Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67893
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor莊永裕(Yung-Yu Chuang)
dc.contributor.authorTing-Yuan Linen
dc.contributor.author林定遠zh_TW
dc.date.accessioned2021-06-17T01:56:30Z-
dc.date.available2027-07-12
dc.date.copyright2017-07-27
dc.date.issued2017
dc.date.submitted2017-07-21
dc.identifier.citation[1] M. BRAHAM and M. VAN DROOGENBROECK. Deep Background Subtraction with Scene-Specific Convolutional Neural Networks. In IEEE International Conference on Systems, Signals and Image Processing (IWSSIP), Bratislava, Slovakia, pages 1-4, May 2016. doi:10.1109/IWSSIP.2016.7502717, BiBTeX entry.
[2] N. Goyette, P.-M. Jodoin, F. Porikli, J. Konrad, and P. Ishwar, “A novel video dataset for change detection benchmarking,” IEEE Trans. Image Process., vol. 23, pp. 4663–4679, Nov. 2014.
[3] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document recognition,” Proc. of IEEE, vol. 86, pp. 2278–2324, Nov. 1998.
[4] P. Gil-Jimenez, S. Maldonado-Bascon, R. Gil-Pita, H. Gomez-Moreno, “Background pixel classification for motion detection in video image sequences“, International Work Conference on Artificial and Natural Neural Network, IWANN 2003, Volume 2686, pages 718-725, 2003.
[5] Z. Wang, H. Bao, L. Zhang, “PNN based motion detection with adaptive learning rate”, International Conference on Computational Intelligence and Security, CIS 2009, Beijing, December 2009.
[6] B. Do, S. Huang, “Dynamic Background Modeling based on Radial Basis Function Neural Networks for Moving Object Detection”, International Conference on Multimedia and Expo, ICME 2011, Barcelona, Spain, July 2011.
[7] G. Shobha, N. Satish Kumar, “Adaptive Background Modeling and Foreground Detection in Video Sequence Using Artificial Neural Network”, International Conference on Intelligent Computational Systems, ICICS 2012, Dubai, January 2012.
[8] J. Ramirez-Quintana, M. Chacon-Murguia, “Self-Organizing Retinotopic Maps Applied to Background Modeling for Dynamic Object Segmentation in Video Sequences”, International Joint Conference on Neural Networks, IJCNN 2013, August 2013.
[9] R. Athilingam, K. Kumar, G. Kavitha, “Neuronal mapped hybrid background segmentation for video object tracking”, International Conference on Computing, Electronics and Electrical Technologies, ICCEET 2012, pages 1061-1066, 2012.
[10] M. De Gregorio, M. Giordano, “Change Detection with Weightless Neural Networks', IEEE Change Detection Workshop, CDW 2014, June 2014.
[11] R. Guo, H. Qi, “Partially-Sparse Restricted Boltzmann Machine for Background Modeling and Subtraction”, International Conference on Machine Learning and Applications, ICMLA 2013, pages 209-214, December 2013.
[12] L. Xu, Y. Li, Y. Wang, E. Chen “Temporally Adaptive Restricted Boltzmann Machine for Background Modeling”, AAAI 2015, Austin, Texas USA, January 2015.
[13] C. Stauffer and E. Grimson, “Adaptive background mixture models for real-time tracking,” in IEEE Int. Conf. Comput. Vision and Pattern Recogn. (CVPR), vol. 2, (Fort Collins, Colorado, USA), pp. 246–252, June 1999.
[14] P.-L. St-Charles, G.-A. Bilodeau, and R. Bergevin, “A self-adjusting approach to change detection based on background word consensus,” in IEEE Winter Conf. Applicat. Comp. Vision (WACV), (Waikoloa Beach, Hawaii, USA), pp. 990–997, Jan. 2015.
[15] S. Bianco, G. Ciocca, and R. Schettini, “How far can you get by combining change detection algorithms?,” CoRR, vol. abs/1505.02921, 2015.
[16] A. Schick, M. Bauml, and R. Stiefelhagen, “Improving foreground segmentation with probabilistic superpixel Markov Random Fields,” in IEEE Int. Conf. Comput. Vision and Pattern Recog. Workshop (CVPRW), (Providence, Rhode Island, USA), pp. 27–31, June 2012.
[17] M. Sedky, M. Moniri, and C. Chibelushi, “Spectral 360: A physics-based technique for change detection,” in IEEE Int. Conf. Comput. Vision and Pattern Recog. Workshop (CVPRW), (Columbus, Ohio, USA), pp. 399–402, June 2014.
[18] P.-L. St-Charles, G.-A. Bilodeau, and R. Bergevin, “SuBSENSE: A universal change detection method with local adaptive sensitivity,” IEEE Trans. Image Process., vol. 24, pp. 359–373, Jan. 2015.
[19] A. Miron and A. Badii, “Change detection based on graph cuts,” in IEEE Int. Conf. Syst., Signals and Image Process. (IWSSIP), (London, United Kingdom), pp. 273–276, Sept. 2015.
[20] L. Maddalena and A. Petrosino, “The SOBS algorithm: what are the limits?,” in IEEE Int. Conf. Comput. Vision and Pattern Recog. Workshop (CVPRW), (Providence, Rhode Island, USA), pp. 21–26, June 2012.
[21] A. Elgammal, D. Harwood, and L. Davis, “Non-parametric model for background subtraction,” in European Conf. Comput. Vision (ECCV), vol. 1843 of Lecture Notes Comp. Sci., (Dublin, Ireland), pp. 751–767, Springer, June 2000.
[22] F. D. G. Allebosch, P. Veelart, and W. Philips, “EFIC: Edge based foreground background segmentation and interior classification for dynamic camera viewpoints,” in Advanced Concepts for Intelligent Vision Syst. (ACIVS), vol. 9386 of Lecture Notes Comp. Sci., pp. 130–141, Springer, Oct. 2015.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67893-
dc.description.abstract此篇論文探討背景消去演算法,不同於傳統的作法,我們將目標影像與背景影像丟給卷積類神經網路來做訓練。重點在於背景影像的產生,背景影像並非時序的中值濾波所產生的,而是由高斯混合模型所產生,在此基礎下,背景的可信度將有卓越的提升。而我們也探討灰階影像與彩色影像對訓練結果的影響,以及是否讓卷積類神經網路產生的前景遮罩參與高斯混合模型的背景生成。多方探討下,我們發現在選取的2014 ChangeDetection.net資料庫中,展現出良好的結果,優於當前的IUTIS-5、PAWCS、SuBSENSE等方法。zh_TW
dc.description.abstractThis paper aims to analyze background subtraction algorithm. Different from tradition methods, we feed the trained network with the target and background images. Focusing on how to get the background images. Not using the temporal median filter. We use the Gaussian mixture models to produce background images. In this way, the accuracy of background images increases. We also research the difference between grayscale and RGB images. And whether adding the foreground masks from the convolutional Neural Networks to the Gaussian mixture models or not. Experiments lead on 2014 ChangeDetection.net dataset show that our proposed method outperforms several state-of-the-art methods, including IUTIS-5, PAWCS, SuBSENSE and so on.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:56:30Z (GMT). No. of bitstreams: 1
ntu-106-R03922055-1.pdf: 1200037 bytes, checksum: 1c881db98642900efe320280bdf45510 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員審定書 #
誌謝 i
摘要 ii
Abstract iii
目錄 iv
附圖目錄 vi
附表目錄 vii
第一章 緒論 1
1.1 前言 1
1.2 研究動機與目標 2
1.3 論文架構 3
第二章 文獻探討 4
第三章 實驗流程與架構 7
3.1 輸入資料前置處理 7
3.2 背景模組 7
3.3 訓練資料 9
3.4 類神經網路架構 10
第四章 實驗結果 12
4.1 前置作業 12
4.2 數據探討與比較 13
4.3 結果展示 15
第五章 研究方法探討與驗證 20
5.1 訓練RGB影像 20
5.2 前景遮罩參與高斯混合模組來產生背景 20
5.3 驗證一般背景 22
第六章 結論 24
參考文獻 25
dc.language.isozh-TW
dc.subject卷積類神經網路zh_TW
dc.subject背景消去zh_TW
dc.subject高斯混合模型zh_TW
dc.subject時序中值濾波zh_TW
dc.subjecttemporal median filteren
dc.subjectconvolutional Neural Networksen
dc.subjectGaussian mixture modelsen
dc.subjectbackground subtractionen
dc.title卷積類神經網路結合高斯混合模型的背景消去法zh_TW
dc.titleConvolutional Neural Networks for Background Subtraction
with Gaussian mixture background models
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳賦哲(Fu-Che Wu),葉正聖(Jeng-Sheng Yeh)
dc.subject.keyword背景消去,卷積類神經網路,高斯混合模型,時序中值濾波,zh_TW
dc.subject.keywordbackground subtraction,convolutional Neural Networks,Gaussian mixture models,temporal median filter,en
dc.relation.page28
dc.identifier.doi10.6342/NTU201701837
dc.rights.note有償授權
dc.date.accepted2017-07-21
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊工程學研究所zh_TW
顯示於系所單位:資訊工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
1.17 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved