請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67932
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 張瑞峰 | |
dc.contributor.author | Hong-Hao Chen | en |
dc.contributor.author | 陳鴻豪 | zh_TW |
dc.date.accessioned | 2021-06-17T01:58:56Z | - |
dc.date.available | 2022-07-27 | |
dc.date.copyright | 2017-07-27 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-19 | |
dc.identifier.citation | [1] R. L. Siegel, K. D. Miller, and A. Jemal, 'Cancer Statistics, 2017,' Ca-a Cancer Journal for Clinicians, vol. 67, pp. 7-30, Jan-Feb 2017.
[2] D. S. Salem, R. M. Kamal, S. M. Mansour, L. A. Salah, and R. Wessam, 'Breast imaging in the young: the role of magnetic resonance imaging in breast cancer screening, diagnosis and follow-up,' Journal of Thoracic Disease, vol. 5, pp. S9-S18, Jun 2013. [3] L. Cheng and X. Li, 'Breast magnetic resonance imaging: kinetic curve assessment,' Gland Surg, vol. 2, pp. 50-3, Feb 2013. [4] A. Karahaliou, K. Vassiou, S. Skiadopoulos, T. Kanavou, A. Yiakoumelos, and L. Costaridou, 'Quantifying heterogeneity of lesion uptake in dynamic contrast enhanced MRI for breast cancer diagnosis,' Journal of Instrumentation, vol. 4, Jul 2009. [5] U. Preim, S. Glasser, B. Preim, F. Fischbach, and J. Ricke, 'Computer-aided diagnosis in breast DCE-MRI-Quantification of the heterogeneity of breast lesions,' European Journal of Radiology, vol. 81, pp. 1532-1538, Jul 2012. [6] Y. C. Chang, Y. H. Huang, C. S. Huang, J. H. Chen, and R. F. Chang, 'Computerized breast lesions detection using kinetic and morphologic analysis for dynamic contrast-enhanced MRI,' Magnetic Resonance Imaging, vol. 32, pp. 514-522, Jun 2014. [7] T. C. Wang, Y. H. Huang, C. S. Huang, J. H. Chen, G. Y. Huang, Y. C. Chang, and R. F. Chang, 'Computer-aided diagnosis of breast DCE-MRI using pharmacokinetic model and 3-D morphology analysis,' Magnetic Resonance Imaging, vol. 32, pp. 197-205, Apr 2014. [8] Y. C. Chang, Y. S. Huang, C. S. Huang, J. H. Chen, and R. F. Chang, 'Intrinsic subtypes and tumor grades in breast cancer are associated with distinct 3-D power Doppler sonographic vascular features,' European Journal of Radiology, vol. 83, pp. 1368-1374, Aug 2014. [9] S. C. Agner, M. A. Rosen, S. Englander, J. E. Tomaszewski, M. D. Feldman, P. Zhang, C. Mies, M. D. Schnall, and A. Madabhushi, 'Computerized Image Analysis for Identifying Triple-Negative Breast Cancers and Differentiating Them from Other Molecular Subtypes of Breast Cancer on Dynamic Contrast-enhanced MR Images: A Feasibility Study,' Radiology, vol. 272, pp. 91-99, Jul 2014. [10] I. Martincorena and P. J. Campbell, 'Somatic mutation in cancer and normal cells (vol 351, aaf5401, 2016),' Science, vol. 353, pp. 132-132, Jul 8 2016. [11] R. Dent, M. Trudeau, K. I. Pritchard, W. M. Hanna, H. K. Kahn, C. A. Sawka, L. A. Lickley, E. Rawlinson, P. Sun, and S. A. Narod, 'Triple-negative breast cancer: Clinical features and patterns of recurrence,' Clinical Cancer Research, vol. 13, pp. 4429-4434, Aug 1 2007. [12] T. Mukohara, 'PI3K mutations in breast cancer: prognostic and therapeutic implications,' Breast Cancer-Targets and Therapy, vol. 7, pp. 111-123, 2015. [13] N. Fleeman, A. Bagust, A. Boland, R. Dickson, Y. Dundar, M. Moonan, J. Oyee, M. Blundell, H. Davis, A. Armstrong, and N. Thorp, 'Lapatinib and trastuzumab in combination with an aromatase inhibitor for the first-line treatment of metastatic hormone receptor-positive breast cancer which over-expresses human epidermal growth factor 2 (HER2): a systematic review and economic analysis,' Health Technology Assessment, vol. 15, pp. 1-+, Dec 2011. [14] B. S. Shoker, C. Jarvis, R. B. Clarke, E. Anderson, J. Hewlett, M. P. A. Davies, D. R. Sibson, and J. P. Sloane, 'Estrogen receptor-positive proliferating cells in the normal and precancerous breast,' American Journal of Pathology, vol. 155, pp. 1811-1815, Dec 1999. [15] K. R. Bauer, M. Brown, R. D. Cress, C. A. Parise, and V. Caggiano, 'Descriptive analysis of estrogen receptor (ER)negative, progesterone receptor (PR)-negative, and HER2-negative invasive breast cancer, the so-called triple-negative phenotype - A population-based study from the California Cancer Registry,' Cancer, vol. 109, pp. 1721-1728, May 1 2007. [16] J. M. Ruppert and B. Stillman, 'Analysis of a Protein-Binding Domain of P53,' Molecular and Cellular Biology, vol. 13, pp. 3811-3820, Jun 1993. [17] A. J. Levine and M. Oren, 'The first 30 years of p53: growing ever more complex,' Nature Reviews Cancer, vol. 9, pp. 749-758, Oct 2009. [18] A. B. Williams and B. Schumacher, 'p53 in the DNA-Damage-Repair Process,' Cold Spring Harbor Perspectives in Medicine, vol. 6, May 2016. [19] H. Solomon, R. Brosh, Y. Buganim, and V. Rotter, 'Inactivation of the p53 Tumor Suppressor Gene and Activation of the Ras Oncogene: Cooperative Events in Tumorigenesis,' Discovery Medicine, vol. 9, pp. 448-454, May 2010. [20] P. A. J. Muller and K. H. Vousden, 'Mutant p53 in Cancer: New Functions and Therapeutic Opportunities,' Cancer Cell, vol. 25, pp. 304-317, Mar 17 2014. [21] P. Hainaut and M. Hollstein, 'p53 and human cancer: The first ten thousand mutations,' Advances in Cancer Research, Vol 77, vol. 77, pp. 81-137, 2000. [22] C. Nakauchi, N. Kagara, K. Shimazu, A. Shimomura, Y. Naoi, M. Shimoda, S. J. Kim, and S. Noguchi, 'Detection of TP53/PIK3CA Mutations in Cell-Free Plasma DNA From Metastatic Breast Cancer Patients Using Next Generation Sequencing,' Clinical Breast Cancer, vol. 16, pp. 418-423, Oct 2016. [23] D. Zardavas, W. A. Phillips, and S. Loi, 'PIK3CA mutations in breast cancer: reconciling findings from preclinical and clinical data,' Breast Cancer Research, vol. 16, p. 201, Jan 23 2014. [24] K. E. Bachman, P. Argani, Y. Samuels, N. Silliman, J. Ptak, S. Szabo, H. Konishi, B. Karakas, B. G. Blair, C. Lin, B. A. Peters, V. E. Velculescu, and B. H. Park, 'The PIK3CA gene is mutated with high frequency in human breast cancers,' Cancer Biology & Therapy, vol. 3, pp. 772-775, Aug 2004. [25] D. H. Atha, H. M. Wenz, H. Morehead, J. Tian, and C. D. O'Connell, 'Detection of p53 point mutations by single strand conformation polymorphism: Analysis by capillary electrophoresis,' Electrophoresis, vol. 19, pp. 172-179, Feb 1998. [26] G. Keller, A. Hartmann, J. Mueller, and H. Hofler, 'Denaturing high pressure liquid chromatography (DHPLC) for the analysis of somatic p53 mutations,' Laboratory Investigation, vol. 81, pp. 1735-7, Dec 2001. [27] S. Behjati, M. Maschietto, R. D. Williams, L. Side, M. Hubank, R. West, K. Pearson, N. Sebire, P. Tarpey, A. Futreal, T. Brooks, M. R. Stratton, and J. Anderson, 'A Pathogenic Mosaic TP53 Mutation in Two Germ Layers Detected by Next Generation Sequencing,' Plos One, vol. 9, May 8 2014. [28] G. M. Saed, D. Ladin, J. Olson, X. F. Han, Z. Z. Hou, and D. Fivenson, 'Analysis of p53 gene mutations in keloids using polymerase chain reaction-based single-strand conformational polymorphism and DNA sequencing,' Archives of Dermatology, vol. 134, pp. 963-967, Aug 1998. [29] I. O. Baas, J. W. Mulder, G. J. Offerhaus, B. Vogelstein, and S. R. Hamilton, 'An evaluation of six antibodies for immunohistochemistry of mutant p53 gene product in archival colorectal neoplasms,' Journal of Pathology, vol. 172, pp. 5-12, Jan 1994. [30] M. A. Levesque, H. Yu, G. M. Clark, and E. P. Diamandis, 'Enzyme-linked immunoabsorbent assay-detected p53 protein accumulation: A prognostic factor in a large breast cancer cohort,' Journal of Clinical Oncology, vol. 16, pp. 2641-2650, Aug 1998. [31] I. Brotherick, B. K. Shenton, W. K. Cowan, B. Angus, C. H. Horne, M. J. Higgs, and T. W. Lennard, 'p53 expression measured by flow cytometry. A comparison of three monoclonal antibodies and the relationship with grade and DNA ploidy in breast cancer,' Cancer Immunol Immunother, vol. 41, pp. 146-50, Sep 1995. [32] H. Puhalla, D. Kandioler, C. Ludwig, M. Filipits, F. Wrba, F. Laengle, R. Jakesz, and T. Gruenberger, 'P53 analysis in gallbladder cancer: Comparison of gene analysis versus immunohistochemistry,' Anticancer Research, vol. 24, pp. 1201-1206, Mar-Apr 2004. [33] A. Berger, 'How does it work? Magnetic resonance imaging,' British Medical Journal, vol. 324, pp. 35-35, Jan 5 2002. [34] C. K. Kuhl, S. Schrading, C. C. Leutner, N. Morakkabati-Spitz, E. Wardelmann, R. Fimmers, W. Kuhn, and H. H. Schild, 'Mammography, breast ultrasound, and magnetic resonance imaging for surveillance of women at high familial risk for breast cancer,' Journal of Clinical Oncology, vol. 23, pp. 8469-8476, Nov 20 2005. [35] R. H. El Khouli, K. J. Macura, M. A. Jacobs, T. H. Khalil, I. R. Kamel, A. Dwyer, and D. A. Bluemke, 'Dynamic Contrast-Enhanced MRI of the Breast: Quantitative Method for Kinetic Curve Type Assessment,' American Journal of Roentgenology, vol. 193, pp. W295-W300, Oct 2009. [36] D. J. Collins and A. R. Padhani, 'Dynamic magnetic resonance imaging of tumor perfusion,' Ieee Engineering in Medicine and Biology Magazine, vol. 23, pp. 65-83, Sep-Oct 2004. [37] D. W. Siemann, 'The unique characteristics of tumor vasculature and preclinical evidence for its selective disruption by Tumor-Vascular Disrupting Agents,' Cancer Treatment Reviews, vol. 37, pp. 63-74, Feb 2011. [38] V. Ludovini, A. Sidoni, L. Pistola, G. Bellezza, V. De Angelis, S. Gori, A. M. Mosconi, G. Bisagni, R. Cherubini, A. R. Bian, C. Rodino, R. Sabbatini, B. Mazzocchi, E. Bucciarelli, M. Tonato, and M. Colozza, 'Evaluation of the prognostic role of vascular endothelial growth factor and microvessel density in stages I and II breast cancer patients,' Breast Cancer Research and Treatment, vol. 81, pp. 159-168, Sep 2003. [39] R. Kumar and R. Yarmand-Bagheri, 'The role of HER2 in angiogenesis,' Seminars in Oncology, vol. 28, pp. 27-32, Oct 2001. [40] B. K. Linderholm, H. Hellborg, U. Johansson, G. Elmberger, L. Skoog, J. Lehtio, and R. Lewensohn, 'Significantly higher levels of vascular endothelial growth factor (VEGF) and shorter survival times for patients with primary operable triple-negative breast cancer,' Annals of Oncology, vol. 20, pp. 1639-1646, Oct 2009. [41] S. Makkat, R. Luypaert, T. Stadnik, C. Bourgain, S. Sourbron, M. Dujardin, J. De Greve, and J. De Mey, 'Deconvolution-based Dynamic Contrast-enhanced MR Imaging of Breast Tumors: Correlation of Tumor Blood Flow with Human Epidermal Growth Factor Receptor 2 Status and Clinicopathologic Findings-Preliminary Results,' Radiology, vol. 249, pp. 471-482, Nov 2008. [42] R. A. A. Mohammed, I. O. Ellis, A. M. Mahmmod, E. C. Hawkes, A. R. Green, E. A. Rakha, and S. G. Martin, 'Lymphatic and blood vessels in basal and triple-negative breast cancers: characteristics and prognostic significance,' Modern Pathology, vol. 24, pp. 774-785, Jun 2011. [43] J. H. Chen, H. M. Baek, O. Nalcioglu, and M. Y. Su, 'Estrogen receptor and breast MR imaging features: A correlation study,' Journal of Magnetic Resonance Imaging, vol. 27, pp. 825-833, Apr 2008. [44] D. Slamon, W. Eiermann, N. Robert, T. Pienkowski, M. Martin, M. Press, J. Mackey, J. Glaspy, A. Chan, M. Pawlicki, P. Tamas, V. Valero, M. C. Liu, G. Sauter, G. von Minckwitz, F. Visco, V. Bee, M. Buyse, B. Bendahmane, I. Tabah-Fisch, M. A. Lindsay, A. Riva, J. Crown, and B. C. I. R. Grp, 'Adjuvant Trastuzumab in HER2-Positive Breast Cancer,' New England Journal of Medicine, vol. 365, pp. 1273-1283, Oct 6 2011. [45] H. C. Sullivan, G. Oprea-Ilies, A. L. Adams, A. J. Page, S. Kim, J. Wang, and C. Cohen, 'Triple-negative Breast Carcinoma in African American and Caucasian Women: Clinicopathology, Immunomarkers, and Outcome,' Applied Immunohistochemistry & Molecular Morphology, vol. 22, pp. 17-23, Jan 2014. [46] J. S. Reis-Filho and A. N. J. Tutt, 'Triple negative tumours: a critical review,' Histopathology, vol. 52, pp. 108-118, Jan 2008. [47] J. Alsner, M. Yilmaz, P. Guldberg, L. L. Hansen, and J. Overgaard, 'Heterogeneity in the clinical phenotype of TP53 mutations in breast cancer patients,' Clinical Cancer Research, vol. 6, pp. 3923-3931, Oct 2000. [48] P. A. J. Muller, K. H. Vousden, and J. C. Norman, 'p53 and its mutants in tumor cell migration and invasion,' Journal of Cell Biology, vol. 192, pp. 209-218, Jan 24 2011. [49] The Cancer Genome Atlas Netowrk, 'Comprehensive molecular portraits of human breast tumours,' Nature, vol. 490, pp. 61-70, Oct 4 2012. [50] K. Kalinsky, L. M. Jacks, A. Heguy, S. Patil, M. Drobnjak, U. K. Bhanot, C. V. Hedvat, T. A. Traina, D. Solit, W. Gerald, and M. E. Moynahan, 'PIK3CA mutation associates with improved outcome in breast cancer,' Clinical Cancer Research, vol. 15, pp. 5049-59, Aug 15 2009. [51] E. M. J. J. Berns, J. A. Foekens, R. Vossen, M. P. Look, P. Devilee, S. C. Henzen-Logmans, I. L. van Staveren, W. L. J. van Putten, M. Inganas, M. E. Meijer-van