Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67930
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德(Chi-Te Liang)
dc.contributor.authorYu-Ting Huangen
dc.contributor.author黃鈺庭zh_TW
dc.date.accessioned2021-06-17T01:58:49Z-
dc.date.available2020-07-27
dc.date.copyright2017-07-27
dc.date.issued2017
dc.date.submitted2017-07-20
dc.identifier.citationReference
1 Michael Karbo, 'PC architecture', (Denmark: ELI Aps, 2005).
2 I Present, 'Cramming more components onto integrated circuits,' Readings in computer architecture 56 (2000).
3 Robert H Dennard, Fritz H Gaensslen, V Leo Rideout, Ernest Bassous, and Andre R LeBlanc, 'Design of ion-implanted MOSFET's with very small physical dimensions,' IEEE Journal of Solid-State Circuits 9 (5), 256-268 (1974).
4 Kaizad Mistry, C Allen, Chris Auth, Bruce Beattie, D Bergstrom, M Bost, M Brazier, M Buehler, A Cappellani, and R Chau, presented at the Electron Devices Meeting, 2007. IEDM 2007. IEEE International, 2007 (unpublished).
5 Jean-Pierre Colinge, 'Multiple-gate soi mosfets,' Solid-State Electronics 48 (6), 897-905 (2004).
6 Isabelle Ferain, Cynthia A Colinge, and Jean-Pierre Colinge, 'Multigate transistors as the future of classical metal-oxide-semiconductor field-effect transistors,' Nature 479 (7373), 310-316 (2011).
7 Kostya S Novoselov, Andre K Geim, Sergei V Morozov, D Jiang, Y_ Zhang, Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov, 'Electric field effect in atomically thin carbon films,' science 306 (5696), 666-669 (2004).
8 Ph Avouris, F Xia, T Mueller, DB Farmer, C Dimitrakopoulos, and A Grill, presented at the Device Research Conference (DRC), 2010, 2010 (unpublished).
9 Lei Liao, Jingwei Bai, Rui Cheng, Yung-Chen Lin, Shan Jiang, Yongquan Qu, Yu Huang, and Xiangfeng Duan, 'Sub-100 nm channel length graphene transistors,' Nano letters 10 (10), 3952-3956 (2010).
10 Lei Liao, Yung-Chen Lin, Mingqiang Bao, Rui Cheng, Jingwei Bai, Yuan Liu, Yongquan Qu, Kang L Wang, Yu Huang, and Xiangfeng Duan, 'High-speed graphene transistors with a self-aligned nanowire gate,' Nature 467 (7313), 305-308 (2010).
11 Fengnian Xia, Thomas Mueller, Yu-ming Lin, Alberto Valdes-Garcia, and Phaedon Avouris, 'Ultrafast graphene photodetector,' Nature nanotechnology 4 (12), 839-843 (2009).
12 Francesco Bonaccorso, Z Sun, Ta Hasan, and AC Ferrari, 'Graphene photonics and optoelectronics,' Nature photonics 4 (9), 611-622 (2010).
13 Andre K Geim and Irina V Grigorieva, 'Van der Waals heterostructures,' Nature 499 (7459), 419-425 (2013).
14 Qing Hua Wang, Kourosh Kalantar-Zadeh, Andras Kis, Jonathan N Coleman, and Michael S Strano, 'Electronics and optoelectronics of two-dimensional transition metal dichalcogenides,' Nature nanotechnology 7 (11), 699-712 (2012).
15 Gianluca Fiori, Francesco Bonaccorso, Giuseppe Iannaccone, Tomás Palacios, Daniel Neumaier, Alan Seabaugh, Sanjay K Banerjee, and Luigi Colombo, 'Electronics based on two-dimensional materials,' Nature nanotechnology 9 (10), 768-779 (2014).
16 Han Wang, Lili Yu, Yi-Hsien Lee, Yumeng Shi, Allen Hsu, Matthew L Chin, Lain-Jong Li, Madan Dubey, Jing Kong, and Tomas Palacios, 'Integrated circuits based on bilayer MoS2 transistors,' Nano letters 12 (9), 4674-4680 (2012).
17 Hui Fang, Steven Chuang, Ting Chia Chang, Kuniharu Takei, Toshitake Takahashi, and Ali Javey, 'High-performance single layered WSe2 p-FETs with chemically doped contacts,' Nano letters 12 (7), 3788-3792 (2012).
18 Stefano Larentis, Babak Fallahazad, and Emanuel Tutuc, 'Field-effect transistors and intrinsic mobility in ultra-thin MoSe2 layers,' Applied Physics Letters 101 (22), 223104 (2012).
19 Sanghyun Jo, Nicolas Ubrig, Helmuth Berger, Alexey B Kuzmenko, and Alberto F Morpurgo, 'Mono-and bilayer WS2 light-emitting transistors,' Nano letters 14 (4), 2019-2025 (2014).
20 Yen‐Fu Lin, Yong Xu, Sheng‐Tsung Wang, Song‐Lin Li, Mahito Yamamoto, Alex Aparecido‐Ferreira, Wenwu Li, Huabin Sun, Shu Nakaharai, and Wen‐Bin Jian, 'Ambipolar MoTe2 transistors and their applications in logic circuits,' Advanced Materials 26 (20), 3263-3269 (2014).
21 Branimir Radisavljevic, Aleksandra Radenovic, Jacopo Brivio, i V Giacometti, and A Kis, 'Single-layer MoS2 transistors,' Nature nanotechnology 6 (3), 147-150 (2011).
22 Ting Cao, Gang Wang, Wenpeng Han, Huiqi Ye, Chuanrui Zhu, Junren Shi, Qian Niu, Pingheng Tan, Enge Wang, and Baoli Liu, 'Valley-selective circular dichroism of monolayer molybdenum disulphide,' Nature communications 3, 887 (2012).
23 Michael S Fuhrer and James Hone, 'Measurement of mobility in dual-gated MoS2 transistors,' Nature nanotechnology 8 (3), 146-147 (2013).
24 Zhihao Yu, Yiming Pan, Yuting Shen, Zilu Wang, Zhun-Yong Ong, Tao Xu, Run Xin, Lijia Pan, Baigeng Wang, and Litao Sun, 'Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering,' arXiv preprint arXiv:1408.6614 (2014).
25 Deji Akinwande, Nicholas Petrone, and James Hone, 'Two-dimensional flexible nanoelectronics,' Nature communications 5, 5678 (2014).
26 Wei Feng, Wei Zheng, Wenwu Cao, and PingAn Hu, 'Back gated multilayer InSe transistors with enhanced carrier mobilities via the suppression of carrier scattering from a dielectric interface,' Advanced Materials 26 (38), 6587-6593 (2014).
27 Nilanthy Balakrishnan, Zakhar R Kudrynskyi, Emily F Smith, Michael W Fay, Oleg Makarovsky, Zakhar D Kovalyuk, Laurence Eaves, Peter H Beton, and Amalia Patanè, 'Engineering p–n junctions and bandgap tuning of InSe nanolayers by controlled oxidation,' 2D Materials 4 (2), 025043 (2017).
28 Zhibin Yang, Wenjing Jie, Chun-Hin Mak, Shenghuang Lin, Huihong Lin, Xianfeng Yang, Feng Yan, Shu Ping Lau, and Jianhua Hao, 'Wafer-Scale Synthesis of High-Quality Semiconducting Two-Dimensional Layered InSe with Broadband Photoresponse,' ACS nano 11 (4), 4225-4236 (2017).
29 A Segura, F Pomer, A Cantarero, W Krause, and A Chevy, 'Electron scattering mechanisms in n-type indium selenide,' Physical Review B 29 (10), 5708 (1984).
30 Denis A Bandurin, Anastasia V Tyurnina, L Yu Geliang, Artem Mishchenko, Viktor Zólyomi, Sergey V Morozov, Roshan Krishna Kumar, Roman V Gorbachev, Zakhar R Kudrynskyi, and Sergio Pezzini, 'High electron mobility, quantum Hall effect and anomalous optical response in atomically thin InSe,' Nature nanotechnology 12 (3), 223-227 (2017).
31 GW Mudd, MR Molas, X Chen, V Zólyomi, K Nogajewski, ZR Kudrynskyi, ZD Kovalyuk, G Yusa, O Makarovsky, and L Eaves, 'The direct-to-indirect band gap crossover in two-dimensional van der Waals Indium Selenide crystals,' Scientific reports 6, 39619 (2016).
32 Garry W Mudd, Simon A Svatek, Tianhang Ren, Amalia Patanè, Oleg Makarovsky, Laurence Eaves, Peter H Beton, Zakhar D Kovalyuk, George V Lashkarev, and Zakhar R Kudrynskyi, 'Tuning the bandgap of exfoliated InSe nanosheets by quantum confinement,' Advanced Materials 25 (40), 5714-5718 (2013).
33 Juan F Sánchez-Royo, Guillermo Muñoz-Matutano, Mauro Brotons-Gisbert, Juan P Martínez-Pastor, Alfredo Segura, Andrés Cantarero, Rafael Mata, Josep Canet-Ferrer, Gerard Tobias, and Enric Canadell, 'Electronic structure, optical properties, and lattice dynamics in atomically thin indium selenide flakes,' Nano Research 7 (10), 1556-1568 (2014).
34 Wei Feng, Xin Zhou, Wei Quan Tian, Wei Zheng, and PingAn Hu, 'Performance improvement of multilayer InSe transistors with optimized metal contacts,' Physical Chemistry Chemical Physics 17 (5), 3653-3658 (2015).
35 Sukrit Sucharitakul, Nicholas J Goble, U Rajesh Kumar, Raman Sankar, Zachary A Bogorad, Fang-Cheng Chou, Yit-Tsong Chen, and Xuan PA Gao, 'Intrinsic electron mobility exceeding 103 cm2/(V s) in multilayer InSe FETs,' Nano letters 15 (6), 3815-3819 (2015).
36 Mei Yin Chan, Katsuyoshi Komatsu, Song-Lin Li, Yong Xu, Peter Darmawan, Hiromi Kuramochi, Shu Nakaharai, Alex Aparecido-Ferreira, Kenji Watanabe, and Takashi Taniguchi, 'Suppression of thermally activated carrier transport in atomically thin MoS 2 on crystalline hexagonal boron nitride substrates,' Nanoscale 5 (20), 9572-9576 (2013).
37 Branimir Radisavljevic and Andras Kis, 'Mobility engineering and a metal–insulator transition in monolayer MoS2,' Nature materials 12 (9), 815-820 (2013).
38 Charles Kittel, Introduction to solid state physics. (Wiley, 2005).
39 Kristen Kaasbjerg, Kristian S Thygesen, and Karsten W Jacobsen, 'Phonon-limited mobility in n-type single-layer MoS 2 from first principles,' Physical Review B 85 (11), 115317 (2012).
40 Manish Chhowalla, Hyeon Suk Shin, Goki Eda, Lain-Jong Li, Kian Ping Loh, and Hua Zhang, 'The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets,' Nature chemistry 5 (4), 263-275 (2013).
41 Saptarshi Das and Joerg Appenzeller, 'Screening and interlayer coupling in multilayer MoS2,' physica status solidi (RRL)-Rapid Research Letters 7 (4), 268-273 (2013).
42 Saptarshi Das and Joerg Appenzeller, 'Where does the current flow in two-dimensional layered systems?,' Nano letters 13 (7), 3396-3402 (2013).
43 Debdeep Jena, 'Tunneling transistors based on graphene and 2-D crystals,' Proceedings of the IEEE 101 (7), 1585-1602 (2013).
44 Simon M Sze and Kwok K Ng, Physics of semiconductor devices. (John wiley & sons, 2006).
45 Saptarshi Das, Hong-Yan Chen, Ashish Verma Penumatcha, and Joerg Appenzeller, 'High performance multilayer MoS2 transistors with scandium contacts,' Nano letters 13 (1), 100-105 (2012).
46 Xu Cui, Gwan-Hyoung Lee, Young Duck Kim, Ghidewon Arefe, Pinshane Y Huang, Chul-Ho Lee, Daniel A Chenet, Xian Zhang, Lei Wang, and Fan Ye, 'Multi-terminal transport measurements of MoS2 using a van der Waals heterostructure device platform,' Nature nanotechnology 10 (6), 534-540 (2015).
47 Rajesh Kappera, Damien Voiry, Sibel Ebru Yalcin, Brittany Branch, Gautam Gupta, Aditya D Mohite, and Manish Chhowalla, 'Phase-engineered low-resistance contacts for ultrathin MoS2 transistors,' Nature materials 13 (12), 1128-1134 (2014).
48 Hsun-Jen Chuang, Bhim Chamlagain, Michael Koehler, Meeghage Madusanka Perera, Jiaqiang Yan, David Mandrus, David Tománek, and Zhixian Zhou, 'Low-resistance 2D/2D ohmic contacts: A universal approach to high-performance WSe2, MoS2, and MoSe2 transistors,' Nano letters 16 (3), 1896-1902 (2016).
49 H. Qiu, L. J. Pan, Z. N. Yao, J. J. Li, Y. Shi, and X. R. Wang, 'Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances,' Applied Physics Letters 100 (12), 123104 (2012).
50 Woanseo Park, Juhun Park, Jingon Jang, Hyungwoo Lee, Hyunhak Jeong, Kyungjune Cho, Seunghun Hong, and Takhee Lee, 'Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors,' Nanotechnology 24 (9), 095202 (2013).
51 Sefaattin Tongay, Jian Zhou, Can Ataca, Jonathan Liu, Jeong Seuk Kang, Tyler S Matthews, Long You, Jingbo Li, Jeffrey C Grossman, and Junqiao Wu, 'Broad-range modulation of light emission in two-dimensional semiconductors by molecular physisorption gating,' Nano letters 13 (6), 2831-2836 (2013).
52 Qu Yue, Zhengzheng Shao, Shengli Chang, and Jingbo Li, 'Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field,' Nanoscale research letters 8 (1), 425 (2013).
53 Dmitry Ovchinnikov, Adrien Allain, Ying-Sheng Huang, Dumitru Dumcenco, and Andras Kis, 'Electrical transport properties of single-layer WS2,' ACS nano 8 (8), 8174-8181 (2014).
54 Zengguang Cheng, Qiaoyu Zhou, Chenxuan Wang, Qiang Li, Chen Wang, and Ying Fang, 'Toward intrinsic graphene surfaces: a systematic study on thermal annealing and wet-chemical treatment of SiO2-supported graphene devices,' Nano letters 11 (2), 767-771 (2011).
55 Rui Yang, Xuqian Zheng, Zenghui Wang, Christopher J Miller, and Philip X-L Feng, 'Multilayer MoS2 transistors enabled by a facile dry-transfer technique and thermal annealing,' Journal of Vacuum Science & Technology B, Nanotechnology and Microelectronics: Materials, Processing, Measurement, and Phenomena 32 (6), 061203 (2014).
56 Andres Castellanos-Gomez, Leonardo Vicarelli, Elsa Prada, Joshua O Island, KL Narasimha-Acharya, Sofya I Blanter, Dirk J Groenendijk, Michele Buscema, Gary A Steele, and JV Alvarez, 'Isolation and characterization of few-layer black phosphorus,' 2D Materials 1 (2), 025001 (2014).
57 Rostislav A. Doganov, Eoin C. T. O’Farrell, Steven P. Koenig, Yuting Yeo, Angelo Ziletti, Alexandra Carvalho, David K. Campbell, David F. Coker, Kenji Watanabe, Takashi Taniguchi, Antonio H. Castro Neto, and Barbaros Özyilmaz, 'Transport properties of pristine few-layer black phosphorus by van der Waals passivation in an inert atmosphere,' 6, 6647 (2015).
58 Po-Hsun Ho, Min-Ken Li, Raman Sankar, Fu-Yu Shih, Shao-Sian Li, Yih-Ren Chang, Wei-Hua Wang, Fang-Cheng Chou, and Chun-Wei Chen, 'Tunable photoinduced carrier transport of a black phosphorus transistor with extended stability using a light-sensitized encapsulated layer,' ACS Photonics 3 (6), 1102-1108 (2016).
59 Konstantin S Novoselov, VI Fal, L Colombo, PR Gellert, MG Schwab, and K Kim, 'A roadmap for graphene,' Nature 490 (7419), 192-200 (2012).
60 AV Kretinin, Y Cao, JS Tu, GL Yu, R Jalil, KS Novoselov, SJ Haigh, A Gholinia, A Mishchenko, and M Lozada, 'Electronic properties of graphene encapsulated with different two-dimensional atomic crystals,' Nano letters 14 (6), 3270-3276 (2014).
61 Chris D English, Gautam Shine, Vincent E Dorgan, Krishna C Saraswat, and Eric Pop, 'Improved contacts to MoS2 transistors by ultra-high vacuum metal deposition,' Nano letters 16 (6), 3824-3830 (2016).
62 Fu-Yu Shih, Shao-Yu Chen, Cheng-Hua Liu, Po-Hsun Ho, Tsuei-Shin Wu, Chun-Wei Chen, Yang-Fang Chen, and Wei-Hua Wang, 'Residue-free fabrication of high-performance graphene devices by patterned PMMA stencil mask,' AIP Advances 4 (6), 067129 (2014).
63 Rebecca Howland, Lisa Benatar, and Park Scientific Instruments, A practical guide to scanning probe microscopy. (Park scientific instruments, 1996).
64 John Thornton, 'Scanning Probe Microscopy Training Notebook', (version, 2000).
65 Cory R Dean, Andrea F Young, Inanc Meric, Chris Lee, Lei Wang, Sebastian Sorgenfrei, Kenji Watanabe, Takashi Taniguchi, Phillip Kim, and Kenneth L Shepard, 'Boron nitride substrates for high-quality graphene electronics,' Nature nanotechnology 5 (10), 722-726 (2010).
66 Rostislav A Doganov, Steven P Koenig, Yuting Yeo, Kenji Watanabe, Takashi Taniguchi, and Barbaros Özyilmaz, 'Transport properties of ultrathin black phosphorus on hexagonal boron nitride,' Applied Physics Letters 106 (8), 083505 (2015).
67 Michael S Bresnehan, Matthew J Hollander, Maxwell Wetherington, Michael LaBella, Kathleen A Trumbull, Randal Cavalero, David W Snyder, and Joshua A Robinson, 'Integration of hexagonal boron nitride with quasi-freestanding epitaxial graphene: toward wafer-scale, high-performance devices,' ACS nano 6 (6), 5234-5241 (2012).
68 PJ Zomer, SP Dash, N Tombros, and BJ Van Wees, 'A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride,' Applied Physics Letters 99 (23), 232104 (2011).
69 Debdeep Jena and Aniruddha Konar, 'Enhancement of carrier mobility in semiconductor nanostructures by dielectric engineering,' Physical review letters 98 (13), 136805 (2007).
70 Zhesheng Chen, Karim Gacem, Mohamed Boukhicha, Johan Biscaras, and Abhay Shukla, 'Anodic bonded 2D semiconductors: from synthesis to device fabrication,' Nanotechnology 24 (41), 415708 (2013).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67930-
dc.description.abstract近幾年來,二維半導體材料如過渡金屬硫族化物 (TMD)、黑磷吸引了很多研究的目光。在本篇論文中,我們藉由研究半導體以及金屬介面的特性來了解硒化銦 (InSe) 的載子傳輸特性。由二維半導體製程的場效電晶體 (field-effect transistor) 中,金屬及半導體的介面和基板 (substrate) 是很重要的。因此,我們使用了六角形氮化硼 (h-BN) 作為基板以降低基板表面的粗糙度和減少介面的游離帶電雜質 (charged impurity)。為了防止光阻殘留在我們的硒化銦上,我們使用了一種無光阻殘留技術,利用聚酸甲酯 (PMMA) 當作薄膜蒸鍍罩 (stencil mask) 來製作多點電極。我們長了一層薄層的氧化銦 (Indium oxide)來改善接觸電阻 (contact resistance)。長了薄層氧化銦的場效電晶體有比沒有長薄層氧化銦的場效電晶體還低的48.7毫電子伏特的Schottky barrier height。在高閘極電壓的情況下,室溫中的金屬及半導體的接觸電阻 (contact resistance) 是5 kΩ μm。因為有好的接觸電阻,最高電流最高可以達到300 μA/μm並進入飽和區(saturation regime)。在2 K中,電流電壓特性曲線是呈現線性的,因此能夠宣稱我們擁有歐姆接觸 (ohmic contact)。在此種結構下,場效載子遷移率 (field-effect mobility)可以達到1400 cm2V-1s-1。低溫時,電流開關比 (on/off ratio)有107-108。最近我們發現硒化銦在一般大氣中是非常敏感的,我們藉由拉曼光普 (Raman spectroscopy)以及X射線光電子能譜學 (XPS)證實了硒化銦在空氣中會氧化。因此,這個薄層氧化銦能夠提供我們高品質的硒化銦氧化電晶體以應用在未來的電子元件。zh_TW
dc.description.abstractTwo-dimensional (2D) semiconductors, e.g. black phosphorus and transition metal dichalgenides (TMDs), have attracted considerable interests recently. We investigate the electronic transport properties of Indium Selenide (InSe) by exploring the nature of the semiconductor-metallic contact interface. For 2D-material-based field-effect transistors (FETs), issues regarding substrate and contact are extremely important. We employed hexagonal boron nitride (h-BN) as the substrate of InSe FET to reduce surface roughness and suppress charged-impurity density at the interface. To avoid resist contamination in our FETs, we patterned polymethyl methacrylate (PMMA) as a stencil mask to realize residue-free four-probe measurement. A thin layer of Indium oxide is grown to improve the contact characteristics. We extract the Schottky barrier height (SBH) from activation energy in the thermionic emission regime. The SBH with the Indium oxide layer is reduced to 48.7 meV, compared with higher SBH without capping layer. Contact resistance is 5 kΩ μm with high gate voltage at room temperature. High drain current up to 300 μA/μm in the saturation regime at room temperature is achieved because of the low SBH and contact resistance. Electronic transport measurements show linear current voltage characteristics at high gate voltages at T=2 K, indicating ohmic contact with the Indium oxide layer. The field-effect mobility reaches 1400 cm2V-1s-1 and the on/off ratios is 107-108 at T=2 K. Lastly, we found that InSe is very sensitive to the ambient environment, and InSe is oxidized in ambient environment quickly based on Raman and XPS measurement. The measured transport properties suggest the high-quality of InSe with the Indium oxide interface as a conduction channel for the next-generation electronic devices.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:58:49Z (GMT). No. of bitstreams: 1
ntu-106-R04222070-1.pdf: 3755941 bytes, checksum: 271f1aa292a730d14083daa6a483b8ba (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 iii
摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES ix
Introduction 1
1.1 Moore’s law 1
1.2 Two-dimensional materials 3
1.3 Layered metal chalcogenide semiconductors 7
1.4 Paper review 10
1.5 Motivation 16
1.6 Thesis structure 17
Chapter 2 2D field-effect transistor characterization 19
2.1 Mobility 19
2.1.1 Field-effect mobility 21
2.1.2 Phonon scattering in 2D materials 22
2.2 Thickness-dependent transport properties 24
2.3 Ion/Ioff ratios and subthreshold swing 28
2.4 Contact resistance 30
2.4.1 Schottky contact and ohmic contact 30
2.4.2 Ohmic contact in 2D materials FETs 32
2.5 Gas adsorbates effects on 2D materials 39
Chapter 3 Device fabrication and experimental apparatus 43
3.1 Mechanical exfoliation of few-layer InSe and h-BN 43
3.2 Transfer of few-layer InSe onto pre-exfoliated h-BN 46
3.2.1 Dry-transfer technique 46
3.2.2 Residue removal and interface cleaning by vacuum thermal annealing 49
3.3 Resist-free fabrication of electrical contacts 50
3.3.1 Fabrication of In oxide interface 50
3.3.2 Fabrication of electrical contacts 52
3.3.3 Resist-free fabrication of four-probe devices using stencil mask 53
3.4 Experimental techniques 56
3.4.1 Atomic force microscope (AFM) 56
3.4.2 Optical measurement systems 57
3.4.3 Electrical measurement systems and methods 60
3.4.4 Physical Property Measurement System 62
Chapter 4 Experimental results and discussions 64
4.1 Oxidation effects on InSe 64
4.1.1 Raman spectroscopy of InSe after exposed in air 67
4.1.2 Change of mobilities after exposed in ambient environment 68
4.2 Air-stable InSe FETs encapsulated by In oxide 69
4.2.1 Raman spectroscopy after exposed in air 70
4.2.2 Change of transport properties after exposed in ambient environment 71
4.2.3 Post-capping InSe field-effect transistor 74
4.3 Contact improvement by In oxide capping 75
4.3.1 Reduction of Schottky barrier height 77
4.3.2 Four-probe measurement 81
4.4 High performance InSe field-effect transistors 84
Chapter 5 Conclusions 87
Reference 89
dc.language.isoen
dc.subject歐姆接觸zh_TW
dc.subject硒化銦zh_TW
dc.subject氧化銦zh_TW
dc.subject六角形氮化硼zh_TW
dc.subject最高電流zh_TW
dc.subject薄膜蒸鍍罩zh_TW
dc.subjectInSeen
dc.subjecthigh drain currenten
dc.subjectohmic contacten
dc.subjectstencil masken
dc.subjectIndium oxideen
dc.subjecth-BNen
dc.title利用氧化銦覆蓋層以達到少層硒化銦電晶體的增強傳輸特性以及空氣中之穩定性zh_TW
dc.titleEnhanced Transport Characteristics of Few-layer Indium Selenide Transistors with Extended Stability Using an Indium Oxide Encapsulated Layeren
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor王偉華(Wei-Hua Wang)
dc.contributor.oralexamcommittee林彥甫(Yen-Fu Lin)
dc.subject.keyword硒化銦,六角形氮化硼,氧化銦,薄膜蒸鍍罩,歐姆接觸,最高電流,zh_TW
dc.subject.keywordInSe,h-BN,Indium oxide,stencil mask,ohmic contact,high drain current,en
dc.relation.page95
dc.identifier.doi10.6342/NTU201701752
dc.rights.note有償授權
dc.date.accepted2017-07-20
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.67 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved