W., Olson, J. D., & Forman, R. T. (1996). Landscape ecology principles in landscape architecture and land-use planning. Island press. 25. Dubois, G. F., Vignon, V., Delettre, Y. R., Rantier, Y., Vernon, P., & Burel, F. (2009). Factors affecting the occurrence of the endangered saproxylic beetle Osmoderma eremita (Scopoli, 1763)(Coleoptera: Cetoniidae) in an agricultural landscape. Landscape and Urban Planning, 91(3), 152-159. 26. Duchamp, J. E., & Swihart, R. K. (2008). Shifts in bat community structure related to evolved traits and features of human-altered landscapes. Landscape Ecology, 23(7), 849-860. 27. Duelli, P. (1997). Biodiversity evaluation in agricultural landscapes: an approach at two different scales. Agriculture, ecosystems & environment, 62(2), 81-91. 28. Duflot, R., Aviron, S., Ernoult, A., Fahrig, L., & Burel, F. (2015). Reconsidering the role of ‘semi-natural habitat’in agricultural landscape biodiversity: a case study. Ecological Research, 30(1), 75-83. 29. Dunning, J. B., Danielson, B. J., & Pulliam, H. R. (1992). Ecological processes that affect populations in complex landscapes. Oikos, 169-175. 30. Ekroos, J., Rundlöf, M., & Smith, H. G. (2013). Trait-dependent responses of flower-visiting insects to distance to semi-natural grasslands and landscape heterogeneity. Landscape ecology, 28(7), 1283-1292. 31. Fahrig, L., & Nuttle, W. K. (2005). Population ecology in spatially heterogeneous environments. In Ecosystem function in heterogeneous landscapes (pp. 95-118). Springer New York. 32. Fahrig, L., Baudry, J., Brotons, L., Burel, F. G., Crist, T. O., Fuller, R. J., ... & Martin, J. L. (2011). Functional landscape heterogeneity and animal biodiversity in agricultural landscapes. Ecology letters, 14(2), 101-112. 33. Forman, R. T. T. (1995). Land mosaic. Cambridge: Cambridge University presses. 34. Forman, R. T., & Godron, M. (1986). Landscape ecology (pp. 21-62). New York etc.: Wiley and sons. 35. Forrest, J. R., Thorp, R. W., Kremen, C., & Williams, N. M. (2015). Contrasting patterns in species and functional‐trait diversity of bees in an agricultural landscape. Journal of Applied Ecology, 52(3), 706-715. 36. Frey‐Ehrenbold, A., Bontadina, F., Arlettaz, R., & Obrist, M. K. (2013). Landscape connectivity, habitat structure and activity of bat guilds in farmland‐dominated matrices. Journal of Applied Ecology, 50(1), 252-261. 37. Fuentes‐Montemayor, E., Goulson, D., & Park, K. J. (2011). The effectiveness of agri‐environment schemes for the conservation of farmland moths: assessing the importance of a landscape‐scale management approach. Journal of Applied Ecology, 48(3), 532-542. 38. Gabriel, D., Sait, S. M., Kunin, W. E., & Benton, T. G. (2013). Food production vs. biodiversity: comparing organic and conventional agriculture. Journal of Applied Ecology, 50(2), 355-364. 39. Gagné, S. A., & Fahrig, L. (2007). Effect of landscape context on anuran communities in breeding ponds in the National Capital Region, Canada. Landscape Ecology, 22(2), 205-215. 40. Gagné, S. A., & Fahrig, L. (2007). Effect of landscape context on anuran communities in breeding ponds in the National Capital Region, Canada. Landscape Ecology, 22(2), 205-215. 41. Gelling, M., Macdonald, D. W., & Mathews, F. (2007). Are hedgerows the route to increased farmland small mammal density? Use of hedgerows in British pastoral habitats. Landscape Ecology, 22(7), 1019-1032. 42. Grashof-Bokdam, C. J., & van Langevelde, F. (2005). Green veining: landscape determinants of biodiversity in European agricultural landscapes. Landscape Ecology, 20(4), 417-439. 43. Haenke, S., Kovács‐Hostyánszki, A., Fründ, J., Batáry, P., Jauker, B., Tscharntke, T., & Holzschuh, A. (2014). Landscape configuration of crops and hedgerows drives local syrphid fly abundance. Journal of Applied Ecology, 51(2), 505-513. 44. Haenke, S., Scheid, B., Schaefer, M., Tscharntke, T., & Thies, C. (2009). Increasing syrphid fly diversity and density in sown flower strips within simple vs. complex landscapes. Journal of Applied Ecology, 46(5), 1106-1114. 45. Hendrickx, F., MAELFAIT, J. P., Van Wingerden, W., Schweiger, O., Speelmans, M., Aviron, S., ... & Burel, F. (2007). How landscape structure, land‐use intensity and habitat diversity affect components of total arthropod diversity in agricultural landscapes. Journal of Applied Ecology, 44(2), 340-351. 46. Henle, K., Alard, D., Clitherow, J., Cobb, P., Firbank, L., Kull, T., ... & Wascher, D. (2008). Identifying and managing the conflicts between agriculture and biodiversity conservation in Europe–A review. Agriculture, Ecosystems & Environment, 124(1), 60-71. 47. Herrmann, J. D., Bailey, D., Hofer, G., Herzog, F., & Schmidt-Entling, M. H. (2010). Spiders associated with the meadow and tree canopies of orchards respond differently to habitat fragmentation. Landscape ecology, 25(9), 1375-1384. 48. Hiron, M., Berg, Å., Eggers, S., Berggren, Å., Josefsson, J., & Pärt, T. (2015). The relationship of bird diversity to crop and non-crop heterogeneity in agricultural landscapes. Landscape Ecology, 30(10), 2001-2013. 49. Holland, J. M., & Luff, M. L. (2000). The effects of agricultural practices on Carabidae in temperate agroecosystems. Integrated pest management reviews, 5(2), 109-129. 50. Holzschuh, A., Steffan‐Dewenter, I., Kleijn, D., & Tscharntke, T. (2007). Diversity of flower‐visiting bees in cereal fields: effects of farming system, landscape composition and regional context. Journal of Applied Ecology, 44(1), 41-49. 51. Inclán, D. J., Cerretti, P., Gabriel, D., Benton, T. G., Sait, S. M., Kunin, W. E., ... & Marini, L. (2015). Organic farming enhances parasitoid diversity at the local and landscape scales. Journal of Applied Ecology, 52(4), 1102-1109. 52. Jauker, F., Diekötter, T., Schwarzbach, F., & Wolters, V. (2009). Pollinator dispersal in an agricultural matrix: opposing responses of wild bees and hoverflies to landscape structure and distance from main habitat. Landscape Ecology, 24(4), 547-555. 53. Josefsson, J., Berg, Å., Hiron, M., Pärt, T., & Eggers, S. (2017). Sensitivity of the farmland bird community to crop diversification in Sweden: does the CAP fit?. Journal of Applied Ecology, 54(2), 518-526. 54. Kleijn, D., Rundlöf, M., Scheper, J., Smith, H. G., & Tscharntke, T. (2011). Does conservation on farmland contribute to halting the biodiversity decline?. Trends in Ecology & Evolution, 26(9), 474-481. 55. Kremen, C., & M'Gonigle, L. K. (2015). EDITOR'S CHOICE: Small‐scale restoration in intensive agricultural landscapes supports more specialized and less mobile pollinator species. Journal of Applied Ecology, 52(3), 602-610. 56. Leiss, K. A., & Klinkhamer, P. G. L. (2005). Genotype by environment interactions in the nectar production of Echium vulgare. Functional Ecology, 19(3), 454-459. 57. Lindenmayer, D. B., Cunningham, R., Crane, M., Michael, D., & Montague-Drake, R. (2007). Farmland bird responses to intersecting replanted areas. Landscape ecology, 22(10), 1555-1562. 58. MacLeod, C. J., Blackwell, G., & Benge, J. (2012). Reduced pesticide toxicity and increased woody vegetation cover account for enhanced native bird densities in organic orchards. Journal of Applied Ecology, 49(3), 652-660. 59. Michel, N., Burel, F., Legendre, P., & Butet, A. (2007). Role of habitat and landscape in structuring small mammal assemblages in hedgerow networks of contrasted farming landscapes in Brittany, France. Landscape Ecology, 22(8), 1241-1253. 60. Milne, R. J., & Bennett, L. P. (2007). Biodiversity and ecological value of conservation lands in agricultural landscapes of southern Ontario, Canada. Landscape ecology, 22(5), 657-670. 61. Moreira, F., & Russo, D. (2007). Modelling the impact of agricultural abandonment and wildfires on vertebrate diversity in Mediterranean Europe. Landscape ecology, 22(10), 1461-1476. 62. Mortelliti, A., Amori, G., Capizzi, D., Cervone, C., Fagiani, S., Pollini, B., & Boitani, L. (2011). Independent effects of habitat loss, habitat fragmentation and structural connectivity on the distribution of two arboreal rodents. Journal of Applied Ecology, 48(1), 153-162. 63. Mossman, H. L., Panter, C. J., & Dolman, P. M. (2015). Modelling biodiversity distribution in agricultural landscapes to support ecological network planning. Landscape and Urban Planning, 141, 59-67. 64. Nassauer, J. I., & Opdam, P. (2008). Design in science: extending the landscape ecology paradigm. Landscape ecology, 23(6), 633-644. 65. Öckinger, E., & Smith, H. G. (2007). Semi‐natural grasslands as population sources for pollinating insects in agricultural landscapes. Journal of applied ecology, 44(1), 50-59. 66. Opdam, P., Foppen, R., Reijnen, R., & Schotman, A. (1995). The landscape ecological approach in bird conservation: integrating the metapopulation concept into spatial planning. Ibis, 137(s1), S139-S146. 67. Opdam, P., Steingröver, E., & Van Rooij, S. (2006). Ecological networks: a spatial concept for multi-actor planning of sustainable landscapes. Landscape and urban planning, 75(3), 322-332. 68. Ortega-Álvarez, R., & MacGregor-Fors, I. (2009). Living in the big city: Effects of urban land-use on bird community structure, diversity, and composition. Landscape and Urban Planning, 90(3), 189-195. 69. Perkins, A. J., Maggs, H. E., Watson, A., & Wilson, J. D. (2011). Adaptive management and targeting of agri‐environment schemes does benefit biodiversity: a case study of the corn bunting Emberiza calandra. Journal of Applied Ecology, 48(3), 514-522. 70. Pocock, M. J., & Jennings, N. (2008). Testing biotic indicator taxa: the sensitivity of insectivorous mammals and their prey to the intensification of lowland agriculture. Journal of Applied Ecology, 45(1), 151-160. 71. Power, A. G. (2010). Ecosystem services and agriculture: tradeoffs and synergies. Philosophical transactions of the royal society B: biological sciences, 365(1554), 2959-2971. 72. Power, E. F., & Stout, J. C. (2011). Organic dairy farming: impacts on insect–flower interaction networks and pollination. Journal of Applied Ecology, 48(3), 561-569. 73. Puech, C., Poggi, S., Baudry, J., & Aviron, S. (2015). Do farming practices affect natural enemies at the landscape scale?. Landscape Ecology, 30(1), 125-140. 74. Purtauf, T., Roschewitz, I., Dauber, J., Thies, C., Tscharntke, T., & Wolters, V. (2005). Landscape context of organic and conventional farms: influences on carabid beetle diversity. Agriculture, Ecosystems & Environment, 108(2), 165-174. 75. Quinn, J. E., Johnson, R. J., & Brandle, J. R. (2014). Identifying opportunities for conservation embedded in cropland anthromes. Landscape Ecology, 29(10), 1811-1819. 76. Radford, J. Q., & Bennett, A. F. (2007). The relative importance of landscape properties for woodland birds in agricultural environments. Journal of Applied Ecology, 44(4), 737-747. 77. Reid, N., McDonald, R. A., & Montgomery, W. (2007). Mammals and agri‐environment schemes: hare haven or pest paradise?. Journal of Applied Ecology, 44(6), 1200-1208. 78. Riedinger, V., Renner, M., Rundlöf, M., Steffan-Dewenter, I., & Holzschuh, A. (2014). Early mass-flowering crops mitigate pollinator dilution in late-flowering crops. Landscape ecology, 29(3), 425-435. 79. Riffell, S. K., Monroe, A. P., Martin, J. A., Evans, K. O., Burger, L. W., & Smith, M. D. (2015). Response of non‐grassland avian guilds to adjacent herbaceous field buffers: testing the configuration of targeted conservation practices in agricultural landscapes. Journal of Applied Ecology, 52(2), 300-309. 80. Robinson, R. A., & Sutherland, W. J. (2002). Post‐war changes in arable farming and biodiversity in Great Britain. Journal of applied Ecology, 39(1), 157-176. 81. Rodríguez-San Pedro, A., & Simonetti, J. A. (2015). The relative influence of forest loss and fragmentation on insectivorous bats: does the type of matrix matter?. Landscape Ecology, 30(8), 1561-1572. 82. Rundlöf, M., Bengtsson, J., & Smith, H. G. (2008). Local and landscape effects of organic farming on butterfly species richness and abundance. Journal of Applied Ecology, 45(3), 813-820. 83. Rusch, A., Bommarco, R., Jonsson, M., Smith, H. G., & Ekbom, B. (2013). Flow and stability of natural pest control services depend on complexity and crop rotation at the landscape scale. Journal of Applied Ecology, 50(2), 345-354. 84. Šálek, M., Kreisinger, J., Sedláček, F., & Albrecht, T. (2010). Do prey densities determine preferences of mammalian predators for habitat edges in an agricultural landscape?. Landscape and Urban Planning, 98(2), 86-91. 85. Scheper, J., Bommarco, R., Holzschuh, A., Potts, S. G., Riedinger, V., Roberts, S. P., ... & Wickens, V. J. (2015). Local and landscape‐level floral resources explain effects of wildflower strips on wild bees across four European countries. Journal of Applied Ecology, 52(5), 1165-1175. 86. Schmidt, M. H., Roschewitz, I., Thies, C., & Tscharntke, T. (2005). Differential effects of landscape and management on diversity and density of ground‐dwelling farmland spiders. Journal of Applied Ecology, 42(2), 281-287. 87. Schneider, G., Krauss, J., Riedinger, V., Holzschuh, A., & Steffan‐Dewenter, I. (2015). Biological pest control and yields depend on spatial and temporal crop cover dynamics. Journal of Applied Ecology, 52(5), 1283-1292. 88. Sijmons, D. (1990). Regional planning as a strategy. Landscape and Urban Planning, 18(3), 265-273. 89. Sjödin, N. E., Bengtsson, J., & Ekbom, B. (2008). The influence of grazing intensity and landscape composition on the diversity and abundance of flower‐visiting insects. Journal of Applied Ecology, 45(3), 763-772. 90. Steiner, F. (1991). Landscape planning: a method applied to a growth management example. Environmental Management, 15(4), 519-529. 91. Suárez, R. P., Zaccagnini, M. E., Babbitt, K. J., Calamari, N. C., Natale, G. S., Cerezo, A., ... & Gavier-Pizarro, G. I. (2016). Anuran responses to spatial patterns of agricultural landscapes in Argentina. Landscape Ecology, 31(10), 2485-2505. 92. Theobald, D. M., Hobbs, N. T., Bearly, T., Zack, J. A., Shenk, T., & Riebsame, W. E. (2000). Incorporating biological information in local land-use decision making: designing a system for conservation planning. Landscape ecology, 15(1), 35-45. 93. Tscharntke, T., Clough, Y., Wanger, T. C., Jackson, L., Motzke, I., Perfecto, I., ... & Whitbread, A. (2012). Global food security, biodiversity conservation and the future of agricultural intensification. Biological conservation, 151(1), 53-59. 94. Tscharntke, T., Klein, A. M., Kruess, A., Steffan‐Dewenter, I., & Thies, C. (2005). Landscape perspectives on agricultural intensification and biodiversity–ecosystem service management. Ecology letters, 8(8), 857-874. 95. Tscharntke, T., Steffan-Dewenter, I., Kruess, A., & Thies, C. (2002). Contribution of small habitat fragments to conservation of insect communities of grassland–cropland landscapes. Ecological Applications, 12(2), 354-363. 96. Watson, S. J., Watson, D. M., Luck, G. W., & Spooner, P. G. (2014). Effects of landscape composition and connectivity on the distribution of an endangered parrot in agricultural landscapes. Landscape ecology, 29(7), 1249-1259. 97. Wauters, L., Casale, P., & Dhondt, A. A. (1994). Space use and dispersal of red squirrels in fragmented habitats. Oikos, 140-146. 98. Winqvist, C., Bengtsson, J., Aavik, T., Berendse, F., Clement, L. W., Eggers, S., ... & Pärt, T. (2011). Mixed effects of organic farming and landscape complexity on farmland biodiversity and biological control potential across Europe. Journal of applied ecology, 48(3), 570-579. 99. Wuczyński, A. (2016). Farmland bird diversity in contrasting agricultural landscapes of southwestern Poland. Landscape and Urban Planning, 148, 108-119. 100. 唐立正等人(2008)。雪霸國家公園雪見地區環境生態監測─昆蟲資源。雪霸國家公園管理處九十七年度委託之研究報告。苗栗:內政部營建署雪霸家公園管理處。 101. 張俊彥、林裕彬、張琪如、吳振發(譯)(2011)。景觀量測。五南圖書出版股份有限公司。(Leitão, A. B., Miller, J., Ahern, J., & McGarigal, K.,2006) 102. 張俊彥等人(2006)。高速公路照明對沿線生態之影響。交通部台灣區國道新建工程局委託之專題研究成果報告。臺北:國道工程局。 103. 陳順其與王穎(2004)。墾丁國家公園臺灣梅花鹿(Cervus nippon taiouanus)之族群分佈。國家公園學報,14(2):81-102。 104. 黃文伯、張原謀與莊棨州(2015)。104年台江國家公園昆蟲資源調查、保育發展規劃及生態資源圖冊製作委託辦理計畫成果報告。台江國家公園管理處委託辦理計畫。台南:台江國家公園。 105. 蔡尚與馮豐隆(1999)。生物歧異度及祈求算方法之分類。中國生物,42(1):65-83。 106. 環保署(2011)。動物生態評估技術規範。環保署,臺北:行政院環境保護署。 107. 藍艷秋、李後晶與彭彥豪(2012)。101年度「墾丁國家公園昆蟲相調查(三)及數位典藏計畫(一)」。墾丁國家公園管理處委託辦理計畫報告。 108. 顏士清等人(2012)。墾丁國家公園及鄰近地區臺灣梅花鹿(Cervus nippon taiouanus)之族群現況。國家公園學報,22(1):27-40。 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67963 | - |
dc.description.abstract | 過去多以農業生產的角度進行農業區的環境規劃,但以高強度的操作方式提升農業產量的同時,也損失了原來棲息於農地及附近環境之生物多樣性。隨著永續的議題盛行,過去有許多研究關於農業景觀結構變化與生物多樣性關係的研究,然而景觀規劃上需考量整體生態系統,在目前研究缺乏整合的情況下,相關的研究結果難以應用於實際的規劃設計中。因此本研究欲探討農業景觀中景觀結構變化如何影響生物,並整合與歸納相關研究結果以提出農業景觀規劃設計之建議。
本研究以內容分析法彙整60篇從2007年到2016年之期刊文章,以探討鄉村地區農業景觀與動物物種關係之研究為主軸;內容先以作物類型區分為五大農業景觀類別,分別為果園、穀類作物、花田、牧草地與混合農業,再區分六類自然景觀元素,分別為森林、樹籬、草生地、開花植物、水與整體半自然環境,來探討景觀元素結構上組成與配置對生物多樣性的影響。 研究結果發現農業景觀中最常被討論的是農地與自然、半自然環境的邊緣地帶,不論是草生帶、野花帶或是樹籬、森林等有喬木結構的邊緣皆對生物有顯著效益。另外,森林面積大小為次多被討論的變項,其他為不同景觀元素之面積、各元素之間的連接度,以及植栽之物種豐富度等等。討論的物種主要有授粉昆蟲、天敵、小型哺乳類、鳥類與無尾目動物等。 台灣地形、氣候與物種品種等條件與回顧研究不盡然相同,此為回顧之研究結果於台灣農業景觀使用上之限制,而部分台灣相關研究也支持相同概念,如邊緣環境之植栽覆蓋、半自然環境面積等因素之重要性,本研究結果仍具有高度參考價值。 | zh_TW |
dc.description.abstract | Rural area has often been planned with the purpose of achieving for the maximum yield quantity with intensive agricultural management; however, this may result in detrition of biodiversity in the agroecosystem. With the concept of sustainability, there’re more focus on the value of nature. Although there are plenty of articles discussing the relationship between the agricultural landscape structure and biodiversity, we still lack of the synthesis of these researches. This is the fundamental point of research, which we discuss how the structure of landscape elements affect wildlife in the agricultural landscape, and list the planning and design criteria by synthesizing the results as scientific knowledge. These criteria can be used when planning a holistic and ecological plan.
We synthesized 60 studies published between 2007 and 2016, the articles were divided into five groups according to the crop type, including orchard, cereals, flowers, grasslands and the mixed agriculture. Then, divided each group into several groups by the natural elements of landscape further, there were forest, hedgerows, grasslands, flowers, water and semi-natural mosaic environment. The frequent discussed fauna species are pollinators, natural enemies, small mammals, avian species and anuran species. The edge areas in every type is significantly associated with the wildlife, the forest area is the second most discussed factor, the other factors are area of other land cover types, connectivity between patches, species richness of the vegetation, etc. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:00:53Z (GMT). No. of bitstreams: 1 ntu-106-R03628313-1.pdf: 7383428 bytes, checksum: 64bfe18ed584c151c44fdfa8c1f96126 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 國立臺灣大學碩士學位論文口試委員會審定書 i
謝誌 ii 摘要 iii Abstract iv 目錄 v 圖目錄 vii 表目錄 viii 第一章 緒論 1 第二章 文獻回顧 5 第一節 景觀生態規劃 5 第二節 農業景觀與生物多樣性 9 第三節 台灣農業景觀相關研究 13 第三章 研究方法 17 第一節 研究概念架構 17 第二節 研究方法 20 第三節 農業景觀與生物多樣性關係之文獻搜尋 20 第四章 結果 51 第一節 果園農業景觀相關結果 51 第二節 穀類作物農業景觀相關結果 56 第三節 花田農業景觀相關結果 62 第四節 牧草地農業景觀相關結果 64 第五節 混合農業農業景觀相關結果 69 第五章 討論 87 第一節 各農業景觀相關結果討論 87 第二節 綜合各農業景觀相關結果討論 98 第三節 影響農業景觀生物多樣性因素之比較 102 第四節 研究結果於台灣環境之應用 103 第六章 結論與建議 107 第一節 總結景觀生態規劃原則 107 第二節 研究限制 111 第三節 後續研究建議 111 參考文獻 113 附錄一 參考文獻原文摘錄 126 | |
dc.language.iso | zh-TW | |
dc.title | 建立景觀生態規劃原則應用模式之研究 | zh_TW |
dc.title | Establishing the Application Model of Landscape Ecological Planning Criteria | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.coadvisor | 陳坤佐(Kun-Tso Chen) | |
dc.contributor.oralexamcommittee | 袁孝維(Hsiao-Wei Yuan),歐聖榮(Sheng-Jung Ou),侯錦雄(Jing-Shoung Hou) | |
dc.subject.keyword | 農業景觀,景觀生態,生物多樣性,鄉村環境規劃設計, | zh_TW |
dc.subject.keyword | Agricultural landscape,Landscape ecology,Biodiversity,Ecological landscape planning criteria, | en |
dc.relation.page | 156 | |
dc.identifier.doi | 10.6342/NTU201701651 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-19 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 園藝暨景觀學系 | zh_TW |
顯示於系所單位: | 園藝暨景觀學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 7.21 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。