Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 醫學院
  3. 解剖學暨細胞生物學科所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67929
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor錢宗良(Chung-Liang Chien)
dc.contributor.authorPin-Chun Chouen
dc.contributor.author周品君zh_TW
dc.date.accessioned2021-06-17T01:58:45Z-
dc.date.available2021-09-08
dc.date.copyright2017-09-08
dc.date.issued2016
dc.date.submitted2017-07-20
dc.identifier.citationAlnaeeli, M., Wang, L., Piknova, B., Rogers, H., Li, X., & Noguchi, C. T. (2012). Erythropoietin in brain development and beyond. Anatomy Reasearch international, 2012, 953264. doi:10.1155/2012/953264
Bederson, J. B., Pitts, L. H., Tsuji, M., Nishimura, M. C., Davis, R. L., & Bartkowski, H. (1986). Rat middle cerebral artery occlusion: evaluation of the model and development of a neurologic examination. Stroke, 17(3), 472-476.
Bennett, D. A., Krishnamurthi, R. V., Barker-Collo, S., Forouzanfar, M. H., Naghavi, M., Connor, M., . . . Risk Factors Study Stroke Expert, G. (2014). The global burden of ischemic stroke: findings of the GBD 2010 study. Global Heart, 9(1), 107-112. doi:10.1016/j.gheart.2014.01.001
Brines, M. L., Ghezzi, P., Keenan, S., Agnello, D., de Lanerolle, N. C., Cerami, C., . . . Cerami, A. (2000). Erythropoietin crosses the blood-brain barrier to protect against experimental brain injury. Proceding of the National Academy Science of United State of America, 97(19), 10526-10531.
Chan, H. H., Wathen, C. A., Ni, M., & Zhuo, S. M. (2017). Stem cell therapies for ischemic stroke: current animal models, clinical trials and biomaterials. Rsc Advances, 7(30), 18668-18680. doi:10.1039/c7ra00336f
Chang, Y. S., Mu, D. Z., Wendland, M., Sheldon, R. A., Vexler, Z. S., McQuillen, P. S., & Ferriero, D. M. (2005). Erythropoietin improves functional and histological outcome in neonatal stroke. Pediatric Research, 58(1), 106-111. doi:Doi 10.1203/01.Pdr.0000163616.89767.69
Chen, J., Sanberg, P. R., Li, Y., Wang, L., Lu, M., Willing, A. E., . . . Chopp, M. (2001). Intravenous administration of human umbilical cord blood reduces behavioral deficits after stroke in rats. Stroke, 32(11), 2682-2688.
Chen, S. J., Tsai, J. C., Lin, C. Y., Chang, C. K., Tseng, T. H., & Chien, C. L. (2012). Brain-Derived Neurotrophic Factor-Transfected and Nontransfected 3T3 Fibroblasts Enhance Migratory Neuroblasts and Functional Restoration in Mice With Intracerebral Hemorrhage. Journal of Neuropathology and Experimental Neurology, 71(12), 1123-1136. doi:10.1097/NEN.0b013e3182779e96
Cho, G. W., Koh, S. H., Kim, M. H., Yoo, A. R., Noh, M. Y., Oh, S., & Kim, S. H. (2010). The neuroprotective effect of erythropoietin-transduced human mesenchymal stromal cells in an animal model of ischemic stroke. Brain Research, 1353, 1-13. doi:10.1016/j.brainres.2010.06.013
Chong, Z. Z., Kang, J. Q., & Maiese, K. (2003). Erythropoietin fosters both intrinsic and extrinsic neuronal protection through modulation of microglia, Akt1, Bad, and caspase-mediated pathways. British Journal of Pharmacology, 138(6), 1107-1118. doi:10.1038/sj.bjp.705161
Ding, D. C., Shyu, W. C., Chiang, M. F., Lin, S. Z., Chang, Y. C., Wang, H. J., . . . Li, H. (2007). Enhancement of neuroplasticity through upregulation of beta 1-integrin in human umbilical cord-derived stromal cell implanted stroke model. Neurobiology of Disease, 27(3), 339-353. doi:10.1016/j.nbd.2007.06.0
Dudas, J., Bitsche, M., Schartinger, V., Falkeis, C., Sprinzl, G. M., & Riechelmann, H. (2011). Fibroblasts produce brain-derived neurotrophic factor and induce mesenchymal transition of oral tumor cells. Oral Oncology, 47(2), 98-103. doi:10.1016/j.oraloncology.2010.11.002
Gage, F. H. (2000). Mammalian neural stem cells. Science, 287(5457), 1433-1438. doi:DOI 10.1126/science.287.5457.1433
Gonzalez, F. F., Larpthaveesarp, A., McQuillen, P., Derugin, N., Wendland, M., Spadafora, R., & Ferriero, D. M. (2013). Erythropoietin increases neurogenesis and oligodendrogliosis of subventricular zone precursor cells after neonatal stroke. Stroke, 44(3), 753-758. doi:10.1161/STROKEAHA.111.000104
Hacke, W., Kaste, M., Bluhmki, E., Brozman, M., Davalos, A., Guidetti, D., . . . Investigators, E. (2008). Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke. New England Journal of Medicine, 359(13), 1317-1329. doi:10.1056/NEJMoa0804656
Hickey, R. W., Kochanek, P. M., Ferimer, H., Alexander, H. L., Garman, R. H., & Graham, S. H. (2003). Induced hyperthermia exacerbates neurologic neuronal histologic damage after asphyxial cardiac arrest in rats. Critcal Care Medicine, 31(2), 531-535. doi:10.1097/01.CCM.0000050323.84293.11
Hinkle, J. L., & Guanci, M. M. (2007). Acute ischemic stroke review. Journal of Neuroscience Nursing, 39(5), 285-293, 310.
Jerregard, H., Akerud, P., Arenas, E., & Hildebrand, C. (2000). Fibroblast-like cells from rat plantar skin and neurotrophin-transfected 3T3 fibroblasts influence neurite growth from rat sensory neurons in vitro. Journal of Neurocytology, 29(9), 653-663. doi:Doi 10.1023/A:1010883320683
Jiang, Q., Thiffault, C., Kramer, B. C., Ding, G. L., Zhang, L., Nejad-Davarani, S. P., . . . Chopp, M. (2012). MRI detects brain reorganization after human umbilical tissue-derived cells (hUTC) treatment of stroke in rat. PLoS One, 7(8), e42845. doi:10.1371/journal.pone.0042845
Jung, J. E., Kim, G. S., Chen, H., Maier, C. M., Narasimhan, P., Song, Y. S., . . . Chan, P. H. (2010). Reperfusion and Neurovascular Dysfunction in Stroke: from Basic Mechanisms to Potential Strategies for Neuroprotection. Molecular Neurobiology, 41(2-3), 172-179. doi:10.1007/s12035-010-8102-z
Kirkeby, A., Yorup, L., Bochsen, L., Kjalke, M., Abel, K., Theilgaard-Monch, K., . . . Leist, M. (2008). High-dose erythropoietin alters platelet reactivity and bleeding time in rodents in contrast to the neuroprotective variant carbamyl-erythropoietin (CEPO). Thrombosis and Haemostasis, 99(4), 720-728. doi:10.1160/Th07-03-0208
Kokaia, Z., & Lindvall, O. (2003). Neurogenesis after ischaemic brain insults. Current Opinion in Neurobiology, 13(1), 127-132.
Lee, W. D., Wang, K. C., Tsai, Y. F., Chou, P. C., Tsai, L. K., & Chien, C. L. (2016). Subarachnoid Hemorrhage Promotes Proliferation, Differentiation, and Migration of Neural Stem Cells via BDNF Upregulation. PLoS One, 11(11), e0165460. doi:10.1371/journal.pone.0165460
Lenoir, N. (2000). Europe confronts the embryonic stem cell research challenge. Science, 287(5457), 1425-1427. doi:DOI 10.1126/science.287.5457.1425
Leventhal, C., Rafii, S., Rafii, D., Shahar, A., & Goldman, S. A. (1999). Endothelial trophic support of neuronal production and recruitment from the adult mammalian subependyma. Molecular and Cellular Neuroscience, 13(6), 450-464. doi:DOI 10.1006/mcne.1999.0762
Li, Y. C., Chen, S. J., & Chien, C. L. (2015). Erythropoietin produced by genetic-modified NIH/3T3 fibroblasts enhances the survival of degenerating neurons. Brain and Behavior, 5(8). doi:ARTN e00356
10.1002/brb3.356
Longa, E. Z., Weinstein, P. R., Carlson, S., & Cummins, R. (1989). Reversible Middle Cerebral-Artery Occlusion without Craniectomy in Rats. Stroke, 20(1), 84-91.
Lozano, R., Naghavi, M., Foreman, K., Lim, S., Shibuya, K., Aboyans, V., . . . Memish, Z. A. (2012). Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2095-2128. doi:10.1016/S0140-6736(12)61728-0
Mann, C., Lee, J. H. T., Liu, J., Stammers, A. M. T., Sohn, H. M., Tetzlaff, W., & Kwon, B. K. (2008). Delayed treatment of spinal cord injury with erythropoietin or darbepoetin - A lack of neuroprotective efficacy in a contusion model of cord injury. Experimental Neurology, 211(1), 34-40. doi:10.1016/j.expneurol.2007.12.013
Meng, Y. L., Xiong, Y., Mahmood, A., Zhang, Y. L., Qu, C. S., & Chopp, M. (2011). Dose-dependent neurorestorative effects of delayed treatment of traumatic brain injury with recombinant human erythropoietin in rats Laboratory investigation. Journal of Neurosurgery, 115(3), 550-560. doi:10.3171/2011.3.Jns101721
Murray, C. J., Vos, T., Lozano, R., Naghavi, M., Flaxman, A. D., Michaud, C., . . . Memish, Z. A. (2012). Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet, 380(9859), 2197-2223. doi:10.1016/S0140-6736(12)61689-4
Nguyen, A. Q., Cherry, B. H., Scott, G. F., Ryou, M. G., & Mallet, R. T. (2014). Erythropoietin: powerful protection of ischemic and post-ischemic brain. Experimental Biology and Medicine (Maywood), 239(11), 1461-1475. doi:10.1177/1535370214523703
Ponce, L. L., Navarro, J. C., Ahmed, O., & Robertson, C. S. (2013). Erythropoietin neuroprotection with traumatic brain injury. Pathophysiology, 20(1), 31-38. doi:10.1016/j.pathophys.2012.02.005
Savitz, S. I., Dinsmore, J. H., Wechsler, L. R., Rosenbaum, D. M., & Caplan, L. R. (2004). Cell therapy for stroke. NeurorRx, 1(4), 406-414. doi:10.1602/neurorx.1.4.406
Shih, C. C., Forman, S. J., Chu, P. G., & Slovak, M. (2007). Human embryonic stem cells are prone to generate primitive, undifferentiated tumors in engrafted human fetal tissues in severe combined immunodeficient mice. Stem Cells and Development, 16(6), 893-902. doi:10.1089/scd.2007.0070
Shingo, T., Sorokan, S. T., Shimazaki, T., & Weiss, S. (2001). Erythropoietin regulates the in vitro and in vivo production of neuronal progenitors by mammalian forebrain neural stem cells. Journal of Neuroscience, 21(24), 9733-9743.
Siren, A. L., Fratelli, M., Brines, M., Goemans, C., Casagrande, S., Lewczuk, P., . . . Ghezzi, P. (2001). Erythropoietin prevents neuronal apoptosis after cerebral ischemia and metabolic stress. Proceding of the National Academy Science of United State of America, 98(7), 4044-4049. doi:10.1073/pnas.051606598
Subiros, N., Del Barco, D. G., & Coro-Antich, R. M. (2012). Erythropoietin: still on the neuroprotection road. Therapeutic Advances in Neurological Disorders, 5(3), 161-173. doi:10.1177/1756285611434926
Sugawara, T., & Chan, P. H. (2003). Reactive oxygen radicals and pathogenesis of neuronal death after cerebral ischemia. Antioxidants & Redox Signaling, 5(5), 597-607. doi:Doi 10.1089/152308603770310266
Toyama, K., Honmou, O., Harada, K., Suzuki, J., Houkin, K., Hamada, H., & Kocsis, J. D. (2009). Therapeutic benefits of angiogenetic gene-modified human mesenchymal stem cells after cerebral ischemia. Experimental Neurology, 216(1), 47-55. doi:10.1016/j.expneurol.2008.11.010
Tsai, L. K., Wang, Z. F., Munasinghe, J., Leng, Y., Leeds, P., & Chuang, D. M. (2011). Mesenchymal Stem Cells Primed With Valproate and Lithium Robustly Migrate to Infarcted Regions and Facilitate Recovery in a Stroke Model. Stroke, 42(10), 2932-U2406. doi:10.1161/Strokeaha.110.612788
Tsai, P. T., Ohab, J. J., Kertesz, N., Groszer, M., Matter, C., Gao, J., . . . Carmichael, S. T. (2006). A critical role of erythropoietin receptor in neurogenesis and post-stroke recovery. Journal of Neuroscience, 26(4), 1269-1274. doi:10.1523/Jneurosci.4480-05.2006
Wang, L., Zhang, Z., Wang, Y., Zhang, R., & Chopp, M. (2004). Treatment of stroke with erythropoietin enhances neurogenesis and angiogenesis and improves neurological function in rats. Stroke, 35(7), 1732-1737. doi:10.1161/01.STR.0000132196.49028.a4
Wang, Z. F., Tsai, L. K., Munasinghe, J., Leng, Y., Fessler, E. B., Chibane, F., . . . Chuang, D. M. (2012). Chronic Valproate Treatment Enhances Postischemic Angiogenesis and Promotes Functional Recovery in a Rat Model of Ischemic Stroke. Stroke, 43(9), 2430-+. doi:10.1161/Strokeaha.112.652545
Wiltrout, C., Lang, B., Yan, Y., Dempsey, R. J., & Vemuganti, R. (2007). Repairing brain after stroke: a review on post-ischemic neurogenesis. Neurochemistry International, 50(7-8), 1028-1041. doi:10.1016/j.neuint.2007.04.011
Yoo, S. W., Kim, S. S., Lee, S. Y., Lee, H. S., Kim, H. S., Lee, Y. D., & Suh-Kim, H. (2008). Mesenchymal stem cells promote proliferation of endogenous neural stem cells and survival of newborn cells in a rat stroke model. Experimental and Molecular Medicine, 40(4), 387-397. doi:10.3858/emm.2008.40.4.387
Zhang, Y. Y., Wang, L., Dey, S., Alnaeeli, M., Suresh, S., Rogers, H., . . . Noguchi, C. T. (2014). Erythropoietin Action in Stress Response, Tissue Maintenance and Metabolism. International Journal of Molecular Sciences, 15(6), 10296-10333. doi:10.3390/ijms150610296
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67929-
dc.description.abstract缺血性中風是最常見的中風,會造成腦部缺血以致功能損傷;臨床上治療缺血性中風的方式仍然只能使用抗血栓藥物,使血栓溶解將血管疏通,目前已有許多創新的實驗研究利用細胞治療及滋養因子來改善中風治療的結果卻無法恢復對腦組織的傷害。相關實驗已證實紅血球生成素 (erythropoietin, EPO)除了可以增加血球前驅細胞的增生及分化以外,越來越多的研究亦已經證實EPO對缺血性中風可以有良好的神經保護的效果及預後。然而,由於目前使用紅血球生成素治療缺血性中風的研究多使用短時間、高劑量的靜脈給予,雖能改善病患的運動能力,但可能會增加血容比及提高全身性血栓的風險。因此,本實驗將過量表現紅血球生成素的纖維母細胞( EPO-3T3-EGFP)注射到大鼠受損區域後,觀察此細胞治療是否能夠持續性的釋出紅血球生成素;以達到神經保護及再生的效果。
我們使用中大腦動脈阻塞的大鼠來模擬臨床上常見的缺血性中風。中風後隔天使用核磁共振造影來觀察損傷的區塊以及大小。核磁造影之後使用立體定位將1×106的EPO-3T3-EGFP打入損傷區。為了解紅血球生成素對功能修復的情形,分別在手術前及術後第一到第十四天使用神經傷害評分表來觀察大鼠在平衡、動作以及感覺上的功能損傷評估,且手術後第十四天,再進行一次核磁共振造影來觀察原損傷區的恢復情形。此外,動物在第7及15天進行犧牲並灌流,並將鼠腦進行冷凍包埋,切片及組織染色分析;以及依照實驗批次於術後第3、7、14、21及28日犧牲動物,抽取大腦內蛋白質進行分析。
結果顯示,我們發現使用過量表達紅血球生成素的纖維母細胞或未表達紅血球生成素的纖維母細胞(3T3-EGFP)的組別,在缺血性中風的急性期和慢性期都可以有良好的功能性回復。並在核磁共振造影上,使用EPO-3T3-EGFP細胞的治療可以減少62%的受損區域。同時間在EPO-3T3-EGFP以及3T3-EGFP的處理組別,在免疫組織染色上,發現在腦室旁區 (SVZ) 的細胞增生比率有明顯的增加,同時也發現注射EPO-3T3-EGFP細胞於該腦區的神經前驅細胞的活化比率明顯增加。酵素免疫分析法的結果顯示,打入EPO-3T3-EGFP細胞後第三天可以在損傷區域大量產生紅血球生成素,同時在損傷側腦源性神經營養因子(brain-derived neurotrophic factor, BDNF) 的含量有顯著性的增加,因此根據以上的觀察,過度表達紅血球生成素的細胞,確實可以促進缺血性中風損傷區域提供穩定的EPO釋放,具有神經修復與再生能力,並增進大腦功能性的恢復。
zh_TW
dc.description.abstractIschemic stroke is the most common subtype among all kinds of stroke in the world. Treatment of ischemic stroke is restricted to acute thrombolytic drugs, which dissolve thrombi and emboli to re-canalize blood vessels. Due to lack of efficient treatment for stroke, cell treatments and trophic factor administration have been used as a novel experimental approach. Erythropoietin (EPO) has been shown to stimulate proliferation and differentiation of erythroid progenitor and mediate the neuro-protection. There is increasing number of studies to investigate the effective neuroprotection of EPO against ischemic stroke, but application of excessive EPO could contribute to systematically high hematocrit and elevation of thrombotic risk in animal. In order to avoid the side effect of high dosage application, the cell treatment of implanting the over-expressing EPO cell line maybe another approach to treat ischemic stroke and have the effect of neuroprotection and neurogenesis.
In this study, we produced ischemic stroke in adult rats by the approach of middle cerebral artery occlusion (MCAO) and examined the infarct zone with MRI. Total of 106 CFU EPO-overexpressing NIH/3T3 (EPO-3T3-EGFP) cells were directly injected to the infarct zone. The brain function was assessed via modified Neurological Severity Score (mNSS). On day 14 after stroke induction, the infarct volume was measured again by MRI and the animal was euthanized for the study of angiogenesis and neurogenesis. The animal were sacrificed on day 7 and 15 for immunohistochemistry analysis. Rats were also sacrificed on day 3, 7, 14, 21 and 28 for protein extraction and analysis.
From our research, the result of neurological assessment suggested that both 3T3-EGFP-treated and EPO-3T3-EGFP-treated groups showed significantly improvement of functional ability in both acute and chronic phase of ischemic stroke. In MRI examination, the recovery rate of the EPO-3T3-EGFP treated group could up to 62% and significantly higher than 3T3-treated group and MCAO control group. In immunohistochemistry, significant increase of cell proliferation in subventricular zone (SVZ) was demonstrated in EPO-3T3-EGFP treated group and 3T3-EGFP group, and percentage of DCX immunoreactive cells in SVZ of infarct side in the EPO-3T3-EGFP group was significantly increased, which may indicate implantation of EPO-3T3-EGFP cells could further enhance the repairing process of infarct site in our MCAO animal model. In ELISA analysis, we found that the concentration of EPO in infarct striatum was detected in high level on day 3, and EPO-3T3-EGFP cells could induce the expression of BDNF in the infarct area and contralateral area.
In summary, our data suggest that the EPO-overexpressing NIH/3T3 cells treatment could provide stable release of EPO in the infarct area, facilitate neurogenesis and neuroprotection ability and may contribute to the functional recovery of brain.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:58:45Z (GMT). No. of bitstreams: 1
ntu-105-R04446001-1.pdf: 3634354 bytes, checksum: ad2ddebe4e28f7a49ed5b7984a61b639 (MD5)
Previous issue date: 2016
en
dc.description.tableofcontents口試委員會審定書…………………………………………………………………....i
誌謝…………………………………………………………………………………...ii
摘要…………………………………………………………………………………...iv
Abstract…………………………………………………………………………...…..vi
List of Figures….…………………………………………………………………......ix
Chapter 1: Introduction…………………………………………………………….….1
Chapter 2: Materials and Methods……………………………………………….……6
Chapter 3: Results……………………………………………………………….……14
Chapter 4: Discussion………………………………………………………….……..21
Figure Legends……………………………………………………………….………27
References…………………………………………………………………...……….46
dc.language.isoen
dc.subject紅血球生成素zh_TW
dc.subject神經再生zh_TW
dc.subject腦室旁區zh_TW
dc.subject纖維母細胞zh_TW
dc.subject缺血性中風zh_TW
dc.subject細胞治療zh_TW
dc.subjectischemic strokeen
dc.subjectneurogenesisen
dc.subjectEPOen
dc.subjectcell therapyen
dc.subjectfibroblasten
dc.subjectsubventricular zoneen
dc.title過度表達紅血球生成素的 NIH/3T3 纖維母細胞株於大鼠中風模型之神經元再生研究zh_TW
dc.titleErythropoietin Produced by Genetic-modified NIH/3T3 Fibroblasts Facilitate Neurogenesis in a Rat Stroke Modelen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee陳旭照(Shiu-Jau Chen),蔡力凱(Li-Kai Tsai)
dc.subject.keyword缺血性中風,神經再生,紅血球生成素,細胞治療,纖維母細胞,腦室旁區,zh_TW
dc.subject.keywordischemic stroke,neurogenesis,EPO,cell therapy,fibroblast,subventricular zone,en
dc.relation.page55
dc.identifier.doi10.6342/NTU201701637
dc.rights.note有償授權
dc.date.accepted2017-07-20
dc.contributor.author-college醫學院zh_TW
dc.contributor.author-dept解剖學暨細胞生物學研究所zh_TW
顯示於系所單位:解剖學暨細胞生物學科所

文件中的檔案:
檔案 大小格式 
ntu-105-1.pdf
  未授權公開取用
3.55 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved