請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67949
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳俊杉(Chuin-Shan Chen) | |
dc.contributor.author | Kuan-Ting Chen | en |
dc.contributor.author | 陳冠廷 | zh_TW |
dc.date.accessioned | 2021-06-17T02:00:00Z | - |
dc.date.available | 2020-08-24 | |
dc.date.copyright | 2020-08-24 | |
dc.date.issued | 2020 | |
dc.date.submitted | 2020-08-18 | |
dc.identifier.citation | Afkham, Y., Bahramyan, M., Mousavian, R. T., Brabazon, D. (2017). Tensile properties of AlCrCoFeCuNi glassy alloys: A molecular dynamics simulation study. Materials Science and Engineering: A, 698, 143-151. doi:10.1016/j.msea.2017.05.057 Barker, J. A., Fisher, R. A., Watts, R. O. (1971). Liquid argon: Monte carlo and molecular dynamics calculations. Molecular Physics, 21(4), 657-673. doi:10.1080/00268977100101821 Baskes, M. I. (1992). Modified embedded-atom potentials for cubic materials and impurities. Phys Rev B Condens Matter, 46(5), 2727-2742. doi:10.1103/physrevb.46.2727 Beyramali Kivy, M., Asle Zaeem, M. (2017). Generalized stacking fault energies, ductilities, and twinnabilities of CoCrFeNi-based face-centered cubic high entropy alloys. Scripta Materialia, 139, 83-86. doi:10.1016/j.scriptamat.2017.06.014 Bhattacharjee, P. P., Sathiaraj, G. D., Zaid, M., Gatti, J. R., Lee, C., Tsai, C.-W., Yeh, J.-W. (2014). Microstructure and texture evolution during annealing of equiatomic CoCrFeMnNi high-entropy alloy. Journal of Alloys and Compounds, 587, 544-552. doi:10.1016/j.jallcom.2013.10.237 Cantor, B., Chang, I. T. H., Knight, P., Vincent, A. J. B. (2004). Microstructural development in equiatomic multicomponent alloys. Materials Science and Engineering: A, 375-377, 213-218. doi:10.1016/j.msea.2003.10.257 Chien, T.-Y., Cheng, Y.-L., Chen, K.-T., Chen, C.-S. (2020). A novel planar defect detection method for molecular dynamics simulation. Civil Engineering. National Taiwan University. Choi, W.-M., Jo, Y. H., Sohn, S. S., Lee, S., Lee, B.-J. (2018). Understanding the physical metallurgy of the CoCrFeMnNi high-entropy alloy: an atomistic simulation study. npj Computational Materials, 4(1). doi:10.1038/s41524-017-0060-9 Choudhuri, D., Gwalani, B., Gorsse, S., Komarasamy, M., Mantri, S. A., Srinivasan, S. G., . . . Banerjee, R. (2019). Enhancing strength and strain hardenability via deformation twinning in fcc-based high entropy alloys reinforced with intermetallic compounds. Acta Materialia, 165, 420-430. doi:10.1016/j.actamat.2018.12.010 Daw, M. S., Baskes, M. I. (1984). Embedded-atom method: Derivation and application to impurities, surfaces, and other defects in metals. Physical Review B, 29(12), 6443-6453. doi:10.1103/PhysRevB.29.6443 Divinski, S. V., Pokoev, A. V., Esakkiraja, N., Paul, A. (2018). A Mystery of 'Sluggish Diffusion' in High-Entropy Alloys: The Truth or a Myth? Diffusion Foundations, 17, 69-104. doi:10.4028/www.scientific.net/DF.17.69 Dong, Y., Lu, Y., Jiang, L., Wang, T., Li, T. (2014). Effects of electro-negativity on the stability of topologically close-packed phase in high entropy alloys. Intermetallics, 52, 105-109. doi:10.1016/j.intermet.2014.04.001 Engler, O. (2000). Deformation and texture of copper–manganese alloys. Acta Materialia, 48(20), 4827-4840. doi:10.1016/s1359-6454(00)00272-x Farkas, D., Caro, A. (2018). Model interatomic potentials and lattice strain in a high-entropy alloy. Journal of Materials Research, 33(19), 3218-3225. doi:10.1557/jmr.2018.245 Frommeyer, G., Brüx, U., Neumann, P. (2003). Supra-Ductile and High-Strength Manganese-TRIP/TWIP Steels for High Energy Absorption Purposes. ISIJ International, 43(3), 438-446. doi:10.2355/isijinternational.43.438 Frommeyer, G., Drewes, E. J., Engl, B. (2002). Physical and mechanical properties of iron-aluminium-(Mn, Si) lightweight steels. Revue de Métallurgie, 97(10), 1245-1253. doi:10.1051/metal:2000110 George, E. P., Curtin, W. A., Tasan, C. C. (2020). High entropy alloys: A focused review of mechanical properties and deformation mechanisms. Acta Materialia, 188, 435-474. doi:10.1016/j.actamat.2019.12.015 Gludovatz, B., Hohenwarter, A., Catoor, D., Chang, E. H., George, E. P., Ritchie, R. O. (2014). A fracture-resistant high-entropy alloy for cryogenic applications. Science, 345(6201), 1153-1158. doi:10.1126/science.1254581 Gludovatz, B., Hohenwarter, A., Thurston, K. V., Bei, H., Wu, Z., George, E. P., Ritchie, R. O. (2016). Exceptional damage-tolerance of a medium-entropy alloy CrCoNi at cryogenic temperatures. Nat Commun, 7, 10602. doi:10.1038/ncomms10602 Gorsse, S., Nguyen, M. H., Senkov, O. N., Miracle, D. B. (2018). Database on the mechanical properties of high entropy alloys and complex concentrated alloys. Data Brief, 21, 2664-2678. doi:10.1016/j.dib.2018.11.111 Guo, S., Ng, C., Lu, J., Liu, C. T. (2011). Effect of valence electron concentration on stability of fcc or bcc phase in high entropy alloys. Journal of Applied Physics, 109(10). doi:10.1063/1.3587228 He, J. Y., Liu, W. H., Wang, H., Wu, Y., Liu, X. J., Nieh, T. G., Lu, Z. P. (2014). Effects of Al addition on structural evolution and tensile properties of the FeCoNiCrMn high-entropy alloy system. Acta Materialia, 62, 105-113. doi:10.1016/j.actamat.2013.09.037 Herrera, C., Ponge, D., Raabe, D. (2011). Design of a novel Mn-based 1GPa duplex stainless TRIP steel with 60% ductility by a reduction of austenite stability. Acta Materialia, 59(11), 4653-4664. doi:10.1016/j.actamat.2011.04.011 Huang, K. H., Yeh, J. W. (1996). A Study on the Multicomponent Alloy Systems Containing Equal- mole Elements. National Tsing Hua University, Jelinek, B., Groh, S., Horstemeyer, M. F., Houze, J., Kim, S. G., Wagner, G. J., . . . Baskes, M. I. (2012). Modified embedded atom method potential for Al, Si, Mg, Cu, and Fe alloys. Physical Review B, 85(24). doi:10.1103/PhysRevB.85.245102 Jo, Y. H., Jung, S., Choi, W. M., Sohn, S. S., Kim, H. S., Lee, B. J., . . . Lee, S. (2017). Cryogenic strength improvement by utilizing room-temperature deformation twinning in a partially recrystallized VCrMnFeCoNi high-entropy alloy. Nat Commun, 8, 15719. doi:10.1038/ncomms15719 Kao, Y.-F., Chen, T.-J., Chen, S.-K., Yeh, J.-W. (2009). Microstructure and mechanical property of as-cast, -homogenized, and -deformed AlxCoCrFeNi (0≤x≤2) high-entropy alloys. Journal of Alloys and Compounds, 488(1), 57-64. doi:10.1016/j.jallcom.2009.08.090 Larsen, P. M., Schmidt, S., Schiøtz, J. (2016). Robust structural identification via polyhedral template matching. Modelling and Simulation in Materials Science and Engineering, 24(5). doi:10.1088/0965-0393/24/5/055007 Lennard-Jones, J. E. (1931). Cohesion. Proceedings of the Physical Society, 43(5), 461-482. doi:10.1088/0959-5309/43/5/301 Li, J., Fang, Q., Liu, B., Liu, Y., Liu, Y. (2016). Mechanical behaviors of AlCrFeCuNi high-entropy alloys under uniaxial tension via molecular dynamics simulation. RSC Advances, 6(80), 76409-76419. doi:10.1039/c6ra16503f Li, Z., Pradeep, K. G., Deng, Y., Raabe, D., Tasan, C. C. (2016). Metastable high-entropy dual-phase alloys overcome the strength-ductility trade-off. Nature, 534(7606), 227-230. doi:10.1038/nature17981 Li, Z., Tasan, C. C., Pradeep, K. G., Raabe, D. (2017). A TRIP-assisted dual-phase high-entropy alloy: Grain size and phase fraction effects on deformation behavior. Acta Materialia, 131, 323-335. doi:10.1016/j.actamat.2017.03.069 Liu, W. H., He, J. Y., Huang, H. L., Wang, H., Lu, Z. P., Liu, C. T. (2015). Effects of Nb additions on the microstructure and mechanical property of CoCrFeNi high-entropy alloys. Intermetallics, 60, 1-8. doi:10.1016/j.intermet.2015.01.004 Maiti, S., Steurer, W. (2016). Structural-disorder and its effect on mechanical properties in single-phase TaNbHfZr high-entropy alloy. Acta Materialia, 106, 87-97. doi:10.1016/j.actamat.2016.01.018 Miracle, D. B., Senkov, O. N. (2017). A critical review of high entropy alloys and related concepts. Acta Materialia, 122, 448-511. doi:10.1016/j.actamat.2016.08.081 Newhouse, D. L. (1972). Temper Embrittlement of Alloy Steels. Okamoto, N. L., Fujimoto, S., Kambara, Y., Kawamura, M., Chen, Z. M., Matsunoshita, H., . . . George, E. P. (2016). Size effect, critical resolved shear stress, stacking fault energy, and solid solution strengthening in the CrMnFeCoNi high-entropy alloy. Sci Rep, 6, 35863. doi:10.1038/srep35863 Otto, F., Dlouhý, A., Somsen, C., Bei, H., Eggeler, G., George, E. P. (2013). The influences of temperature and microstructure on the tensile properties of a CoCrFeMnNi high-entropy alloy. Acta Materialia, 61(15), 5743-5755. doi:10.1016/j.actamat.2013.06.018 Packwood, D. (2017). Bayesian Optimization for Materials Science: Springer, Singapore. Patriarca, L., Ojha, A., Sehitoglu, H., Chumlyakov, Y. I. (2016). Slip nucleation in single crystal FeNiCoCrMn high entropy alloy. Scripta Materialia, 112, 54-57. doi:10.1016/j.scriptamat.2015.09.009 Pierce, D. T., Jiménez, J. A., Bentley, J., Raabe, D., Wittig, J. E. (2015). The influence of stacking fault energy on the microstructural and strain-hardening evolution of Fe–Mn–Al–Si steels during tensile deformation. Acta Materialia, 100, 178-190. doi:10.1016/j.actamat.2015.08.030 Shakhnovich, E., Farztdinov, G., Gutin, A. M., Karplus, M. (1991). Protein folding bottlenecks: A lattice Monte Carlo simulation. Phys Rev Lett, 67(12), 1665-1668. doi:10.1103/PhysRevLett.67.1665 Smith, T. M., Hooshmand, M. S., Esser, B. D., Otto, F., McComb, D. W., George, E. P., . . . Mills, M. J. (2016). Atomic-scale characterization and modeling of 60° dislocations in a high-entropy alloy. Acta Materialia, 110, 352-363. doi:10.1016/j.actamat.2016.03.045 Stepanov, N. D., Shaysultanov, D. G., Salishchev, G. A., Tikhonovsky, M. A., Oleynik, E. E., Tortika, A. S., Senkov, O. N. (2015). Effect of V content on microstructure and mechanical properties of the CoCrFeMnNiVx high entropy alloys. Journal of Alloys and Compounds, 628, 170-185. doi:10.1016/j.jallcom.2014.12.157 Stueber, D. (2006). The embedded ion method: A new approach to the electrostatic description of crystal lattice effects in chemical shielding calculations. Concepts in Magnetic Resonance Part A, 28A(5), 347-368. doi:10.1002/cmr.a.20061 Stukowski, A. (2012). Structure identification methods for atomistic simulations of crystalline materials. Modelling and Simulation in Materials Science and Engineering, 20(4). doi:10.1088/0965-0393/20/4/045021 Tang, Z., Gao, M. C., Diao, H., Yang, T., Liu, J., Zuo, T., . . . Egami, T. (2013). Aluminum Alloying Effects on Lattice Types, Microstructures, and Mechanical Behavior of High-Entropy Alloys Systems. Jom, 65(12), 1848-1858. doi:10.1007/s11837-013-0776-z Tian, L.-Y., Lizárraga, R., Larsson, H., Holmström, E., Vitos, L. (2017). A first principles study of the stacking fault energies for fcc Co-based binary alloys. Acta Materialia, 136, 215-223. doi:10.1016/j.actamat.2017.07.010 Tsai, K. Y., Tsai, M. H., Yeh, J. W. (2013). Sluggish diffusion in Co–Cr–Fe–Mn–Ni high-entropy alloys. Acta Materialia, 61(13), 4887-4897. doi:10.1016/j.actamat.2013.04.058 Tsai, M.-H., Yeh, J.-W. (2014). High-Entropy Alloys: A Critical Review. Materials Research Letters, 2(3), 107-123. doi:10.1080/21663831.2014.912690 Tylecote, R. F. (2013). A History of Metallurgy: Maney Publishing. Ulam, S. (1961). Monte Carlo calculations in problems of mathematical physics. Conference Proceedings. Verlet, L. (1967). Computer 'Experiments' on Classical Fluids. I. Thermodynamical Properties of Lennard-Jones Molecules. Physical Review, 159(1), 98-103. doi:10.1103/PhysRev.159.98 Wang, W.-R., Wang, W.-L., Wang, S.-C., Tsai, Y.-C., Lai, C.-H., Yeh, J.-W. (2012). Effects of Al addition on the microstructure and mechanical property of AlxCoCrFeNi high-entropy alloys. Intermetallics, 26, 44-51. doi:10.1016/j.intermet.2012.03.005 Wang, Z., Fang, Q., Li, J., Liu, B., Liu, Y. (2018). Effect of lattice distortion on solid solution strengthening of BCC high-entropy alloys. Journal of Materials Science Technology, 34(2), 349-354. doi:10.1016/j.jmst.2017.07.013 Wei, D., Li, X., Heng, W., Koizumi, Y., He, F., Choi, W.-M., . . . Chiba, A. (2018). Novel Co-rich high entropy alloys with superior tensile properties. Materials Research Letters, 7(2), 82-88. doi:10.1080/21663831.2018.1553803 Widom, M., Huhn, W. P., Maiti, S., Steurer, W. (2013). Hybrid Monte Carlo/Molecular Dynamics Simulation of a Refractory Metal High Entropy Alloy. Metallurgical and Materials Transactions A, 45(1), 196-200. doi:10.1007/s11661-013-2000-8 Wu, Q., Wang, Z., Hu, X., Zheng, T., Yang, Z., He, F., . . . Wang, J. (2020). Uncovering the eutectics design by machine learning in the Al–Co–Cr–Fe–Ni high entropy system. Acta Materialia, 182, 278-286. doi:10.1016/j.actamat.2019.10.043 Wu, Z., Bei, H., Pharr, G. M., George, E. P. (2014). Temperature dependence of the mechanical properties of equiatomic solid solution alloys with face-centered cubic crystal structures. Acta Materialia, 81, 428-441. doi:10.1016/j.actamat.2014.08.026 Xia, K., Nan, P., Tan, S., Wang, Y., Ge, B., Zhang, W., . . . Zhu, T. (2019). Short-range order in defective half-Heusler thermoelectric crystals. Energy Environmental Science, 12(5), 1568-1574. doi:10.1039/c8ee03654c Xie, L., Brault, P., Thomann, A.-L., Bauchire, J.-M. (2013). AlCoCrCuFeNi high entropy alloy cluster growth and annealing on silicon: A classical molecular dynamics simulation study. Applied Surface Science, 285, 810-816. doi:10.1016/j.apsusc.2013.08.133 Ye, Y. F., Wang, Q., Lu, J., Liu, C. T., Yang, Y. (2016). High-entropy alloy: challenges and prospects. Materials Today, 19(6), 349-362. doi:10.1016/j.mattod.2015.11.026 Yeh, J. W., Chen, S. K., Lin, S. J., Gan, J. Y., Chin, T. S., Shun, T. T., . . . Chang, S. Y. (2004). Nanostructured High-Entropy Alloys with Multiple Principal Elements: Novel Alloy Design Concepts and Outcomes. Advanced Engineering Materials, 6(5), 299-303. doi:10.1002/adem.200300567 Yen, H.-W., Huang, M., Scott, C. P., Yang, J.-R. (2012). Interactions between deformation-induced defects and carbides in a vanadium-containing TWIP steel. Scripta Materialia, 66(12), 1018-1023. doi:10.1016/j.scriptamat.2012.02.002 Yu, C.-H., Qin, Z., Buehler, M. J. (2019). Artificial intelligence design algorithm for nanocomposites optimized for shear crack resistance. Nano Futures, 3(3). doi:10.1088/2399-1984/ab36f0 Zhang, L., Cheng, L., Kiet, T., Zhao, X., Pei, L.-Q., Guillaume, M. (2015). Molecular dynamics simulation on generalized stacking fault energies of FCC metals under preloading stress. Chinese Physics B, 24(8). doi:10.1088/1674-1056/24/8/088106 Zhang, L. S., Ma, G. L., Fu, L. C., Tian, J. Y. (2013). Recent Progress in High-Entropy Alloys. Advanced Materials Research, 631-632, 227-232. doi:10.4028/www.scientific.net/AMR.631-632.227 Zhang, Q., Xu, H., Tan, X. H., Hou, X. L., Wu, S. W., Tan, G. S., Yu, L. Y. (2017). The effects of phase constitution on magnetic and mechanical properties of FeCoNi(CuAl) (x = 0–1.2) high-entropy alloys. Journal of Alloys and Compounds, 693, 1061-1067. doi:10.1016/j.jallcom.2016.09.271 Zhao, Y. H., Zhu, Y. T., Liao, X. Z., Horita, Z., Langdon, T. G. (2006). Tailoring stacking fault energy for high ductility and high strength in ultrafine grained Cu and its alloy. Applied Physics Letters, 89(12). doi:10.1063/1.2356310 Zhou, X. W., Johnson, R. A., Wadley, H. N. G. (2004). Misfit-energy-increasing dislocations in vapor-deposited CoFe/NiFe multilayers. Physical Review B, 69(14). doi:10.1103/PhysRevB.69.144113 Zhou, X. W., Wadley, H. N. G., Johnson, R. A., Larson, D. J., Tabat, N., Cerezo, A., . . . Kelly, T. F. (2001). Atomic scale structure of sputtered metal multilayers. Acta Materialia, 49(19), 4005-4015. doi:10.1016/s1359-6454(01)00287-7 | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67949 | - |
dc.description.abstract | 高熵合金優秀的機械性質一直以來都是重要的研究課題,其中能維持fcc單相的Cantor alloy系統更因擁有高強度、高延展性及可擴展性而受到許多人的關注。本研究透過疊差能建立了Cantor alloy變形機制及其對力學性質影響的連結,使得合金調配有更堅實的理論基礎,並針對改進力學性質提出配比建議。透過力學機制與機械性質間的連結,降低了高熵合金配比研發的複雜性,加速高熵合金研發的進程。 藉由分子動力模擬及OVITO視覺化軟體,拉伸試驗、疊差能模擬及過程中缺陷的演進得以被視覺化,機械性質和變形機制也可以有效的分類。疊差、內部疊差、外部疊差、孿晶和hcp transformation induced plasticity (TRIP)透過自行開發的缺陷分類演算法得以分類並視覺化,變形機制的探討也因此有了比較堅實的物理基礎。 本研究結果吻合文獻提出,內部疊差能對延展性有一最佳的區間,可以最佳化合金的延展性。也由此分類出四種不同延展性表現的合金類別,對於其中的缺陷演進、變形路徑可以有更細微的觀察與探討。並分類出三種變形路徑,分別為gliding induced twining (GIT)、bundled twin growth (BTG)和bulk hcp TRIP;疊差能較高者會透過疊差的滑移延展孿晶,而較低者通常能透過差排滑移延續孿晶的成長。Hcp TRIP則能進一步提供更多滑移空間,因而增加合金的延展性。在不同機制的交互影響下,即使變形路徑不同,還是有可能會有高延展性,其關鍵在於孿晶的生長與長度。而同時擁有GIT、BTG變形路徑組合的配比通常能獲得高強度與高延展性。最後,本研究也透過貝式最佳化成功發現了更高強度的合金配比。 | zh_TW |
dc.description.abstract | Reasons for the great mechanical attributes of high entropy alloys (HEAs) have been an important question to answer. In addition, Cantor alloys with fcc single phase have great expansibility in mechanical performance among other HEAs. In this work, connection between mechanical performance and deformation mechanisms was built, providing more solid background for compositional tuning as well as guidance for compositional tuning. Through the linkage between mechanical performance and deformation mechanisms, the design complexity of HEA is much lower, thus boosts the progress of HEA studies. Molecular dynamics simulations of tensile and stacking fault energy were conducted for observation of micro mechanisms. Stacking fault, intrinsic stacking fault, extrinsic stacking faults, twin and hcp transformation induced plasticity (TRIP) were classified and visualized through OVITO, of which defect evolutions and deformation maps were concluded accordingly. An optimum region of intrinsic/extrinsic stacking fault energy for higher ductility was obtained, where was later classified into four ductile types. Deformation evolution also were studied with respect to three different deformation mechanisms: gliding induced twinning (GIT), bundled twin growth (BTG) and bulk hcp TRIP. Growth and propagation of twins was found crucial for prolongation of HEAs, and a positive relation between strength and stacking energy was inducted. Better strength and ductility could be accomplished by controlling stacking fault energy while combining GIT and BTG. Bayesian optimization also was utilized for compositional predictions, of which compositions with much higher strength and product of ultimate tensile strength and total elongation (PSE) was found. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T02:00:00Z (GMT). No. of bitstreams: 1 U0001-1408202016512300.pdf: 12774205 bytes, checksum: 78720974f189cf883c68eeefb3491339 (MD5) Previous issue date: 2020 | en |
dc.description.tableofcontents | 口試委員會審定書 # 誌謝 i 中文摘要 ii ABSTRACT iii CONTENTS v LIST OF FIGURES viii LIST OF TABLES xiv Chapter 1 Introduction 1 1.1 Background 1 1.2 Objectives 3 1.3 Thesis outline 3 Chapter 2 Literature review 5 2.1 High Entropy Alloy 5 2.1.1 Lattice distortion effect 10 2.1.2 Cocktail effect 12 2.1.3 Sluggish diffusion effect 13 2.1.4 Short-range ordering effect 14 2.2 Stacking fault energy 15 2.3 Molecular dynamics simulation 17 2.3.1 Modified embedded atom method 19 2.3.2 Monte Carlo simulation 20 2.4 Deformation mechanisms 22 2.5 Predictive model 24 2.6 Summary 24 Chapter 3 Methodology 25 3.1 Molecular dynamics simulation 25 3.1.1 Simulation tool and interatomic potential 25 3.1.2 Model setup 26 3.1.3 Tensile test 30 3.1.4 Stacking fault energy 32 3.2 Post processing 34 3.2.1 Ovito visualization 34 3.2.2 Defect identification algorithm 36 3.3 Bayesian optimization model 39 Chapter 4 Results 41 4.1 Simulation results 43 4.2 Mechanical properties 52 4.3 Stacking fault energy 53 4.4 Deformation mechanisms 60 4.5 Bayesian optimization 60 Chapter 5 Discussion 70 5.1 Effects of stacking fault energy 72 5.2 Evolution of deformation mechanisms 81 5.3 Between mechanical performance and deformation mechanisms 85 Chapter 6 Conclusions and future work 88 6.1 Conclusions 88 6.2 Future work 89 REFERENCE 91 Appendix A: Tensile animation 96 Appendix B: Network diagrams 97 Appendix C: State diagrams 103 | |
dc.language.iso | en | |
dc.title | 以分子動力模擬探討高熵合金之疊差能與力學性質 | zh_TW |
dc.title | Mechanisms and Stacking Fault Energy Enhancing Mechanical Properties in CoCrFeMnNi High-entropy Alloy: A Molecular Dynamics Simulation-based Study | en |
dc.type | Thesis | |
dc.date.schoolyear | 108-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 顏鴻威(Hung-Wei Yen),黃仲偉(Chang-Wei Huang),張書瑋(Shu-Wei Chang) | |
dc.subject.keyword | 高熵合金,疊差,疊差能,孿晶,變形機制,變形路徑,貝式最佳化, | zh_TW |
dc.subject.keyword | high entropy alloy,stacking fault,stacking fault energy,twin,deformation mechanism,deformation evolution,Bayesian optimization, | en |
dc.relation.page | 108 | |
dc.identifier.doi | 10.6342/NTU202003457 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2020-08-19 | |
dc.contributor.author-college | 工學院 | zh_TW |
dc.contributor.author-dept | 土木工程學研究所 | zh_TW |
顯示於系所單位: | 土木工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
U0001-1408202016512300.pdf 目前未授權公開取用 | 12.47 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。