Gelder, C. Cornelisse, C. J. C. Claassen, H. Portengen, B. Bakker, and J. G. M. Klijn, 'Complete sequencing of TP53 predicts poor response to systemic therapy of advanced breast cancer,' Cancer Research, vol. 60, pp. 2155-2162, Apr 15 2000. [52] P. Bertheau, J. Lehmann-Che, M. Varna, A. Dumay, B. Poirot, R. Porcher, E. Turpin, L. F. Plassa, A. de Roquancourt, E. Bourstyn, P. de Cremoux, A. Janin, S. Giacchetti, M. Espie, and H. de The, 'p53 in breast cancer subtypes and new insights into response to chemotherapy,' Breast, vol. 22, pp. S27-S29, Aug 1 2013. [53] S. Darb-Esfahani, C. Denkert, A. Stenzinger, C. Salat, B. Sinn, C. Schem, V. Endris, P. Klare, W. Schmitt, J. U. Blohmera, W. Weichert', M. Mobs, H. Teschl, S. Kummeln, P. Sinn, C. Jackisch, M. Dietel, T. Reimer', S. Loi, M. Untch, G. von Minckwitz, V. Nekljudoval, and S. Loibl, 'Role of TP53 mutations in triple negative and HER2-positive breast cancer treated with neoadjuvant anthracycline/taxane-based chemotherapy,' Oncotarget, vol. 7, pp. 67686-67698, Oct 18 2016. [54] M. Aggarwal, R. Saxena, E. Sinclair, Y. Fu, A. Jacobs, M. Dyba, X. Wang, I. Cruz, D. Berry, B. Kallakury, S. C. Mueller, S. D. Agostino, G. Blandino, M. L. Avantaggiati, and F. L. Chung, 'Reactivation of mutant p53 by a dietary-related compound phenethyl isothiocyanate inhibits tumor growth,' Cell Death and Differentiation, vol. 23, pp. 1615-1627, Oct 2016. [55] A. Di Cintio, E. Di Gennaro, and A. Budillon, 'Restoring p53 Function in Cancer: Novel Therapeutic Approaches for Applying the Brakes to Tumorigenesis,' Recent Patents on Anti-Cancer Drug Discovery, vol. 5, pp. 1-13, Jan 2010. [56] J. D. Martinez, 'Restoring p53 tumor suppressor activity as an anticancer therapeutic strategy,' Future Oncology, vol. 6, pp. 1857-1862, Dec 2010. [57] J. Zawacka-Pankau and G. Selivanova, 'Pharmacological reactivation of p53 as a strategy to treat cancer,' Journal of Internal Medicine, vol. 277, pp. 248-259, Feb 2015. [58] A. Soler, H. Serra, W. Pearce, A. Angulo, J. Guillermet-Guibert, L. S. Friedman, F. Vinals, H. Gerhardt, O. Casanovas, M. Graupera, and B. Vanhaesebroeck, 'Inhibition of the p110 alpha isoform of PI 3-kinase stimulates nonfunctional tumor angiogenesis,' Journal of Experimental Medicine, vol. 210, pp. 1937-1945, Sep 23 2013. [59] F. AP., 'Discovering statistics using SPSS : (and sex, drugs and rock 'n' roll),' 3rd ed. Los Angeles: SAGE Publications, 2005. [60] R. Kohavi and G. H. John, 'Wrappers for feature subset selection,' Artificial Intelligence, vol. 97, pp. 273-324, Dec 1997. [61] Y. Xiao, J. Hua, and E. R. Dougherty, 'Quantification of the impact of feature selection on the variance of cross-validation error estimation,' EURASIP J Bioinform Syst Biol, p. 16354, 2007. [62] S. Holm, 'A Simple Sequentially Rejective Multiple Test Procedure,' Scandinavian Journal of Statistics, vol. 6, pp. 65-70, 1979. [63] F. Davnall, C. S. Yip, G. Ljungqvist, M. Selmi, F. Ng, B. Sanghera, B. Ganeshan, K. A. Miles, G. J. Cook, and V. Goh, 'Assessment of tumor heterogeneity: an emerging imaging tool for clinical practice?,' Insights Imaging, vol. 3, pp. 573-89, Dec 2012. [64] W. K. Moon, C. M. Lo, J. M. Chang, C. S. Huang, J. H. Chen, and R. F. Chang, 'Computer-aided classification of breast masses using speckle features of automated breast ultrasound images,' Medical Physics, vol. 39, pp. 6465-6473, Oct 2012. [65] R. M. Haralick, Shanmuga.K, and I. Dinstein, 'Textural Features for Image Classification,' Ieee Transactions on Systems Man and Cybernetics, vol. Smc3, pp. 610-621, 1973. [66] A. Karahaliou, K. Vassiou, N. S. Arikidis, S. Skiadopoulos, T. Kanavou, and L. Costaridou, 'Assessing heterogeneity of lesion enhancement kinetics in dynamic contrast-enhanced MRI for breast cancer diagnosis,' British Journal of Radiology, vol. 83, pp. 296-306, Apr 2010. [67] P. S. Tofts, 'Modeling tracer kinetics in dynamic Gd-DTPA MR imaging,' Jmri-Journal of Magnetic Resonance Imaging, vol. 7, pp. 91-101, Jan-Feb 1997. [68] Y. C. Chang, Y. H. Huang, C. S. Huang, P. K. Chang, J. H. Chen, and R. F. Chang, 'Classification of breast mass lesions using model-based analysis of the characteristic kinetic curve derived from fuzzy c-means clustering,' Magnetic Resonance Imaging, vol. 20, pp. 312-322, Apr 2012. [69] S. A. Hojjatoleslami and J. Kittler, 'Region growing: a new approach,' IEEE Trans Image Process, vol. 7, pp. 1079-84, 1998. [70] J. Folkman, 'What Is the Evidence That Tumors Are Angiogenesis Dependent,' Journal of the National Cancer Institute, vol. 82, pp. 4-6, Jan 3 1990. [71] T. Piekos, 'Confidence connected segmentation using ITK,' The Insight Journal, 2007. [72] L. Iba´nez, W. Schroeder, L. Ng, J. Cates, and t. I. S. Consortium, The ITK Software Guide., 2 ed., 2005. [73] D. L. Pham and J. L. Prince, 'An adaptive fuzzy C-means algorithm for image segmentation in the presence of intensity inhomogeneities,' Pattern Recognition Letters, vol. 20, pp. 57-68, Jan 1999. [74] J. B. MacQueen, 'Some Methods for classification and Analysis of Multivariate Observations,' Proceedings of 5th Berkeley Symposium on Mathematical Statistics and Probability, pp. 281-297, 1967. [75] M. B. Dillencourt, H. Samet, and M. Tamminen, 'A General-Approach to Connected-Component Labeling for Arbitrary Image Representations,' Journal of the Acm, vol. 39, pp. 253-280, Apr 1992. [76] D. W. Marquardt, 'An Algorithm for Least-Squares Estimation of Nonlinear Parameters,' Journal of the Society for Industrial and Applied Mathematics, vol. 11, pp. 431-441, 1963. [77] R. M. Haralick, K. Shanmugam, and I. Dinstein, 'Textural Features for Image Classification,' Ieee Transactions on Systems Man and Cybernetics, vol. Smc3, pp. 610-621, 1973. [78] B. B. Chen and T. T. F. Shih, 'DCE-MRI in hepatocellular carcinoma-clinical and therapeutic image biomarker,' World Journal of Gastroenterology, vol. 20, pp. 3125-3134, Mar 28 2014. [79] W. Chen, M. L. Giger, H. Li, U. Bick, and G. M. Newstead, 'Volumetric texture analysis of breast lesions on contrast-enhanced magnetic resonance images,' Magnetic Resonance in Medicine, vol. 58, pp. 562-571, Sep 2007. [80] R. F. Chang, H. H. Chen, Y. C. Chang, C. S. Huang, J. H. Chen, and C. M. Lo, 'Quantification of breast tumor heterogeneity for ER status, HER2 status, and TN molecular subtype evaluation on DCE-MRI,' Magnetic Resonance Imaging, vol. 34, pp. 809-819, Jul 2016. [81] E. J. Sutton, B. Z. Dashevsky, J. H. Oh, H. Veeraraghavan, A. P. Apte, S. B. Thakur, E. A. Morris, and J. O. Deasy, 'Breast Cancer Molecular Subtype Classifier That Incorporates MRI Features,' Journal of Magnetic Resonance Imaging, vol. 44, pp. 122-129, Jul 2016. [82] E. Bribiesca, 'An easy measure of compactness for 2D and 3D shapes,' Pattern Recognition, vol. 41, pp. 543-554, Feb 2008. [83] L. A. Meinel, A. H. Stolpen, K. S. Berbaum, L. L. Fajardo, and J. M. Reinhardt, 'Breast MRI lesion classification: Improved performance of human readers with a backpropagation neural network computer-aided diagnosis (CAD) system,' Journal of Magnetic Resonance Imaging, vol. 25, pp. 89-95, Jan 2007. [84] K. F. Mulchrone and K. R. Choudhury, 'Fitting an ellipse to an arbitrary shape: implications for strain analysis,' Journal of Structural Geology, vol. 26, pp. 143-153, 2004. [85] Q. Zhu and P. L-K, 'A transformation-invariant recursive subdivision method for shape analysis,' presented at the 9th International Conference on Pattern Recognition, 1988. [86] M. N. Raber, B. Barlogie, J. Latreille, C. Bedrossian, H. Fritsche, and G. Blumenschein, 'Ploidy, Proliferative Activity and Estrogen-Receptor Content in Human-Breast Cancer,' Cytometry, vol. 3, pp. 36-41, 1982. [87] J. Crown, J. O'Shaughnessy, and G. Gullo, 'Emerging targeted therapies in triple-negative breast cancer,' Annals of Oncology, vol. 23, pp. 56-65, Aug 2012. [88] L. C. H. Leong, E. C. Gombos, J. Jagadeesan, and S. M. C. Fook-Chong, 'MRI Kinetics With Volumetric Analysis in Correlation With Hormonal Receptor Subtypes and Histologic Grade of Invasive Breast Cancers,' American Journal of Roentgenology, vol. 204, pp. W348-W356, Mar 2015. [89] K. M. Krizmanich-Conniff, C. Paramagul, S. K. Patterson, M. A. Helvie, M. A. Roubidoux, J. D. Myles, K. Jiang, and M. Sabel, 'Triple Receptor-Negative Breast Cancer: Imaging and Clinical Characteristics,' American Journal of Roentgenology, vol. 199, pp. 458-464, Aug 2012. [90] B. Li, X. Zhao, S. C. Dai, and W. Cheng, 'Associations Between Mammography and Ultrasound Imaging Features and Molecular Characteristics of Triple-negative Breast Cancer,' Asian Pacific Journal of Cancer Prevention, vol. 15, pp. 3555-3559, 2014. [91] Y. F. Yu, Y. Zhang, N. Shen, R. Y. Zhang, and X. Q. Lu, 'Effect of VEGF, P53 and telomerase on angiogenesis of gastric carcinoma tissue,' Asian Pacific Journal of Tropical Medicine, vol. 7, pp. 293-296, Apr 2014. [92] B. K. Linderholm, T. Lindahl, L. Holmberg, S. Klaar, J. Lennerstrand, R. Henriksson, and J. Bergh, 'The expression of vascular endothelial growth factor correlates with mutant p53 and poor prognosis in human breast cancer,' Cancer Research, vol. 61, pp. 2256-60, Mar 01 2001. [93] D. Ribatti, B. Nico, S. Ruggieri, R. Tamma, G. Simone, and A. Mangia, 'Angiogenesis and Antiangiogenesis in Triple-Negative Breast cancer,' Translational Oncology, vol. 9, pp. 453-457, Oct 2016. [94] M. Masotti and R. Campanini, 'Texture classification using invariant ranklet features,' Pattern Recognition Letters, vol. 29, pp. 1980-1986, Oct 15 2008. [95] K. Clark, B. Vendt, K. Smith, J. Freymann, J. Kirby, P. Koppel, S. Moore, S. Phillips, D. Maffitt, M. Pringle, L. Tarbox, and F. Prior, 'The Cancer Imaging Archive (TCIA): Maintaining and Operating a Public Information Repository,' Journal of Digital Imaging, vol. 26, pp. 1045-1057, Dec 2013. [96] W. Lingle, B. J. Erickson, M. L. Zuley, R. Jarosz, E. Bonaccio, J. Filippini, …, and N. Gruszauskas, 'Radiology Data from The Cancer Genome Atlas Breast Invasive Carcinoma [TCGA-BRCA] collection,' The Cancer Imaging Archive, 2016. [97] N. Nishida, H. Yano, T. Nishida, T. Kamura, and M. Kojiro, 'Angiogenesis in cancer,' Vasc Health Risk Manag, vol. 2, pp. 213-9, 2006. [98] B. R. Rosen, J. W. Belliveau, J. M. Vevea, and T. J. Brady, 'Perfusion imaging with NMR contrast agents,' Magnetic Resonance in Medicine, vol. 14, pp. 249-65, May 1990. [99] R. Whitaker and X. Xue, 'Variable-conductance, level-set curvature for image denosing,' presented at the IEEE International Conference on Image Processing, 2001. [100] L. R. Schad, 'Problems in texture analysis with magnetic resonance imaging,' Dialogues Clin Neurosci, vol. 6, pp. 235-42, Jun 2004. [101] J. S. Lim, Two-dimensional signal and image processing. New Jersey: Prentice Hall, 1990. [102] C. A. Poynton, 'Gamma and Its Disguises - the Nonlinear Mappings of Intensity in Perception, Crts, Film, and Video,' Smpte Journal, vol. 102, pp. 1099-1108, Dec 1993. [103] M. C. Yang, W. K. Moon, Y. C. F. Wang, M. S. Bae, C. S. Huang, J. H. Chen, and R. F. Chang, 'Robust Texture Analysis Using Multi-Resolution Gray-Scale Invariant Features for Breast Sonographic Tumor Diagnosis,' Ieee Transactions on Medical Imaging, vol. 32, pp. 2262-2273, Dec 2013. [104] Y. H. Huang, Y. C. Chang, C. S. Huang, T. J. Wu, J. H. Chen, and R. F. Chang, 'Computer-aided diagnosis of mass-like lesion in breast MRI: Differential analysis of the 3-D morphology between benign and malignant tumors,' Computer Methods and Programs in Biomedicine, vol. 112, pp. 508-517, Dec 2013. [105] A. E. Sirica, The Pathobiology of Neoplasia. New York: Plenum Press, 1989. [106] P. Gerlee and A. R. A. Anderson, 'Diffusion-Limited Tumour Growth: Simulations and Analysis,' Mathematical Biosciences and Engineering, vol. 7, pp. 385-400, Apr 2010. [107] F. C. Gaertner, M. Souvatzoglou, G. Brix, and A. J. Beer, 'Imaging of Hypoxia Using PET and MRI,' Current Pharmaceutical Biotechnology, vol. 13, pp. 552-570, Mar 2012. [108] S. M. Evans, S. M. Hahn, D. P. Magarelli, and C. J. Koch, 'Hypoxic heterogeneity in human tumors - EF5 binding, vasculature, necrosis, and proliferation,' American Journal of Clinical Oncology-Cancer Clinical Trials, vol. 24, pp. 467-472, Oct 2001. [109] Y. H. Huang, Y. C. Chang, C. S. Huang, J. H. Chen, and R. F. Chang, 'Computerized Breast Mass Detection Using Multi-Scale Hessian-Based Analysis for Dynamic Contrast-Enhanced MRI,' Journal of Digital Imaging, vol. 27, pp. 649-660, Oct 2014. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67932 | - |
dc.description.abstract | 根據美國癌症協會最新的統計,乳癌是導致女性癌症死亡的第二大主因,且預期在未來是女性中最常見的癌症。動態磁振造影以非電離輻射的方式產生高解析度的三維影像,被廣泛利用在乳癌第二線診斷評估及追蹤。臨床上,一旦確診為乳癌後,醫師將安排一系列的評估以製定合適的治療計畫。隨著乳癌治療方式的發展,愈來愈多針對特定生物標記的新型治療方法被提出並達到有效的治療效果。因此,在進行治療之前識別相關的生物標記將有助於醫師製定客製化的治療方式。相較於免疫組織化學法與脫氧核糖核酸測序,透過影像分析識別這些生物標記可達到非侵入式且整體性的分析。本論文提出在乳癌中識別荷爾蒙受體狀態與體細胞突變的影像分析方法,第一個主題提出一個量化乳房腫瘤異質性的方法,並且進一步識別動激素受體、人類表皮生長因子受體以及三陰性乳癌的狀態。第二個主題透過數值排序紋理分析與形態學分析識別乳癌中體細胞突變的鑑定。實驗結果顯示量化乳房腫瘤內部異質性可反映不同分子標記的血管複雜性,基於數值排序的乳房腫瘤紋理分析可有效識別TP53突變與PIK3CA突變。 | zh_TW |
dc.description.abstract | According to the estimations of the American Cancer Society, breast cancer is the second leading cause of cancer death in women, which is expected as the most frequently diagnosed cancer (30%) of all new cancer diagnoses. Dynamic contrast-enhanced magnetic resonance imaging (DCE-MRI) is one of the second-phase examinations, which adopts non-ionizing radiation to create high resolution three dimensional (3-D) images and achieves high sensitivity in breast cancer diagnosis. Once breast cancer is diagnosed in clinical, the healthcare provider will begin to develop a treatment plan under different circumstances. With the growth of development in breast cancer treatment, novel treatments were invented for effective response on specific biomarkers. Therefore, identifying the biomarkers which associated with therapeutic response before treatment is necessary in customizing treatment plans. Furthermore, identification of these therapeutic biomarkers by image analysis techniques provides a non-invasive and overall quantification. This study proposed methods of identifying hormone receptor (ER, HER2, and TNBC) statuses and somatic mutations (TP53 and PIK3CA) in breast cancer. The first sub-study proposed a technique of quantifying intra-tumoral heterogeneity, and further recognizing the ER, HER2, and TNBC statuses. The second sub-study recognized TP53 and PIK3CA mutations by texture analysis based on ranklet transform and morphological analysis. The results show that quantification of intra-tumoral heterogeneity can be used to reflect the vasculature complexity of different molecular markers and texture analysis of breast tumor based on ranklet transform is potential in recognizing the presence of TP53 and PIK3CA mutations. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:58:56Z (GMT). No. of bitstreams: 1 ntu-106-D99922021-1.pdf: 3407897 bytes, checksum: 0584a89bd3cecc81ba948fe23ae6f792 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 ............................................................................................................... i
Acknowledgements ............................................................................................................. ii 中文摘要 ............................................................................................................................. iii Abstract ............................................................................................................................... iv Contents............................................................................................................................... vi List of Figures....................................................................................................................... ix List of Tables........................................................................................................................ xiii Chapter 1 Introduction ......................................................................................................... 1 1.1 Research Motivation....................................................................................................... 1 1.2 Issue Descriptions.......................................................................................................... 2 1.2.1 Identification of Molecular Markers in Breast Cancer.................................................. 3 1.2.2 Recognition of Somatic Mutations in Breast Cancer .................................................. 4 1.3 Organization .................................................................................................................. 6 Chapter 2 Review of Related Works.................................................................................... 8 2.1 Review of DCE-MRI....................................................................................................... 8 2.2 Review of ER, PR, and HER2 statuses of Breast Cancer.............................................. 11 2.3 Review of Somatic Mutation of Breast Cancer............................................................... 12 2.4 Tools and Statistical Analysis ........................................................................................ 13 Chapter 3 Quantification of Breast Tumor Heterogeneity for ER, HER2, and TNBC Molecular Subtype Evaluation............................................................................................................. 15 3.1 Introduction .................................................................................................................. 15 3.2 Materials ...................................................................................................................... 16 3.3 Method.......................................................................................................................... 17 3.3.1 Tumor Segmentation ................................................................................................. 20 3.3.2 Fuzzy C-means ......................................................................................................... 21 3.3.3 Regionalization (Region-based Feature) .................................................................. 23 3.3.4 Tofts Pharmacokinetic Model .................................................................................... 25 3.3.5 Texture Feature......................................................................................................... 26 3.3.6 Morphological Feature ............................................................................................. 27 3.4 Results and Discussion .............................................................................................. 30 3.5 Summary..................................................................................................................... 40 Chapter 4 Evaluation of TP53/PIK3CA Mutation Using Texture and Morphological Analyses............................ ......................... ......................... ......................... ................. 42 4.1 Introduction ................................................................................................................. 42 4.2 Materials ..................................................................................................................... 43 4.3 Method......................................................................................................................... 43 4.3.1 Tumor Segmentation ............................................................................................... 45 4.3.2 Ranklet Transform.................................................................................................... 47 4.3.3 Feature extraction .................................................................................................. 47 4.4 Results and Discussion ............................................................................................. 49 4.5 Summary.................................................................................................................... 59 Chapter 5 Conclusions and Future Directions.................................................................. 60 Reference ............ ......................... ......................... ......................... ............................. 62 Publication List.......................... ......................... ......................... .................................. 84 | |
dc.language.iso | en | |
dc.title | 乳房動態磁振造影之生物標記分析 | zh_TW |
dc.title | Analyzing Biomarker in Breast Dynamic Contrast-Enhanced Magnetic Resonance Imaging | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 博士 | |
dc.contributor.oralexamcommittee | 曾宇鳳,黃俊升,羅崇銘,黃彥皓 | |
dc.subject.keyword | 乳癌,動態磁振造影,分子標記,電腦輔助診斷,體細胞突變, | zh_TW |
dc.subject.keyword | breast cancer,DCE-MRI,molecular marker,computer-aided diagnosis,somatic mutation, | en |
dc.relation.page | 85 | |
dc.identifier.doi | 10.6342/NTU201701659 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-20 | |
dc.contributor.author-college | 電機資訊學院 | zh_TW |
dc.contributor.author-dept | 資訊工程學研究所 | zh_TW |
顯示於系所單位: | 資訊工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 3.33 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。