請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67918完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 劉致為(CheeWee Liu) | |
| dc.contributor.author | Chih-Hao Huang | en |
| dc.contributor.author | 黃致皓 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:58:02Z | - |
| dc.date.available | 2020-07-27 | |
| dc.date.copyright | 2017-07-27 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-20 | |
| dc.identifier.citation | [1-1] Kahng, D. and M. Atalla. 'Silicon-silicon dioxide field induced surface devices'. in IRE Solid-State Device Research Conference. 1960.
[1-2] Moore, G.E., 'Cramming more components onto integrated circuits'. Proceedings of the IEEE, 1998. 86(1): p. 82-85. [1-3] Hoyt, J., H. Nayfeh, S. Eguchi, I. Aberg, G. Xia, T. Drake, E. Fitzgerald, and D. Antoniadis. 'Strained silicon MOSFET technology'. in Electron Devices Meeting, 2002. IEDM'02. International. 2002. IEEE. [1-4] Thompson, S.E., M. Armstrong, C. Auth, M. Alavi, M. Buehler, R. Chau, S. Cea, T. Ghani, G. Glass, and T. Hoffman, 'A 90-nm logic technology featuring strained-silicon'. IEEE Transactions on Electron Devices, 2004. 51(11): p. 1790-1797. [1-5] Pillarisetty, R., B. Chu-Kung, S. Corcoran, G. Dewey, J. Kavalieros, H. Kennel, R. Kotlyar, V. Le, D. Lionberger, and M. Metz. 'High mobility strained germanium quantum well field effect transistor as the p-channel device option for low power (Vcc= 0.5 V) III–V CMOS architecture'. in Electron Devices Meeting (IEDM), 2010 IEEE International. 2010. IEEE. [1-6] Kasper, E., J. Werner, M. Oehme, S. Escoubas, N. Burle, and J. Schulze, 'Growth of silicon based germanium tin alloys'. Thin Solid Films, 2012. 520(8): p. 3195-3200. [1-7] Yeo, Y.C., X. Gong, M.J.H.v. Dal, G. Vellianitis, and M. Passlack. 'Germanium-based transistors for future high performance and low power logic applications'. in 2015 IEEE International Electron Devices Meeting (IEDM). 2015. [1-8] Han, G., S. Su, C. Zhan, Q. Zhou, Y. Yang, L. Wang, P. Guo, W. Wei, C.P. Wong, Z.X. Shen, B. Cheng, and Y.-C. Yeo, 'High-Mobility Germanium-Tin (GeSn) P-channel MOSFETs Featuring Metallic Source/Drain and Sub-370 °C Process Modules',Electron Devices Meeting (IEDM), 2011. [1-9] Liu, M., G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao. 'Undoped Ge 0.92 Sn 0.08 quantum well PMOSFETs on (001),(011) and (111) substrates with in situ Si 2 H 6 passivation: High hole mobility and dependence of performance on orientation'. in VLSI Technology (VLSI-Technology): Digest of Technical Papers, 2014 Symposium on. 2014. IEEE. [1-10] Huang, Y.-S., C.-H. Huang, F.-L. Lu, C.-Y. Lin, H.-Y. Ye, I.-H. Wong, S.-R. Jan, H.-S. Lan, C. Liu, and Y.-C. Huang. 'Record high mobility (428cm 2/Vs) of CVD-grown Ge/strained Ge 0.91 Sn 0.09/Ge quantum well p-MOSFETs'. in Electron Devices Meeting (IEDM), 2016 IEEE International. 2016. IEEE. [1-11] Lan, H.-S. and C. Liu, 'Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors'. Applied Physics Letters, 2014. 104(19): p. 192101. [2-1] Oehme, M., K. Kostecki, M. Schmid, F. Oliveira, E. Kasper, and J. Schulze, 'Epitaxial growth of strained and unstrained GeSn alloys up to 25% Sn'. Thin Solid Films, 2014. 557. [2-2] Takagi, S., T. Maeda, N. Taoka, M. Nishizawa, Y. Morita, K. Ikeda, Y. Yamashita, M. Nishikawa, H. Kumagai, and R. Nakane, 'Gate dielectric formation and MIS interface characterization on Ge'. Microelectronic engineering, 2007. 84(9): p. 2314-2319. [2-3] Toriumi, A., T. Tabata, C.H. Lee, T. Nishimura, K. Kita, and K. Nagashio, 'Opportunities and challenges for Ge CMOS–Control of interfacing field on Ge is a key'. Microelectronic Engineering, 2009. 86(7): p. 1571-1576. [2-4] Delabie, A., F. Bellenger, M. Houssa, T. Conard, S. Van Elshocht, M. Caymax, M. Heyns, and M. Meuris, 'Effective electrical passivation of Ge (100) for high-k gate dielectric layers using germanium oxide'. Applied physics letters, 2007. 91(8): p. 082904. [2-5] Takahashi, T., T. Nishimura, L. Chen, S. Sakata, K. Kita, and A. Toriumi. 'Proof of Ge-interfacing concepts for metal/high-k/Ge CMOS-Ge-intimate material selection and interface conscious process flow'. in Electron Devices Meeting, 2007. IEDM 2007. IEEE International. 2007. IEEE. [2-6] Prabhakaran, K., F. Maeda, Y. Watanabe, and T. Ogino, 'Distinctly different thermal decomposition pathways of ultrathin oxide layer on Ge and Si surfaces'. Applied Physics Letters, 2000. 76(16): p. 2244-2246. [2-7] Maeda, T., M. Nishizawa, Y. Morita, and S. Takagi, 'Role of germanium nitride interfacial layers in Hf O 2/germanium nitride/germanium metal-insulator-semiconductor structures'. Applied physics letters, 2007. 90(7): p. 072911. [2-8] Chui, C.O., F. Ito, and K.C. Saraswat, 'Nanoscale germanium MOS dielectrics-part I: Germanium oxynitrides'. IEEE Transactions on Electron Devices, 2006. 53(7): p. 1501-1508. [2-9] Oshima, Y., M. Shandalov, Y. Sun, P. Pianetta, and P.C. McIntyre, 'Hafnium oxide/germanium oxynitride gate stacks on germanium: Capacitance scaling and interface state density'. Applied Physics Letters, 2009. 94(18): p. 183102. [2-10] Kim, H., P.C. McIntyre, C.O. Chui, K.C. Saraswat, and M.-H. Cho, 'Interfacial characteristics of Hf O 2 grown on nitrided Ge (100) substrates by atomic-layer deposition'. Applied physics letters, 2004. 85(14): p. 2902-2904. [2-11] Chui, C.O., H. Kim, P.C. McIntyre, and K.C. Saraswat, 'Atomic layer deposition of high-/spl kappa/dielectric for germanium MOS applications-substrate'. IEEE Electron Device Letters, 2004. 25(5): p. 274-276. [2-12] Sugawara, T., R. Sreenivasan, and P.C. McIntyre, 'Mechanism of germanium plasma nitridation'. Journal of Vacuum Science & Technology B: Microelectronics and Nanometer Structures Processing, Measurement, and Phenomena, 2006. 24(5): p. 2442-2448. [2-13] Peng, C.-Y., F. Yuan, C.-Y. Yu, and P.-S. Kuo, 'Hole mobility enhancement of Si0.2Ge0.8 quantum well channel on Si'. Applied Physics Letters, 2007. 90. [2-14] Taoka, N., M. Harada, Y. Yamashita, T. Yamamoto, N. Sugiyama, and S.-i. Takagi, 'Effects of Si passivation on Ge metal-insulator-semiconductor interface properties and inversion-layer hole mobility'. Applied physics letters, 2008. 92(11): p. 113511. [2-15] Caymax, M., F. Leys, J. Mitard, K. Martens, L. Yang, G. Pourtois, W. Vandervorst, M. Meuris, and R. Loo, 'The influence of the epitaxial growth process parameters on layer characteristics and device performance in Si-passivated Ge pMOSFETs'. Journal of The Electrochemical Society, 2009. 156(12): p. H979-H985. [2-16] Han, G., S. Su, C. Zhan, Q. Zhou, Y. Yang, L. Wang, P. Guo, W. Wei, C.P. Wong, Z.X. Shen, B. Cheng, and Y.-C. Yeo, 'High-Mobility Germanium-Tin (GeSn) P-channel MOSFETs Featuring Metallic Source/Drain and Sub-370 °C Process Modules',Electron Devices Meeting (IEDM), 2011. [2-17] Liu, M., G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, 'Undoped Ge0.92Sn0.08 Quantum Well PMOSFETs on (001), (011) and (111) Substrates with In Situ Si2H6 Passivation: High Hole Mobility and Dependence of Performance on Orientation',Symposium on VLSI Technology Digest of Technical Papers, 2014. [2-18] Yeo, Y.C., X. Gong, M.J.H.v. Dal, G. Vellianitis, and M. Passlack. 'Germanium-based transistors for future high performance and low power logic applications'. in 2015 IEEE International Electron Devices Meeting (IEDM). 2015. [2-19] Johll, H., M. Samuel, R.Y. Koo, H.C. Kang, Y.-C. Yeo, and E.S. Tok, 'Influence of hydrogen surface passivation on Sn segregation, aggregation, and distribution in GeSn/Ge(001) materials'. JOURNAL OF APPLIED PHYSICS, 2015. 117. [2-20] Li, H., Y.X. Cui, K.Y. Wu, W.K. Tseng, H.H. Cheng, and H. Chen, 'Strain relaxation and Sn segregation in GeSn epilayers under thermal treatment'. APPLIED PHYSICS LETTERS, 2013. 102(25). [2-21] Wang, W., L. Li, Q. Zhou, J. Pan, Z. Zhang, E.S. Tok, and Y.-C. Yeo, 'Tin surface segregation, desorption, and island formation during post-growth annealing of strained epitaxial Ge1−xSnx layer on Ge(0 0 1) substrate'. Applied Surface Science, 2014. 321. [2-22] Wang, W., L. Li, E.S. Tok, and Y.-C. Yeo, 'Self-assembly of tin wires via phase transformation of heteroepitaxial germanium-tin on germanium substrate'. JOURNAL OF APPLIED PHYSICS, 2015. 117. [2-23] Ishikawa, Y., K. Wada, D.D. Cannon, J. Liu, H.-C. Luan, and L.C. Kimerling, 'Strain-induced band gap shrinkage in Ge grown on Si substrate'. APPLIED PHYSICS LETTERS, 2003. 82(13). [2-24] Leys, F.E., R. Bonzom, R. Loo, O. Richard, B.D. Jaeger, J.V. Steenbergen, K. Dessein, T. Conard, J. Rip, H. Bender, W. Vandervorst, M. Meuris, and M. Caymax, 'Epitaxy solutions for Ge MOS technology'. Thin Solid Films, 2006. 508. [2-25] Taoka, N., W. Mizubayashi, Y. Morita, S. Migita, H. Ota, and S. Takagi, 'Physical origins of mobility enhancement of Ge p-channel metal-insulator-semiconductor field effect transistors with Si passivation layers'. JOURNAL OF APPLIED PHYSICS, 2010. 108. [2-26] Zhang, R., J.-C. Lin, X. Yu, M. Takenaka, and S. Takagi, 'Impact of Plasma Postoxidation Temperature on the Electrical Properties of Al2O3/GeOx/Ge pMOSFETs and nMOSFETs'. IEEE Transactions on Electron Devices, 2014. 61(2): p. 416. [2-27] Okumura, T.A. H., and S. Matsumoto., 'Carbon contamination free Ge (100) surface cleaning for MBE.'. Applied Surface Science, 1998. 125. [2-28] Deegan, T. and G. Hughes, 'An X-ray photoelectron spectroscopy study of the HF etching of native oxides on Ge(111) and Ge(100) surfaces'. Applied Surface Science, 1998. 123. [2-29] Prabhakarana, K., T. Ogino, R. Hull, J. Bean, and L. Peticolas, 'An efficient method for cleaning Ge (100) surface'. Surface science, 1994. 316(1-2): p. L1031-L1033. [2-30] Lu, Z.H., 'Air-stable Cl-terminated Ge(111)'. Applied Physics Letters, 1996. 68(4). [2-31] Sun, S., Y. Sun, Z. Liu, D.-I. Lee, S. Peterson, and P. Pianetta, 'Surface termination and roughness of Ge (100) cleaned by HF and HCl solutions'. Applied Physics Letters, 2006. 88(2): p. 021903. [2-32] Schroder, D.K., 'Semiconductor material and device characterization'. 2006: John Wiley & Sons. [2-33] Martens, K., C.O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. Heyns, T. Krishnamohan, K. Saraswat, and H.E. Maes, 'On the correct extraction of interface trap density of MOS devices with high-mobility semiconductor substrates'. IEEE Transactions on Electron Devices, 2008. 55(2): p. 547-556. [3-1] Kuzum, D., T. Krishnamohan, A. Nainani, Y. Sun, P.A. Pianetta, and K.C. Saraswat. 'Experimental demonstration of high mobility Ge NMOS'. in Electron Devices Meeting (IEDM), 2009 IEEE International. 2009. IEEE. [3-2] Caymax, M., G. Eneman, F. Bellenger, C. Merckling, A. Delabie, G. Wang, R. Loo, E. Simoen, J. Mitard, and B. De Jaeger. 'Germanium for advanced CMOS anno 2009: A SWOT analysis'. in Electron Devices Meeting (IEDM), 2009 IEEE International. 2009. IEEE. [3-3] Mitard, J., B. De Jaeger, F. Leys, G. Hellings, K. Martens, G. Eneman, D. Brunco, R. Loo, J. Lin, and D. Shamiryan. 'Record I ON/I OFF performance for 65nm Ge pMOSFET and novel Si passivation scheme for improved EOT scalability'. in Electron Devices Meeting, 2008. IEDM 2008. IEEE International. 2008. IEEE. [3-4] Morii, K., T. Iwasaki, R. Nakane, M. Takenaka, and S. Takagi. 'High performance GeO 2/Ge nMOSFETs with source/drain junctions formed by gas phase doping'. in Electron Devices Meeting (IEDM), 2009 IEEE International. 2009. IEEE. [3-5] Hashemi, P., W. Chern, H.-S. Lee, J.T. Teherani, Y. Zhu, J. Gonsalvez, G.G. Shahidi, and J.L. Hoyt, 'Ultrathin strained-Ge channel p-MOSFETs with high-K metal gate and sub-1-nm equivalent oxide thickness'. IEEE Electron Device Letters, 2012. 33(7): p. 943-945. [3-6] Hashemi, P. and J.L. Hoyt, 'High Hole-Mobility Strained-Ge/Si0.6Ge0.4 P-MOSFETs With High-K/Metal Gate: Role of Strained-Si Cap Thickness'. IEEE Electron Device Letters, 2012. 33(2): p. 173-175. [3-7] Guo, P., G. Han, X. Gong, B. Liu, Y. Yang, W. Wang, Q. Zhou, J. Pan, Z. Zhang, and E. Soon Tok, 'Ge0. 97Sn0. 03 p-channel metal-oxide-semiconductor field-effect transistors: Impact of Si surface passivation layer thickness and post metal annealing'. Journal of Applied Physics, 2013. 114(4): p. 044510. [3-8] Gupta, S., R. Chen, B. Magyari-Kope, H. Lin, B. Yang, A. Nainani, Y. Nishi, J.S. Harris, and K.C. Saraswat. 'GeSn technology: Extending the Ge electronics roadmap'. in Electron Devices Meeting (IEDM), 2011 IEEE International. 2011. IEEE. [3-9] Han, G., S. Su, C. Zhan, Q. Zhou, Y. Yang, L. Wang, P. Guo, W. Wei, C.P. Wong, Z.X. Shen, B. Cheng, and Y.-C. Yeo, 'High-Mobility Germanium-Tin (GeSn) P-channel MOSFETs Featuring Metallic Source/Drain and Sub-370 °C Process Modules',Electron Devices Meeting (IEDM), 2011. [3-10] Liu, M., G. Han, Y. Liu, C. Zhang, H. Wang, X. Li, J. Zhang, B. Cheng, and Y. Hao, 'Undoped Ge0.92Sn0.08 Quantum Well PMOSFETs on (001), (011) and (111) Substrates with In Situ Si2H6 Passivation: High Hole Mobility and Dependence of Performance on Orientation',Symposium on VLSI Technology Digest of Technical Papers, 2014. [3-11] Yeo, Y.C., X. Gong, M.J.H.v. Dal, G. Vellianitis, and M. Passlack. 'Germanium-based transistors for future high performance and low power logic applications'. in 2015 IEEE International Electron Devices Meeting (IEDM). 2015. [3-12] Gupta, S., Y.-C. Huang, Y. Kim, E. Sanchez, and K.C. Saraswat, 'Hole Mobility Enhancement in Compressively Strained Ge0.93Sn0.07 pMOSFETs'. IEEE ELECTRON DEVICE LETTERS, 2013. 34(7). [3-13] Huang, Y.-S., C.-H. Huang, F.-L. Lu, C.-Y. Lin, H.-Y. Ye, I.-H. Wong, S.-R. Jan, H.-S. Lan, C. Liu, and Y.-C. Huang. 'Record high mobility (428cm 2/Vs) of CVD-grown Ge/strained Ge 0.91 Sn 0.09/Ge quantum well p-MOSFETs'. in Electron Devices Meeting (IEDM), 2016 IEEE International. 2016. IEEE. [3-14] Niu, G., J.D. Cressler, S.J. Mathew, and S. Subbanna, 'A total resistance slope-based effective channel mobility extraction method for deep submicrometer CMOS technology'. IEEE Transactions on Electron Devices, 1999. 46(9): p. 1912-1914. [3-15] Wong, I.-H., Y.-T. Chen, J.-Y. Yan, H.-J. Ciou, Y.-S. Chen, and C.W. Liu, 'Fabrication and low temperature characterization of Ge (110) and (100) p-MOSFETs'. IEEE Transactions on Electron Devices, 2014. 61(6): p. 2215-2219. [3-16] Nakakita, Y., R. Nakane, T. Sasada, H. Matsubara, M. Takenaka, and S. Takagi. 'Interface-controlled self-align source/drain Ge pMOSFETs using thermally-oxidized GeO 2 interfacial layers'. in Electron Devices Meeting, 2008. IEDM 2008. IEEE International. 2008. IEEE. [3-17] Lan, H.-S. and C. Liu, 'Ballistic electron transport calculation of strained germanium-tin fin field-effect transistors'. Applied Physics Letters, 2014. 104(19): p. 192101. [3-18] Van de Walle, C.G., 'Band lineups and deformation potentials in the model-solid theory'. Physical review B, 1989. 39(3): p. 1871. [3-19] Lan, H. and C. Liu, 'Band alignments at strained Ge1− x Sn x/relaxed Ge1− y Sn y heterointerfaces'. Journal of Physics D: Applied Physics, 2017. 50(13): p. 13LT02. [3-20] Fischetti, M., Z. Ren, P. Solomon, M. Yang, and K. Rim, 'Six-band k⋅ p calculation of the hole mobility in silicon inversion layers: Dependence on surface orientation, strain, and silicon thickness'. Journal of Applied Physics, 2003. 94(2): p. 1079-1095. [3-21] Zhang, Y., M. Fischetti, B. Sorée, W. Magnus, M. Heyns, and M. Meuris, 'Physical modeling of strain-dependent hole mobility in Ge p-channel inversion layers'. Journal of applied physics, 2009. 106(8): p. 083704. [3-22] Lan, H.-S. and C. Liu, 'Hole Effective Mass of Strained Ge1-XSnx Alloys P-Channel Quantum-Well MOSFETs on (001),(110), and (111) Ge Substrates'. ECS Transactions, 2016. 75(8): p. 571-578. [3-23] Peng, C.-Y., Y.-J. Yang, Y.-C. Fu, C.-F. Huang, S.-T. Chang, and C.W. Liu, 'Effects of applied mechanical uniaxial and biaxial tensile strain on the flatband voltage of (001),(110), and (111) metal–oxide–silicon capacitors'. IEEE Transactions on Electron Devices, 2009. 56(8): p. 1736-1745. [3-24] Srinivasan, P., E. Simoen, B. De Jaeger, C. Claeys, and D. Misra, '1/f noise performance of MOSFETs with HfO 2 and metal gate on Ge-on-insulator substrates'. Materials science in semiconductor processing, 2006. 9(4): p. 721-726. [3-25] Guo, W., G. Nicholas, B. Kaczer, R. Todi, B. De Jaeger, C. Claeys, A. Mercha, E. Simoen, B. Cretu, and J.-M. Routoure, 'Low-Frequency Noise Assessment of Silicon Passivated Ge pMOSFETs With TiN/TaN/$ hbox {HfO} _ {2} $ Gate Stack'. IEEE electron device letters, 2007. 28(4): p. 288-291. [3-26] Lee, J.W., E. Simoen, A. Veloso, M.J. Cho, G. Boccardi, L.-Å. Ragnarsson, T. Chiarella, N. Horiguchi, G. Groeseneken, and A. Thean, 'Sidewall Crystalline Orientation Effect of Post-treatments for a Replacement Metal Gate Bulk Fin Field Effect Transistor'. ACS applied materials & interfaces, 2013. 5(18): p. 8865-8868. [3-27] Guo, P., R. Cheng, W. Wang, Z. Zhang, J. Pan, E.S. Tok, and Y.-C. Yeo, 'Silicon surface passivation technology for germanium-tin p-channel MOSFETs: suppression of germanium and tin segregation for mobility enhancement'. ECS Journal of Solid State Science and Technology, 2014. 3(8): p. Q162-Q168. [3-28] Kato, K., N. Taoka, T. Asano, T. Yoshida, M. Sakashita, O. Nakatsuka, and S. Zaima, 'Formation of high-quality oxide/Ge1− x Sn x interface with high surface Sn content by controlling Sn migration'. Applied Physics Letters, 2014. 105(12): p. 122103. [3-29] Zaima, S., O. Nakatsuka, N. Taoka, K. Kato, W. Takeuchi, and M. Sakashita, '(Invited) Challenges and Developments in GeSn Process Technology for Si Nanoelectronics'. ECS Transactions, 2014. 64(6): p. 147-153. [3-30] Lei, D., W. Wang, Z. Zhang, J. Pan, X. Gong, G. Liang, E.-S. Tok, and Y.-C. Yeo, 'Ge0. 83Sn0. 17 p-channel metal-oxide-semiconductor field-effect transistors: Impact of sulfur passivation on gate stack quality'. Journal of Applied Physics, 2016. 119(2): p. 024502. [3-31] Gupta, S., E. Simoen, R. Loo, O. Madia, D. Lin, C. Merckling, Y. Shimura, T. Conard, J. Lauwaert, and H. Vrielinck, 'Density and Capture Cross-Section of Interface Traps in GeSnO2 and GeO2 Grown on Heteroepitaxial GeSn'. ACS applied materials & interfaces, 2016. 8(21): p. 13181-13186. [3-32] Hua, W.-C., M.-H. Lee, P. Chen, S. Maikap, C. Liu, and K. Chen, 'Ge outdiffusion effect on flicker noise in strained-Si nMOSFETs'. IEEE electron device letters, 2004. 25(10): p. 693-695. [4-1] 'International Roadmap for Devices and Systems'. 2016. [4-2] Yee, Y.C., V. Subramanian, J. Kedzierski, P. Xuan, T.-J. King, J. Bokor, and C. Hu, 'Nanoscale ultra-thin-body silicon-on-insulator P-MOSFET with a SiGe/Si heterostructure channel'. IEEE Electron device letters, 2000. 21(4): p. 161-163. [4-3] Rim, K., K. Chan, L. Shi, D. Boyd, J. Ott, N. Klymko, F. Cardone, L. Tai, S. Koester, and M. Cobb. 'Fabrication and mobility characteristics of ultra-thin strained Si directly on insulator (SSDOI) MOSFETs'. in Electron Devices Meeting, 2003. IEDM'03 Technical Digest. IEEE International. 2003. IEEE. [4-4] Colinge, J.P., 'Multi-gate SOI MOSFETs'. Microelectronic Engineering, 2007. 84(9-10): p. 2071-2076. [4-5] Hisamoto, D., W.-C. Lee, J. Kedzierski, H. Takeuchi, K. Asano, C. Kuo, E. Anderson, T.-J. King, J. Bokor, and C. Hu, 'FinFET-a self-aligned double-gate MOSFET scalable to 20 nm'. IEEE Transactions on Electron Devices, 2000. 47(12): p. 2320-2325. [4-6] Singh, N., A. Agarwal, L. Bera, T. Liow, R. Yang, S. Rustagi, C. Tung, R. Kumar, G. Lo, and N. Balasubramanian, 'High-performance fully depleted silicon nanowire (diameter/spl les/5 nm) gate-all-around CMOS devices'. IEEE Electron Device Letters, 2006. 27(5): p. 383-386. [4-7] Yeo, K.H., S.D. Suk, M. Li, Y.-y. Yeoh, K.H. Cho, K.-H. Hong, S. Yun, M.S. Lee, N. Cho, and K. Lee. 'Gate-all-around (GAA) twin silicon nanowire MOSFET (TSNWFET) with 15 nm length gate and 4 nm radius nanowires'. in Electron Devices Meeting, 2006. IEDM'06. International. 2006. IEEE. [4-8] Hsu, S.-H., C.-L. Chu, W.-H. Tu, Y.-C. Fu, P.-J. Sung, H.-C. Chang, Y.-T. Chen, L.-Y. Cho, W. Hsu, and G.-L. Luo. 'Nearly defect-free Ge gate-all-around FETs on Si substrates'. in Electron Devices Meeting (IEDM), 2011 IEEE International. 2011. IEEE. [4-9] Wong, I.-H., Y.-T. Chen, S.-H. Huang, W.-H. Tu, C.-H. Huang, Y.-S. Chen, T.-C. Shieh, and C. Liu. 'Junctionless gate-all-around pFETs on Si with in-situ doped ge channel'. in VLSI Technology, Systems and Application (VLSI-TSA), 2015 International Symposium on. 2015. IEEE. [4-10] Gong, X., G. Han, S. Su, R. Cheng, P. Guo, F. Bai, Y. Yang, Q. Zhou, B. Liu, and K.H. Goh. 'Uniaxially strained germanium-tin (GeSn) gate-all-around nanowire PFETs enabled by a novel top-down nanowire formation technology'. in VLSI Technology (VLSIT), 2013 Symposium on. 2013. IEEE. [4-11] Satta, A., E. Simoen, T. Clarysse, T. Janssens, A. Benedetti, B. De Jaeger, M. Meuris, and W. Vandervorst, 'Diffusion, activation, and recrystallization of boron implanted in preamorphized and crystalline germanium'. Applied Physics Letters, 2005. 87(17): p. 172109. [4-12] Satta, A., E. Simoen, T. Janssens, T. Clarysse, B. De Jaeger, A. Benedetti, I. Hoflijk, B. Brijs, M. Meuris, and W. Vandervorst, 'Shallow junction ion implantation in Ge and associated defect control'. Journal of The Electrochemical Society, 2006. 153(3): p. G229-G233. [4-13] Uppal, S., A.F. Willoughby, J.M. Bonar, A.G. Evans, N.E. Cowern, R. Morris, and M.G. Dowsett, 'Diffusion of ion-implanted boron in germanium'. Journal of Applied Physics, 2001. 90(8): p. 4293-4295. [4-14] Simoen, E., A. Satta, A. D’Amore, T. Janssens, T. Clarysse, K. Martens, B. De Jaeger, A. Benedetti, I. Hoflijk, and B. Brijs, 'Ion-implantation issues in the formation of shallow junctions in germanium'. Materials science in semiconductor processing, 2006. 9(4): p. 634-639. [4-15] Vincent, B., Y. Shimura, S. Takeuchi, T. Nishimura, G. Eneman, A. Firrincieli, J. Demeulemeester, A. Vantomme, T. Clarysse, and O. Nakatsuka, 'Characterization of GeSn materials for future Ge pMOSFETs source/drain stressors'. Microelectronic Engineering, 2011. 88(4): p. 342-346. [4-16] Han, G., S. Su, Q. Zhou, L. Wang, W. Wang, G. Zhang, C. Xue, B. Cheng, and Y.-C. Yeo. 'BF 2+ ion implantation and dopant activation in strained Germanium-tin (Ge 1− x Sn x) epitaxial layer'. in Junction Technology (IWJT), 2012 12th International Workshop on. 2012. IEEE. [4-17] Lin, C.-M., H.-C. Chang, I.-H. Wong, S.-J. Luo, C. Liu, and C. Hu, 'Interfacial layer reduction and high permittivity tetragonal ZrO2 on germanium reaching ultrathin 0.39 nm equivalent oxide thickness'. Applied Physics Letters, 2013. 102(23): p. 232906. [4-18] Wen, D.-S., S.H. Goodwin-Johansson, and C.M. Osburn, 'Tunneling leakage in Ge preamorphized shallow junctions'. IEEE Transactions on Electron Devices, 1988. 35(7): p. 1107-1115. [4-19] Takagi, S.-i., A. Toriumi, M. Iwase, and H. Tango, 'On the universality of inversion layer mobility in Si MOSFET's: Part I-effects of substrate impurity concentration'. IEEE Transactions on Electron Devices, 1994. 41(12): p. 2357-2362. [4-20] Lee, C., T. Nishimura, T. Tabata, S. Wang, K. Nagashio, K. Kita, and A. Toriumi. 'Ge MOSFETs performance: Impact of Ge interface passivation'. in Electron Devices Meeting (IEDM), 2010 IEEE International. 2010. IEEE. [4-21] Sawano, K., Y. Abe, H. Satoh, Y. Shiraki, and K. Nakagawa, 'Compressive strain dependence of hole mobility in strained Ge channels'. Applied Physics Letters, 2005. 87(19): p. 192102. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67918 | - |
| dc.description.abstract | 近代半導體工業依照著莫爾定律不斷地縮小元件尺寸,然而,矽金氧半場效電晶體(MOSFETs)技術已經開始面臨其微縮的極限了。電晶體尺寸微縮進入10奈米節點之後,我們需要高遷移率的通道材料例如鍺以及III-V族材料來提高驅動電流。另外,為了避免短通道效應和減少功耗,新元件結構也正在被開發。由於鍺與矽有很高的相容性,因此目前是非常受注目的材料,也已經被廣泛地探討。為了達到比鍺更高的遷移率,把錫參雜進鍺以合成鍺錫合金是一種能增加載子遷移率的應變工程。
達到高遷移率的鍺錫金氧半電晶體,將面臨的挑戰有:溫度的限制,因為錫在鍺中只有非常低的溶解度,以及與高介電系數材料的整合,包含各種鈍化方法以降低介面缺陷,還有三維電晶體結構的製程以符合未來微縮的需求。在本論文中,我們將演示鍺錫平面場效電晶體以及環繞式閘極場效應電晶體,其中的探討也包含了介面工程、製程整合、遷移率特性、應力響應和雜訊量測。 在本論文中,我們發現10%錫濃度的鍺錫合金溫度限制須在攝氏400度以下以防止應變鬆弛或錫的析出。我們也演示了鍺覆蓋層的薄化製程,以達到最佳化的覆蓋層厚度。鍺錫金氧半電容的介面缺陷密度也利用低溫電導法來量測,以確認鍺覆蓋層的效果。 關於鍺錫平面電晶體的製備,鍺覆蓋層作為鈍化層以減少表面粗糙度散射和庫倫散射。利用低溫原子層沉積氧化鋁與二氧化鋯作為高介電常數材料,也利用快速熱氧化製程作為介面鈍化,並且溫度限制控制在攝氏400度以下以避免錫的析出。製備出的鍺錫金氧半場效電晶體擁有優良的電性:如高達104之開關電流比以及低次臨界擺幅 106 mV/dec。化學氣相沉積成長並以厚度1奈米厚的鍺覆蓋層製備的鍺錫電晶體能擁有高達509 cm2/V-s的電洞遷移率。厚度對遷移率的關係可以用載子在量子井中分布的情形來說明。我們也以外加應力降低載子有效質量,以提升驅動電流。雜訊密度隨著鍺覆蓋層的厚度增加而減少,說明了當載子遠離表面,載子數目擾動與相關遷移率擾動都被抑制了。 關於鍺錫環繞式閘極場效電晶體,硼離子佈植與適當的退火條件可以達到夠低的69 ohm/sq薄片電阻。利用氯氣與溴化氫氣體作非等向性蝕刻去除位於鍺矽介面高缺陷的鍺以形成懸空的奈米線通道,製備出的環繞式閘極場效電晶體可以達到2.3x107的高開關電流比和86mV/dec的低次臨界擺幅。變溫量測方面,在相同過驅電壓下,電流隨著溫度升高而降低,顯示著聲子散射是主要的散射機制。我們也以外加壓縮應力以降低載子有效質量,以提升驅動電流。 | zh_TW |
| dc.description.abstract | Semiconductor industry technology has been following the path of scaling trend based on Moore’s law. However, Si MOSFET has come to its scaling limit. For the technology nodes of 10 nm and beyond, high mobility channel material such as Ge and III-V are required to enhance drive current. Also, new device architectures are now been developing to reduce short channel effect and power consumption. With the high compatibility of Ge with Si platform, Ge has become a promising candidate for high mobility channel material and has been widely investigated. To achieve higher mobility than Ge, the incorporation of Sn into Ge to synthesize GeSn alloy is a new way of strain engineering to further boost the mobility.
The primary challenges to achieve high mobility GeSn MOSFET are the thermal budget limit due to low solubility of Sn in Ge, the high-k integration process including various passivation techniques for interface trap reduction and the fabrication of 3D device structure for future scaling need. In this thesis, the fabrication and electrical characterization of germanium-tin based planar and gate-all-around field-effect-transistors are demonstrated. The interface engineering, process integration, mobility characterization, strain response and noise measurement are also investigated. In this thesis, the GeSn thermal budget is investigated as 400oC for [Sn]=10% to prevent strain relaxation and Sn segregation. The Ge cap thinning process for optimized passivation layer thickness is demonstrated. The interface states densities of GeSn MISCAPs are measured by low temperature conductance method to confirm the effect of Ge cap passivation. For GeSn planar pMOSFET fabrication, Ge cap is used as passivation layer to reduce surface roughness scattering and Coulomb scattering. Al2O3 and ZrO2 as high-k layer is deposited by atomic layer deposition at low temperature. Rapid thermal oxidation is used as the fast and effective interface passivation with thermal budget under 400oC to prevent Sn segregation. GeSn pMOSFETs exhibiting excellent transistor characteristic are fabricated. High Ion/Ioff ratio of ~1.1x104, and low subthreshold swing of ~106mV/dec are demonstrated. The high peak hole mobility of 509 cm2/V-s of the CVD-grown GeSn pMOSFETs is obtained using 1nm Ge cap. The cap thickness dependent mobility can be explained by carrier distribution of quantum well structure. The on current is enhanced by external stress due to reduction of effective mass. The normalized noise power density of the GeSn devices decreases with increasing Ge cap thickness, indicating the carrier number fluctuation and correlated mobility fluctuation are suppressed when the holes are away from interface. For GeSn gate-all-around pMOSFET fabrication, boron implantation with proper annealing condition can achieve low sheet resistance of 69 ohm/sq. Floating GeSn nanowire is form using anisotropic etching with Cl2/HBr gas to etch away the high defective Ge near Ge/Si interface. Favorable on/off ratio of 2.3x108 and low SS of 86mV/dec are fabricated and characterized. The current decreases with the increasing temperature at the same overdrive voltage, indicating phonon scattering is the dominant mechanism. The on current is enhanced by external compressive strain due to reduction of effective mass. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:58:02Z (GMT). No. of bitstreams: 1 ntu-106-R04943056-1.pdf: 4410275 bytes, checksum: 70b100d5d734ada644f72ba9f4ec71e5 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Chapter 1 Introduction 1
1.1 Background and Motivation 1 1.2 Thesis Organization 5 1.3 Reference 6 Chapter 2 Thermal Budget and Surface Passivation of GeSn 8 2.1 Introduction 8 2.2 Thermal Budget of GeSn 9 2.2.1 Thermal Stability of GeSn 9 2.2.2 Sample Structure and Analysis 9 2.2.3 Investigation of Thermal Budget 11 2.3 Surface Passivation and Cap Thinning Process 12 2.3.1 Surface passivation with Ge cap 12 2.3.2 Cap Thinning Process 13 2.4 GeSn MISCAP Fabrication and Characterizations 16 2.4.1 GeSn Surface Preparation 16 2.4.2 GeSn MISCAP Fabrication 17 2.4.3 GeSn MISCAP Characterizations 18 2.4.4 Dit vs Cap Thickness 18 2.5 Summary 20 2.6 Reference 21 Chapter 3 Fabrication and Characterization of High Mobility GeSn/Ge Quantum Well p-MOSFETs 25 3.1 Introduction 25 3.2 Fabrication of GeSn/Ge Quantum Well p-MOSFETs 27 3.3 Characteristics of GeSn/Ge Quantum Well p-MOSFETs 29 3.3.1 Transfer and Output Characteristics 29 3.3.2 Effective Mobility Characterization 30 3.3.3 Valence band alignment and hole distribution 35 3.3.4 The Strain Response of Ge0.9Sn0.1/Ge Quantum Well p-MOSFETs 37 3.3.5 Low frequency noise of GeSn/Ge Quantum Well p-MOSFETs 39 3.4 Summary 41 3.5 Reference 42 Chapter 4 Fabrication and Characterization of GeSn Inversion Mode Gate-all-around pMOSFETs 46 4.1 Introduction 46 4.2 Fabrication of GeSn Gate-All-Around pMOSFETs 47 4.2.1 Growth and Structure of GeSn Wafer 47 4.2.2 Thermal Budget of Ge0.92Sn0.08 48 4.2.3 S/D activation 49 4.2.4 Device Fabrication 51 4.3 Characteristics of GeSn Gate-All-Around pMOSFETs 55 4.3.1 Transfer and Output Characteristics 55 4.3.2 Temperature Dependence Measurement 56 4.3.3 The Strain Response of GeSn Gate-All-Around pMOSFETs 57 4.4 Summary 58 4.5 Reference 59 Chapter 5 Summary and Future Work 62 5.1 Summary 62 5.2 Future Work 64 | |
| dc.language.iso | en | |
| dc.subject | 閘極最後製程 | zh_TW |
| dc.subject | 環繞式閘極場效電晶體 | zh_TW |
| dc.subject | 金氧半電晶體 | zh_TW |
| dc.subject | 高遷移率 | zh_TW |
| dc.subject | 鍺錫合金 | zh_TW |
| dc.subject | 表面鈍化 | zh_TW |
| dc.subject | 應變 | zh_TW |
| dc.subject | 非等向性蝕刻 | zh_TW |
| dc.subject | Strain Response | en |
| dc.subject | MOSFET | en |
| dc.subject | GAAFET | en |
| dc.subject | Gate-Last Process | en |
| dc.subject | High Mobility | en |
| dc.subject | Surface Passivation | en |
| dc.subject | Germanium-Tin | en |
| dc.subject | Anisotropic etching | en |
| dc.title | 高遷移率鍺錫金氧半場效電晶體之製備與特性 | zh_TW |
| dc.title | Fabrication and Characterization of High Mobility GeSn pMOSFETs | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 李敏鴻(Min-Hung Lee),林中一(Chung-Yi Lin),林楚軒(Chu-Hsuan Lin) | |
| dc.subject.keyword | 鍺錫合金,金氧半電晶體,環繞式閘極場效電晶體,閘極最後製程,高遷移率,表面鈍化,應變,非等向性蝕刻, | zh_TW |
| dc.subject.keyword | Germanium-Tin,MOSFET,GAAFET,Gate-Last Process,High Mobility,Surface Passivation,Strain Response,Anisotropic etching, | en |
| dc.relation.page | 64 | |
| dc.identifier.doi | 10.6342/NTU201701004 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-20 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 電子工程學研究所 | zh_TW |
| 顯示於系所單位: | 電子工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 4.31 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
