Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 資訊網路與多媒體研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67866
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor洪一平
dc.contributor.authorYiWei Guoen
dc.contributor.author郭禕偉zh_TW
dc.date.accessioned2021-06-17T01:54:46Z-
dc.date.available2027-12-31
dc.date.copyright2017-07-27
dc.date.issued2017
dc.date.submitted2017-07-22
dc.identifier.citation[1] Hong, Y., & Li, J. X. (2007). Biomechanics of Tai Chi: a review. Sports biomechanics, 6(3), 453-464.
[2] Chua, P. T., , R., Daly, B., Hu, N., Schaaf, R., Ventura, D., ... & Pausch, R. (2003, March). Training for physical tasks in virtual environments: Tai Chi. In Virtual Reality, 2003. Proceedings. IEEE (pp. 87-94). IEEE.
[3] Bächlin, M., Förster, K., & Tröster, G. (2009, September). SwimMaster: a wearable assistant for swimmer. In Proceedings of the 11th international conference on Ubiquitous computing (pp. 215-224). ACM.
[4] Ladha, C., Hammerla, N. Y., Olivier, P., & Plötz, T. (2013, September). ClimbAX: skill assessment for climbing enthusiasts. In Proceedings of the 2013 ACM international joint conference on Pervasive and ubiquitous computing (pp. 235-244). ACM.
[5] Yang, D., Tang, J., Huang, Y., Xu, C., Li, J., Hu, L., ... & Liu, H. (2017, March). TennisMaster: an IMU-based online serve performance evaluation system. In Proceedings of the 8th Augmented Human International Conference (p. 17). ACM.
[6] Smart Tennis Sensor for Tennis Rackets: http://www.smarttennissensor.sony.net/
[7] Akl, A., & Valaee, S. (2010, March). Accelerometer-based gesture recognition via dynamic-time warping, affinity propagation, & compressive sensing. In Acoustics Speech and Signal Processing (ICASSP), 2010 IEEE International Conference on (pp. 2270-2273). IEEE.
[8] Galluzzi, V., Herman, T., & Polgreen, P. (2015, April). Hand hygiene duration and technique recognition using wrist-worn sensors. In Proceedings of the 14th International Conference on Information Processing in Sensor Networks (pp. 106-117). ACM.
[9] Zhang, X., Chen, X., Li, Y., Lantz, V., Wang, K., & Yang, J. (2011). A framework for hand gesture recognition based on accelerometer and EMG sensors. IEEE Transactions on Systems, Man, and Cybernetics-Part A: Systems and Humans, 41(6), 1064-1076.
[10] Liu, J., Zhong, L., Wickramasuriya, J., & Vasudevan, V. (2009). uWave: Accelerometer-based personalized gesture recognition and its applications. Pervasive and Mobile Computing, 5(6), 657-675.
[11] Wilson, C. J., & Datta, S. K. (2001). Tai Chi for the prevention of fractures in a nursing home population: An economic analysis. JCOM-WAYNE PA-, 8(3), 19-28.
[12] Chua, P. T., Crivella, R., Daly, B., Hu, N., Schaaf, R., Ventura, D., ... & Pausch, R. (2003, March). Training for physical tasks in virtual environments: Tai Chi. In Virtual Reality, 2003. Proceedings. IEEE (pp. 87-94). IEEE.
[13] Jin, Y., Hu, X., & Wu, G. (2012). A tai chi training system based on fast skeleton matching algorithm. In Computer Vision–ECCV 2012. Workshops and Demonstrations (pp. 667-670). Springer Berlin/Heidelberg.
[14] Lee, J. D., Hsieh, C. H., & Lin, T. Y. (2014, January). A Kinect-based Tai Chi exercises evaluation system for physical rehabilitation. In Consumer Electronics (ICCE), 2014 IEEE International Conference on (pp. 177-178). IEEE.
[15] Lu, K. Y. (2016) Developing a Depth-Camera-Based Training System with Weight-Transfer Feedback for Practicing Tai-Chi Chuan. Graduate Institute of Computer Science and Information Engineering, National Taiwan University, 1-38.
[16] Sonymobile.com. “Sony White paper on SWR50 Smartwatch 3”: http://www-support-downloads.sonymobile.com/swr50/whitepaper_EN_swr50_smartwatch3_2.pdf
[17] Keogh, E. (2002, August). Exact indexing of dynamic time warping. In Proceedings of the 28th international conference on Very Large Data Bases (pp. 406-417). VLDB Endowment.
[18] Hsu, C. W., Chang, C. C., & Lin, C. J. (2003). A practical guide to support vector classification.
[19] Lawrence R. Rabiner, A Tutorial on Hidden Markov Models and Selected Applications in Speech Recognition. Proceedings of the IEEE, 77 (2), p. 257–286, February 1989.
[20] Online TCC learning website : http://www.beginnerstaichi.com/
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67866-
dc.description.abstract近年來,隨著多媒體設備的發展,特別是頭戴式顯示器的出現,運動的學習已經不再局限於進行課堂學習,由教練進行指導,而是可以透過觀看多媒體教學影片進行學習。然而進行多媒體學習雖然很方便,但卻不能及時獲得像真實教練引導的回饋和互動性,同時也無法掌握自己練習的準確性和完整度。
基於以上問題,本研究提出了一套基於慣性測量裝置進行動作辨識和評估的系統,在本研究中主要以觀看頭戴式顯示器的動作引導,進行十六式太極拳動作練習為例。本研究利用搭載三軸慣性測量的智慧型手錶對太極拳動作進行辨識和評估,可以讓太極拳学生更加準確的了解自己練習的完整度。進而可以讓太極拳学生在沒有教練的情況下,使用本系統獨立完成太極拳動作的練習,並獲得相應練習的完整度回饋。
相較於以往研究根據用戶練習數據進行機器學習,獲得太極拳動作的模型不同,本研究採用深度攝影機技術來獲得太極拳教練手腕的示範動作,使得每個招式的模型更加精準。之後我們根據学生的練習數據進行辨識,獲得了極高的正確率。最後,我們應用機器學習的方式,根據学生數據和教練動作的差距,計算学生練習的完整度,給予学生完成情況的評估,以利太極拳練習。
zh_TW
dc.description.abstractIn recent years, with the development of multimedia equipment, especially the appearance of head-mounted display, sports learning is no longer limited to classroom learning, with a coach to guide your movement, but can through watching multimedia teaching videos to learn. However, although the multimedia learning is very convenient, but student cannot get the feedback from the coach, also student cannot get the accuracy and completeness of their practice.
Based on the above problems, our research presents a system based on inertial measurement unit for movement recognition and evaluation. In our research, we mainly let student watching a Tai-Chi Chuan learning video with sixteen movements through the head-mounted display. Then we use a smart watch with three-axis inertia measurement unit for Tai-Chi Chuan movement recognition and evaluation. Student can get more accurate understanding of their own exercise integrity during Tai-Chi Chuan practice. And then student can use the system to complete the practice of Tai-Chi Chuan without a coach on their side, and they can get the evaluation from the completeness feedback.
Different with the previous study, Tai-Chi Chuan movement model is using practitioner practice data for machine learning. Our research uses depth camera to get the Tai-Chi coach’s movement, making each movement model more accurate. We got a very high accuracy precision using different students practice data for recognition. Finally, we use the machine learning to calculate the completion of the student practice according to the difference between student movement and coach movement. Then we give student score as evaluation in order to help them finish the Tai-Chi Chuan practice.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:54:46Z (GMT). No. of bitstreams: 1
ntu-106-R04944042-1.pdf: 2117072 bytes, checksum: 27480a4c7b7c17573324ed5d1e154273 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 I
誌謝 II
中文摘要 III
ABSTRACT IV
CONTENTS VI
LIST OF FIGURES IX
LIST OF TABLES X
Chapter 1 Introduction 1
Chapter 2 Related Work 4
2.1 IMU Applications 4
2.2 Movement Recognition 5
2.3 Tai-Chi Chuan Training System 6
Chapter 3 Movement Recognition and Evaluation 9
3.1 Insight of Tai-Chi Chuan Movement 9
3.2 Coach Movement Based on Vicon 10
3.2.1 Coach Movements Model 10
3.2.2 Coach Wrist Movements 11
3.3 Coach Movements Processing 11
3.3.1 Wrist Movement 11
3.3.2 Acceleration Component 12
3.3.3 Gravity Component 14
3.4 Student Data Acquisition 15
3.4.1 Student Hardware 15
3.4.2 Data Acquisition Processing 17
3.5 Movement Recognition 18
3.5.1 Sensor Axes Alignment 18
3.5.2 Dynamic Time Warping 19
3.5.3 DTW limitations 20
3.5.4 Constrained Dynamic Time Warping 22
3.5.5 Nearest Neighbor Movement Recognition 23
3.6 Evaluation Based on Feedback Techniques 24
3.6.1 Feedback Techniques 24
3.6.2 Support Vector Classification 26
Chapter 4 Recognition and Evaluation System 27
4.1 System Scenarios 27
4.2 System Processing 28
4.3 System Evaluation 31
4.3.1 Experiment Design 31
4.3.2 Experiment Result 34
Chapter 5 Discussion 36
Chapter 6 Conclusion and Future Work 38
REFERENCES 40
dc.language.isoen
dc.subject慣性測量裝置zh_TW
dc.subject動作辨識zh_TW
dc.subject太極拳學習系統zh_TW
dc.subject深度攝影機zh_TW
dc.subject頭戴式顯示器zh_TW
dc.subjectHead-mounted Displayen
dc.subjectMovement Recognitionen
dc.subjectTai-Chi Chuan Learningen
dc.subjectDepth Cameraen
dc.subjectInertial Measurement Uniten
dc.title基於慣性測量裝置之動作辨識與評估:以太極拳動作為例zh_TW
dc.titleMovement Recognition and Evaluation Based on Inertial Measurement Unit: Use Tai-Chi Chuan Movement as an Exampleen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee蔡玉寶,陳冠文,李明穗,石勝文
dc.subject.keyword慣性測量裝置,動作辨識,太極拳學習系統,深度攝影機,頭戴式顯示器,zh_TW
dc.subject.keywordInertial Measurement Unit,Movement Recognition,Tai-Chi Chuan Learning,Depth Camera,Head-mounted Display,en
dc.relation.page42
dc.identifier.doi10.6342/NTU201701861
dc.rights.note有償授權
dc.date.accepted2017-07-24
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept資訊網路與多媒體研究所zh_TW
顯示於系所單位:資訊網路與多媒體研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.07 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved