Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 物理治療學系所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67960
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor趙遠宏(Yuan-Hung Chao)
dc.contributor.authorBo-Han Chouen
dc.contributor.author周伯翰zh_TW
dc.date.accessioned2021-06-17T02:00:42Z-
dc.date.available2020-08-27
dc.date.copyright2020-08-27
dc.date.issued2020
dc.date.submitted2020-08-15
dc.identifier.citationAndersson C, Odensten M, Gillquist J. Knee function after surgical or nonsurgical treatment of acute rupture of the anterior cruciate ligament: a randomized study with a long-term follow-up period. Clin Orthop Relat Res. Mar 1991(264):255-263.
O'Brien SJ, Warren RF, Pavlov H, Panariello R, Wickiewicz TL. Reconstruction of the chronically insufficient anterior cruciate ligament with the central third of the patellar ligament. J Bone Joint Surg Am. Feb 1991;73(2):278-286.
Bollen S. Epidemiology of knee injuries: diagnosis and triage. Br J Sports Med. Jun 2000;34(3):227-228.
Schindler O. Insall Scott Surgery of the Knee: Edited by WN Scott Pp. 2048. Philadelphia: Churchill Livingstone 2006. ISBN: 0-44306-671-X.£ 290.00: The British Editorial Society of Bone and Joint Surgery; 2006.
Petersen W, Tillmann B. Anatomy and function of the anterior cruciate ligament. Der Orthopade. 2002;31(8):710-718.
Lohmander L, Östenberg A, Englund M, Roos H. High prevalence of knee osteoarthritis, pain, and functional limitations in female soccer players twelve years after anterior cruciate ligament injury. Arthritis Rheumatism: Official Journal of the American College of Rheumatology. 2004;50(10):3145-3152.
Woo SL, Wu C, Dede O, Vercillo F, Noorani S. Biomechanics and anterior cruciate ligament reconstruction. Journal of Orthopaedic Surgery and Research. 2006;1(1):2.
Nourissat G, Berenbaum F, Duprez D. Tendon injury: from biology to tendon repair. Nature Reviews Rheumatology. 2015;11(4):223.
Cserjesi P, Brown D, Ligon KL, et al. Scleraxis: a basic helix-loop-helix protein that prefigures skeletal formation during mouse embryogenesis. Development. 1995;121(4):1099-1110.
Murchison ND, Price BA, Conner DA, et al. Regulation of tendon differentiation by scleraxis distinguishes force-transmitting tendons from muscle-anchoring tendons. Development. 2007;134(14):2697-2708.
Shukunami C, Takimoto A, Nishizaki Y, et al. Scleraxis is a transcriptional activator that regulates the expression of Tenomodulin, a marker of mature tenocytes and ligamentocytes. Scientific reports. 2018;8(1):1-17.
Lejard V, Blais F, Guerquin M-J, et al. EGR1 and EGR2 involvement in vertebrate tendon differentiation. Journal of Biological Chemistry. 2011;286(7):5855-5867.
Gaut L, Robert N, Delalande A, Bonnin M-A, Pichon C, Duprez D. EGR1 regulates transcription downstream of mechanical signals during tendon formation and healing. PloS one. 2016;11(11).
Wu Y-F, Wang H-K, Chang H-W, Sun J, Sun J-S, Chao Y-H. High glucose alters tendon homeostasis through downregulation of the AMPK/Egr1 pathway. Scientific reports. 2017;7:44199.
Banos CC, Thomas AH, Kuo CK. Collagen fibrillogenesis in tendon development: current models and regulation of fibril assembly. Birth Defects Research Part C: Embryo Today: Reviews. 2008;84(3):228-244.
Niyibizi C, Kavalkovich K, Yamaji T, Woo SL. Type V collagen is increased during rabbit medial collateral ligament healing. Knee Surgery, Sports Traumatology, Arthroscopy. 2000;8(5):281-285.
Hsu S-L, Liang R, Woo SL. Functional tissue engineering of ligament healing. BMC Sports Science, Medicine and Rehabilitation. 2010;2(1):12.
Brandau O, Meindl A, Fässler R, Aszódi A. A novel gene, tendin, is strongly expressed in tendons and ligaments and shows high homology with chondromodulin‐I. Developmental dynamics: an official publication of the American Association of Anatomists. 2001;221(1):72-80.
Shukunami C, Oshima Y, Hiraki Y. Molecular cloning of tenomodulin, a novel chondromodulin-I related gene. Biochemical and biophysical research communications. 2001;280(5):1323-1327.
Midwood KS, Hussenet T, Langlois B, Orend G. Advances in tenascin-C biology. Cellular and molecular life sciences. 2011;68(19):3175.
Wiese S, Karus M, Faissner A. Astrocytes as a source for extracellular matrix molecules and cytokines. Frontiers in pharmacology. 2012;3:120.
NEMOTO M, KIZAKI K, YAMAMOTO Y, OONUMA T, HASHIZUME K. Tenascin-C expression in equine tendon-derived cells during proliferation and migration. Journal of equine science. 2013;24(2):17-23.
Biau DJ, Tournoux C, Katsahian S, Schranz P, Nizard R. ACL reconstruction: a meta-analysis of functional scores. Clinical Orthopaedics and Related Research®. 2007;458:180-187.
Lebel B, Hulet C, Galaud B, Burdin G, Locker B, Vielpeau C. Arthroscopic reconstruction of the anterior cruciate ligament using bone-patellar tendon-bone autograft: a minimum 10-year follow-up. The American journal of sports medicine. 2008;36(7):1275-1282.
Docheva D, Müller SA, Majewski M, Evans CH. Biologics for tendon repair. Advanced drug delivery reviews. 2015;84:222-239.
Burks RT, Crim J, Fink BP, Boylan DN, Greis PE. The effects of semitendinosus and gracilis harvest in anterior cruciate ligament reconstruction. Arthroscopy: The Journal of Arthroscopic Related Surgery. 2005;21(10):1177-1185.
Niederer D, Giesche F, Janko M, et al. Unanticipated jump-landing quality in patients with anterior cruciate ligament reconstruction: How long after the surgery and return to sport does the re-injury risk factor persist? Clinical Biomechanics. 2020;72:195-201.
Spindler KP, Wright RW. Anterior cruciate ligament tear. New England Journal of Medicine. 2008;359(20):2135-2142.
Beard D, Dodd C, Trundle H, Simpson A. Proprioception enhancement for anterior cruciate ligament deficiency. A prospective randomised trial of two physiotherapy regimes. The Journal of bone and joint surgery. British volume. 1994;76(4):654-659.
Frobell RB, Roos EM, Roos HP, Ranstam J, Lohmander LS. A randomized trial of treatment for acute anterior cruciate ligament tears. New England Journal of Medicine. 2010;363(4):331-342.
王子娟, 朱彥穎, 何兆邦, et al. 骨科物理治療學 (上冊): 禾楓書局; 2012.
Monk AP, Davies LJ, Hopewell S, Harris K, Beard DJ, Price AJ. Surgical versus conservative interventions for treating anterior cruciate ligament injuries. Cochrane Database of Systematic Reviews. 2016(4).
Chen T, Jiang J, Chen S. Status and headway of the clinical application of artificial ligaments. Asia-Pacific journal of sports medicine, arthroscopy, rehabilitation and technology. 2015;2(1):15-26.
Mody BS, Howard L, Harding ML, Parmar HV, Learmonth DJ. The ABC carbon and polyester prosthetic ligament for ACL-deficient knees. Early results in 31 cases. J Bone Joint Surg Br. Sep 1993;75(5):818-821.
Legnani C, Ventura A, Terzaghi C, Borgo E, Albisetti W. Anterior cruciate ligament reconstruction with synthetic grafts. A review of literature. International orthopaedics. 2010;34(4):465-471.
Bernardino S. RETRACTED ARTICLE: ACL prosthesis: any promise for the future? Knee surgery, Sports Traumatology, Arthroscopy. 2010;18(6):797-804.
Matsumoto H, Fujikawa K. Leeds-Keio artificial ligament: a new concept for the anterior cruciate ligament reconstruction of the knee. The Keio journal of medicine. 2001;50(3):161-166.
Guidoin M-F, Marois Y, Bejui J, Poddevin N, King MW, Guidoin R. Analysis of retrieved polymer fiber based replacements for the ACL. Biomaterials. 2000;21(23):2461-2474.
Nau T, Lavoie P, Duval N. A new generation of artificial ligaments in reconstruction of the anterior cruciate ligament: two-year follow-up of a randomised trial. The Journal of bone and joint surgery. British volume. 2002;84(3):356-360.
Smith C, Ajuied A, Wong F, Norris M, Back D, Davies A. The use of the ligament augmentation and reconstruction system (LARS) for posterior cruciate reconstruction. Arthroscopy: The Journal of Arthroscopic Related Surgery. 2014;30(1):111-120.
Machotka Z, Scarborough I, Duncan W, Kumar S, Perraton L. Anterior cruciate ligament repair with LARS (ligament advanced reinforcement system): a systematic review. BMC Sports Science, Medicine and Rehabilitation. 2010;2(1):29.
Jia Z-Y, Zhang C, Cao S-q, et al. Comparison of artificial graft versus autograft in anterior cruciate ligament reconstruction: a meta-analysis. BMC musculoskeletal disorders. 2017;18(1):309.
Gao K, Chen S, Wang L, et al. Anterior cruciate ligament reconstruction with LARS artificial ligament: a multicenter study with 3-to 5-year follow-up. Arthroscopy: The Journal of Arthroscopic Related Surgery. 2010;26(4):515-523.
Parchi PD, Ciapini G, Paglialunga C, et al. Anterior cruciate ligament reconstruction with LARS artificial ligament—clinical results after a long-term follow-up. Joints. 2018;6(02):075-079.
Ude CC, Miskon A, Idrus RBH, Bakar MBA. Application of stem cells in tissue engineering for defense medicine. Military Medical Research. 2018;5(1):7.
Pittenger MF, Mackay AM, Beck SC, et al. Multilineage potential of adult human mesenchymal stem cells. science. 1999;284(5411):143-147.
Rothrauff BB, Lauro BB, Yang G, Debski RE, Musahl V, Tuan RS. Braided and stacked electrospun nanofibrous scaffolds for tendon and ligament tissue engineering. Tissue Engineering Part A. 2017;23(9-10):378-389.
Mizutani N, Kageyama S, Yamada M, Hasegawa M, Miyamoto K, Horiuchi T. The behavior of ligament cells cultured on elastin and collagen scaffolds. Journal of Artificial Organs. 2014;17(1):50-59.
Hirukawa M, Katayama S, Sato T, et al. Development of a tissue‐engineered artificial ligament: reconstruction of injured rabbit medial collateral ligament with elastin‐collagen and ligament cell composite artificial ligament. Artificial organs. 2018;42(7):736-745.
Osunkoya B, Mottram FC, Isoun MJ. Synthesis and fate of immunological surface receptors on cultured Burkitt lymphoma cells. International journal of cancer. 1969;4(2):159-165.
Revel J, Hoch P, Ho D. Adhesion of culture cells to their substratum. Experimental cell research. 1974;84(1-2):207-218.
Waymouth C. To disaggregate or not to disaggregate, injury and cell disaggregation, transient or permanent? In vitro. 1974;10(1-2):97-111.
Heskins M, Guillet JE. Solution properties of poly (N-isopropylacrylamide). Journal of Macromolecular Science—Chemistry. 1968;2(8):1441-1455.
Okano T, Yamada N, Sakai H, Sakurai Y. A novel recovery system for cultured cells using plasma‐treated polystyrene dishes grafted with poly (N‐isopropylacrylamide). Journal of biomedical materials research. 1993;27(10):1243-1251.
Tang Z, Okano T. Recent development of temperature-responsive surfaces and their application for cell sheet engineering. Regenerative biomaterials. 2014;1(1):91-102.
Liao T, Moussallem MD, Kim J, Schlenoff JB, Ma T. N‐isopropylacrylamide‐based thermoresponsive polyelectrolyte multilayer films for human mesenchymal stem cell expansion. Biotechnology progress. 2010;26(6):1705-1713.
Langer R, Vacanti JP. Tissue engineering. Science. May 14 1993;260(5110):920-926.
Kuk M, Kim Y, Lee SH, Kim WH, Kweon O-K. Osteogenic ability of canine adipose-derived mesenchymal stromal cell sheets in relation to culture time. Cell transplantation. 2016;25(7):1415-1422.
Zhou Y, Chen F, Ho ST, Woodruff MA, Lim TM, Hutmacher DW. Combined marrow stromal cell-sheet techniques and high-strength biodegradable composite scaffolds for engineered functional bone grafts. Biomaterials. 2007;28(5):814-824.
Ouyang HW, Toh SL, Goh J, Tay TE, Moe K. Assembly of bone marrow stromal cell sheets with knitted poly (l‐lactide) scaffold for engineering ligament analogs. Journal of Biomedical Materials Research Part B: Applied Biomaterials: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials and the Korean Society for Biomaterials. 2005;75(2):264-271.
Vaquette C, Sudheesh Kumar P, Petcu EB, Ivanovski S. Combining electrospinning and cell sheet technology for the development of a multiscale tissue engineered ligament construct (TELC). Journal of Biomedical Materials Research Part B: Applied Biomaterials. 2018;106(1):399-409.
Nancarrow-Lei R, Mafi P, Mafi R, Khan W. A systemic review of adult mesenchymal stem cell sources and their multilineage differentiation potential relevant to musculoskeletal tissue repair and regeneration. Current stem cell research therapy. 2017;12(8):601-610.
Otsuki B, Takemoto M, Fujibayashi S, Neo M, Kokubo T, Nakamura T. Pore throat size and connectivity determine bone and tissue ingrowth into porous implants: three-dimensional micro-CT based structural analyses of porous bioactive titanium implants. Biomaterials. Dec 2006;27(35):5892-5900.
Yeom B, Pourdeyhimi B. Web fabrication and characterization of unique winged shaped, area-enhanced fibers via a bicomponent spunbond process. Journal of Materials Science. 05/01 2011;46:3252-3257.
Park SJ, Lee BK, Na MH, Kim DS. Melt-spun shaped fibers with enhanced surface effects: fiber fabrication, characterization and application to woven scaffolds. Acta Biomater. Aug 2013;9(8):7719-7726.
van der Pauw MT, Van den Bos T, Everts V, Beertsen W. Phagocytosis of fibronectin and collagens type I, III, and V by human gingival and periodontal ligament fibroblasts in vitro. J Periodontol. Oct 2001;72(10):1340-1347.
Matsumura K, Hyon SH, Nakajima N, Iwata H, Watazu A, Tsutsumi S. Surface modification of poly(ethylene-co-vinyl alcohol): hydroxyapatite immobilization and control of periodontal ligament cells differentiation. Biomaterials. Aug 2004;25(19):4817-4824.
Guerquin MJ, Charvet B, Nourissat G, et al. Transcription factor EGR1 directs tendon differentiation and promotes tendon repair. J Clin Invest. Aug 2013;123(8):3564-3576.
Alberton P, Popov C, Prägert M, et al. Conversion of human bone marrow-derived mesenchymal stem cells into tendon progenitor cells by ectopic expression of scleraxis. Stem Cells Dev. Apr 10 2012;21(6):846-858.
Scott A, Sampaio A, Abraham T, Duronio C, Underhill TM. Scleraxis expression is coordinately regulated in a murine model of patellar tendon injury. J Orthop Res. Feb 2011;29(2):289-296.
Shukunami C, Takimoto A, Oro M, Hiraki Y. Scleraxis positively regulates the expression of tenomodulin, a differentiation marker of tenocytes. Dev Biol. Oct 1 2006;298(1):234-247.
Tao X, Liu J, Chen L, Zhou Y, Tang K. EGR1 induces tenogenic differentiation of tendon stem cells and promotes rabbit rotator cuff repair. Cell Physiol Biochem. 2015;35(2):699-709.
Laranjeira M, Domingues RMA, Costa-Almeida R, Reis RL, Gomes ME. 3D Mimicry of Native-Tissue-Fiber Architecture Guides Tendon-Derived Cells and Adipose Stem Cells into Artificial Tendon Constructs. Small. Aug 2017;13(31).
Olvera D, Schipani R, Sathy BN, Kelly DJ. Electrospinning of highly porous yet mechanically functional microfibrillar scaffolds at the human scale for ligament and tendon tissue engineering. Biomed Mater. Apr 15 2019;14(3):035016
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67960-
dc.description.abstract背景與目的:前十字韌帶傷害是常見的下肢運動傷害,尤其韌帶斷裂往往對於運動選手的運動生涯,或一般民眾的生活功能造成顯著的影響。治療方式除了保守治療外,另一種較常採用治療方式是十字韌帶重建手術1, 2。現行以自體韌帶移植為主的手術方式,仍存在著自體供給處功能受損、肌力下降與復原期長等副作用,然而人工韌帶易產生因植體長期使用發生的斷裂,因此使用並不普及。如何解決過往人工韌帶在生物相容性與使用年限不足等缺點,是人工韌帶設計上很重要的課題。本實驗目的是開發新型細胞複合型人工韌帶,合併使用間葉幹細胞實驗模型,探討其韌帶化之表現。研究方法:培養8周大SD大鼠的骨髓間葉幹細胞,種植於經過異型斷面纖維和膠原蛋白鍍層改質的PET材料,觀察其韌帶化結構的整合與成熟。進行的實驗包含: 以Alamar Blue 分析其細胞增生;電子顯微鏡、細胞活死染色和組織切片染色觀察細胞生長型態;qRT-PCR分析肌腱韌帶相關基因,包括轉錄因子 Egr1、Scx與基質分子Col1、Col3、Tnc、Tnmd的基因表現。細胞層片實驗部分,使用電紡纖維層片和市售熱感應培養盤,製作出細胞層片後再種植於PET材料,進行下列實驗:細胞增生實驗;qRT-PCR 分析肌腱、韌帶化的相關基因表現;組織切片染色。結果:第7、14、21天發現不同異型斷面纖維材料,不論是在細胞增生、基因表現和影像觀察,不會出現顯著差異。膠原纖維鍍層改質的部分,發現有鍍層的組別和未鍍層組相比,細胞增生在第21天有顯著增加。韌帶化相關的轉錄因子基因表現中,發現有鍍層組的Egr1在第7天表現最為明顯,Scx則是在第21天表現最明顯。基質分子Col1在7、14、21天表現明顯;Col3在第21天表現最明顯;Tnc在第7天表現最明顯;Tnmd在第21天表現最明顯。顯示膠原纖維鍍層可以增加幹細胞韌帶化的基因表現。影像觀察上,第7天電子顯微影像顯示膠原纖維鍍層組有較多的細胞貼附;組織切片染色顯示膠原纖維鍍層組在第2、3個月有更多的細胞貼附與胞外基質浸潤。在細胞層片實驗發現,加入了細胞層片後會使材料上的細胞增生增加,在第21天時出現顯著差異。觀察第1、2個月加入在細胞層片的材料染色切片後,發現加入了細胞層片的組別的細胞數目與胞外基質增加,此表現在第2個月更加明顯。另外也發現使用電紡細胞層片會影響細胞於材料上貼附的分布。然而在分析加入細胞層片組別的韌帶化相關的基因表現時,並未發現韌帶化相關基因表現出現顯著變化。結論:人工韌帶膠原蛋白鍍層可以增加細胞的貼附與韌帶化整合的表現,加入細胞層片後可增加細胞貼附數量,有助於臨床應用。zh_TW
dc.description.abstractBackground:Anterior cruciate ligament injury is a common lower extremity sports injury, especially ligament rupture often has a significant impact on the sports career of athletes or the people's physical function. In addition to conservative treatment, another commonly used treatment is cruciate ligament reconstruction surgery. The current surgical procedure is mainly based on autologous ligament transplantation, which has the advantages of good self-acceptance, low rejection and low inflammation. However, there are still side effects such as impaired function of the donor site, decreased muscle strength and long recovery period. Artificial ligaments are prone to ruptures caused by long-term use of ligament implants, and sequelae of knee joint synovitis caused by wearing debris. Therefore, the development of artificial ligaments is a very important issue, which solves the shortcomings such as the lack of biocompatibility of the artificial ligaments, as well as the problem of short product life span, while retaining the advantages of stable source of autologous mesenchymal stem cells, low rejection and low inflammation. The purpose of this study is to develop a new type of cell-composite artificial ligament, and use mesenchymal stem cells to conduct a cell experiment model. Methods: Mesenchymal stem cells (MSCs) harvested from bone marrow of Sprague-Dawley rats (8 weeks old) were seeded on PET material which was treated by profiled fiber and collagen coating. To measure MSCs proliferation, Alarma blue was assayed at 7, 14, 21 day. The gene expression level of ligamentization transcription factors Egr1 and Scx, and matrix proteins Col1, Col3, Tnc, Tnmd were assayed by qRT-PCR. MSCs growth pattern images were assayed by SEM, Live and Death assay kit and H E histology. Cell sheets used in this study include electrospinning nanofiber membrane and thermos responsive polymer cultured dish. Cell proliferation, gene expression and histology were assayed by above methods. Results: There is no significant differences in cell proliferation, gene expression and histology among 3 different profiled fibre groups. Collagen coated PET material has higher MSCs proliferation, ligamentization gene expression and more cell matrix on H E staining. Cell sheet groups had more cell attachment and distribution than control group. However, there is no difference on gene expression between cell sheet groups and control group. Conclusion: Collagen coating on PET material can increase ligamentization, cell proliferation and cell infiltration. Cell sheet technique can increase the number of cells attached, which is helpful for clinical application.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T02:00:42Z (GMT). No. of bitstreams: 1
U0001-1408202016481700.pdf: 2932027 bytes, checksum: 7f0be7dfd438074cbea30a1b84c2b7a7 (MD5)
Previous issue date: 2020
en
dc.description.tableofcontents
口試委員審定書 i
誌謝 ii
中文摘要 iii
Abstract v
目錄 vii
第一章 前言 1
1.1 研究背景 1
1.2 研究目的 1
第二章 文獻回顧 2
2.1. 膝關節前十字韌帶構造組成與傷害機轉 2
2.1.1. 解剖構造與功能 2
2.1.2. 韌帶相關組成分化因子 3
2.1.3. 前十字韌帶傷害機轉 5
2.1.4. 韌帶癒合過程 6
2.2. 膝關節前十字韌帶常見治療方式 8
2.3. 人工韌帶概述 10
2.3.1. 人工韌帶發展背景 10
2.3.2. 現行人工韌帶應用 12
2.3.3. 組織工程人工韌帶 14
2.4. 細胞層片 16
2.4.1. 細胞層片發展概述 16
2.4.2. 細胞層片應用 18
第三章 實驗方法 20
3.1 實驗設計 20
3.2 實驗試藥 22
3.3 實驗方法 24
3.3.1 PET異形斷面纖維人工韌帶製備 24
3.3.2 材料強度驗證 25
3.3.3 LDH毒性分析 26
3.3.4 大鼠間葉幹細胞培養 27
3.3.5 異形斷面纖維材料間葉幹細胞種植 28
3.3.6 細胞層片(Cell sheet)製作: 29
3.3.7 細胞活性分析(Cell viability) 31
3.3.8 活死細胞染色(Live and Death): 32
3.3.9 即時定量聚合酶連鎖反應 (qRT-PCR) 33
3.3.10 掃描式電子顯微鏡(SEM) 37
3.3.11 組織學分析(histology) 38
3.3.12 統計學分析 39
第四章 結果 40
4.1 材料強度測試 40
4.2 LDH材料毒性分析 42
4.3. 細胞活性分析(Cell viability) 44
4.4 活死細胞染色(Live and Death) 46
4.5 掃描式電子顯微鏡(SEM) 48
4.6 即時定量聚合酶連鎖反應 (qRT-PCR) 50
4.7 組織學分析 56
4.8 細胞層片模型-細胞活性分析 59
4.9 細胞層片模型-即時定量聚合酶連鎖反應 61
4.10 細胞層片模型-組織切片染色 64
第五章 討論 68
第六章 結論 75
參考文獻 76
dc.language.isozh-TW
dc.subject人工韌帶zh_TW
dc.subject組織工程zh_TW
dc.subject間葉幹細胞zh_TW
dc.subject細胞層片zh_TW
dc.subject韌帶化zh_TW
dc.subjecttissue engineeringen
dc.subjectartificial ligamenten
dc.subjectligamentizationen
dc.subjectcell sheeten
dc.subjectmesenchymal stem cellen
dc.title細胞層片用於複合型組織工程人工韌帶之韌帶化體外模型zh_TW
dc.titleThe Use of Cell Sheet in Component Tissue Engineering Artificial Ligament Ligamentization: In-vitro Modelen
dc.typeThesis
dc.date.schoolyear108-2
dc.description.degree碩士
dc.contributor.oralexamcommittee孫瑞昇(Jui-Sheng Sun),王興國(Hsing-Kuo Wang)
dc.subject.keyword人工韌帶,組織工程,間葉幹細胞,細胞層片,韌帶化,zh_TW
dc.subject.keywordartificial ligament,tissue engineering,mesenchymal stem cell,cell sheet,ligamentization,en
dc.relation.page85
dc.identifier.doi10.6342/NTU202003455
dc.rights.note有償授權
dc.date.accepted2020-08-17
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept物理治療學研究所zh_TW
顯示於系所單位:物理治療學系所

文件中的檔案:
檔案 大小格式 
U0001-1408202016481700.pdf
  未授權公開取用
2.86 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved