請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67862
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳林祈(Lin-Chi Chen) | |
dc.contributor.author | Ching-Jung Yen | en |
dc.contributor.author | 顏敬容 | zh_TW |
dc.date.accessioned | 2021-06-17T01:54:29Z | - |
dc.date.available | 2027-12-31 | |
dc.date.copyright | 2017-07-31 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-21 | |
dc.identifier.citation | 姚傑文。2013。平面式離子選擇電極研究與水耕養液巨量元素感測應用。碩士論文。台北:臺灣大學生物產業機電工程學系。
張家豪。2015。全固態式陰離子網印選擇電極製備與養液元素感測應用之研究。碩士論文。台北:臺灣大學生物產業機電工程學系。 Bailey, B. J., Haggett, B. G. D., Hunter, A., Albery, W. J., and Svanberg, L. R. 1988. Monitoring nutrient film solutions using ion-selective electrodes. Journal of agricultural engineering research, 40(2): 129-142. Benco, J. S., Nienaber, H. A., and McGimpsey, W. G. 2003. Synthesis of an ammonium ionophore and its application in a planar ion-selective electrode. Analytical chemistry, 75(1): 152-156. Bobacka, J. 2006. Conducting Polymer‐Based Solid‐State Ion‐Selective Electrodes. Electroanalysis, 18(1): 7-18. Bühlmann, P., and Chen, L. D. 2012. Ion‐Selective Electrodes With Ionophore‐Doped Sensing Membranes. Supramolecular Chemistry: From Molecules to Nanomaterials. Crespo, G. A., Macho, S., and Rius, F. X. 2008. Ion-selective electrodes using carbon nanotubes as ion-to-electron transducers. Analytical chemistry, 80(4): 1316-1322. Cosofret, V. V., Nahir, T. M., Lindner, E., and Buck, R. P. 1992. New neutral carrier-based H+ selective membrane electrodes. Journal of Electroanalytical Chemistry, 327(1-2): 137-146. Goldberg, H. D., Brown, R. B., Liu, D. P., and Meyerhoff, M. E. 1994. Screen printing: a technology for the batch fabrication of integrated chemical-sensor arrays. Sensors and Actuators B: Chemical, 21(3): 171-183. Gupta, V. K., Chandra, S., and Mangla, R. 2002. Magnesium-selective electrodes. Sensors and Actuators B: Chemical, 86(2): 235-241. Gupta, V. K., Chandra, S., Chauhan, D. K., and Mangla, R. 2002. Membranes of 5, 10, 15, 20-tetrakis (4-methoxyphenyl) porphyrinatocobalt (TMOPP-Co)(I) as MoO42--selective sensors. Sensors, 2(5): 164-173. Guzinski, M., Jarvis, J. M., Pendley, B. D., and Lindner, E. 2015. Equilibration time of solid contact ion-selective electrodes. Analytical chemistry, 87(13): 6654-6659. Gyurcsányi, R. E., Rangisetty, N., Clifton, S., Pendley, B. D., and Lindner, E. 2004. Microfabricated ISEs: critical comparison of inherently conducting polymer and hydrogel based inner contacts. Talanta, 63(1): 89-99. Hauser, P. C., Chiang, D. W., and Wright, G. A. 1995. A potassium-ion selective electrode with valinomycin based poly (vinyl chloride) membrane and a poly (vinyl ferrocene) solid contact. Analytica chimica acta, 302(2-3): 241-248. He, N., Höfler, L., Latonen, R. M., and Lindfors, T. 2015. Influence of hydrophobization of the polyazulene ion-to-electron transducer on the potential stability of calcium-selective solid-contact electrodes. Sensors and Actuators B: Chemical, 207: 918-925. Hongbo, C., Hansen, E. H., and Růǐčka, J. 1985. Evaluation of critical parameters for measurement of pH by flow injection analysis determination of pH in soil extracts. Analytica Chimica Acta, 169: 209-220. Hong, S. F., Hwang, S. C., and Chen, L. C. 2008. Deposition-order-dependent polyelectrochromic and redox behaviors of the polyaniline–prussian blue bilayer. Electrochimica Acta, 53(21): 6215-6227. Ivanova, A. D., Koltashova, E. S., Solovyeva, E. V., Peshkova, M. A., and Mikhelson, K. N. 2016. Impact of the Electrolyte Co-Extraction to the Response of the Ionophore-based Ion-Selective Electrodes. Electrochimica Acta, 213: 439-446. Jung, D. H., Kim, H. J., Choi, G. L., Ahn, T. I., Son, J. E., and Sudduth, K. A. 2015. Automated lettuce nutrient solution management using an array of ion-selective electrodes. Transactions of the ASABE, 58(5): 1309-1319. Kozai, T., Niu, G., and Takagaki, M. (Eds.). 2015. Plant factory: an indoor vertical farming system for efficient quality food production. Kim, J. Y., Jung, J. H., Lee, D. E., and Joo, J. 2002. Enhancement of electrical conductivity of poly (3, 4-ethylenedioxythiophene)/poly (4-styrenesulfonate) by a change of solvents. Synthetic Metals, 126(2): 311-316. Liao, W. Y., and Chou, T. C. 2008. Development of a Reference Electrode Chip for Application in Ion Sensor Arrays. Zeitschrift für Naturforschung B, 63(11): 1327-1334. Lindfors, T. 2009. Light sensitivity and potential stability of electrically conducting polymers commonly used in solid contact ion-selective electrodes. Journal of Solid State Electrochemistry, 13(1): 77-89. Lindfors, T., Sjöberg, P., Bobacka, J., Lewenstam, A., and Ivaska, A. 1999. Characterization of a single-piece all-solid-state lithium-selective electrode based on soluble conducting polyaniline. Analytica chimica acta, 385(1): 163-173. Lindner, E., and Gyurcsányi, R. E. 2009. Quality control criteria for solid-contact, solvent polymeric membrane ion-selective electrodes. Journal of Solid State Electrochemistry, 13(1): 51-68. Mamińska, R., Dybko, A., and Wróblewski, W. 2006. All-solid-state miniaturised planar reference electrodes based on ionic liquids. Sensors and Actuators B: Chemical, 115(1): 552-557. Milham, P. J., Awad, A. S., Paull, R. E., and Bull, J. H. 1970. Analysis of plants, soils and waters for nitrate by using an ion-selective electrode. Analyst, 95(1133): 751-757. Mousavi, Z., Bobacka, J., Lewenstam, A., and Ivaska, A. 2009. Poly (3, 4-ethylenedioxythiophene)(PEDOT) doped with carbon nanotubes as ion-to-electron transducer in polymer membrane-based potassium ion-selective electrodes. Journal of Electroanalytical Chemistry, 633(1): 246-252. Mostert, I. A., Anker, P., Jenny, H. B., Oesch, U., Morf, W. E., Ammann, D., and Simon, W. 1985. Neutral carrier based silicone rubber membranes for H3O+, K+, NH4+ and Ca2+ selective electrodes. Microchimica Acta, 85(1-2): 33-38. Nagashima, H., Tohda, K., Matsunari, Y., Tsunekawa, Y., Watanabe, K., Inoue, H., and Suzuki, K. 1990. Magnesium ion selective electrodes based on β-diketone compounds. Analytical letters, 23(11): 1993-2004. Pérez, M. D. L. A. A., Marı́n, L. P., Quintana, J. C., and Yazdani-Pedram, M. 2003. Influence of different plasticizers on the response of chemical sensors based on polymeric membranes for nitrate ion determination. Sensors and Actuators B: Chemical, 89(3): 262-268. Pérez-Olmos, R., Rios, A., Fernández, J. R., Lapa, R. A. S., and Lima, J. L. F. C. 2001. Construction and evaluation of ion selective electrodes for nitrate with a summing operational amplifier. Application to tobacco analysis. Talanta, 53(4): 741-748. Pławińska, Ż., Michalska, A., and Maksymiuk, K. 2016. Optimization of capacitance of conducting polymer solid contact in ion-selective electrodes. Electrochimica Acta, 187: 397-405. Rius-Ruiz, F. X., Crespo, G. A., Bejarano-Nosas, D., Blondeau, P., Riu, J., and Rius, F. X. 2011. Potentiometric strip cell based on carbon nanotubes as transducer layer: toward low-cost decentralized measurements. Analytical chemistry, 83(22): 8810-8815. Saleh, M. B., Taha, F., and Aof, G. S. 1993. New potassium ion-selective PVC membrane electrode based on alkyl thiophosphate derivatives. Fresenius' journal of analytical chemistry, 346(10): 919-923. Sharma, P., Tuteja, S. K., Bhalla, V., Shekhawat, G., Dravid, V. P., and Suri, C. R. 2013. Bio-functionalized graphene–graphene oxide nanocomposite based electrochemical immunosensing. Biosensors and Bioelectronics, 39(1): 99-105. Sjöberg-Eerola, P., Bobacka, J., Lewenstam, A., and Ivaska, A. 2007. All-solid-state chloride sensors based on electronically conducting, semiconducting and insulating polymer membranes. Sensors and Actuators B: Chemical, 127(2): 545-553. Sjöberg-Eerola, P., Nylund, J., Bobacka, J., Lewenstam, A., and Ivaska, A. 2008. Soluble semiconducting poly (3-octylthiophene) as a solid-contact material in all-solid-state chloride sensors. Sensors and Actuators B: Chemical, 134(2): 878-886. SON, J. E., and Takakura, T. 1987. A study on automatic control of nutrient solutions in hydroponics. Journal of Agricultural Meteorology, 43(2): 147-151. Suzuki, K., Tohda, K., Aruga, H., Matsuzoe, M., Inoue, H., and Shirai, T. 1988. Ion-selective electrodes based on natural carboxylic polyether antibiotics. Analytical chemistry, 60(17): 1714-1721. Tanguy, J., Mermilliod, N., and Hoclet, M. 1987. Capacitive charge and noncapacitive charge in conducting polymer electrodes. Journal of The Electrochemical Society, 134(4): 795-802. Tóth, K., Lindner, E., Horváth, M., Jeney, J., Pungor, E., Bitter, I. & Töke, L. 1993. Analytical performances of lipophilic diamides based alkaline earth ion‐selective electrodes. Electroanalysis, 5(9‐10): 781-790. Trejo-Téllez, L. I., and Gómez-Merino, F. C. 2012. Nutrient solutions for hydroponic systems. In Hydroponics-A Standard Methodology for Plant Biological Researches. Tymecki, Ł., Zwierkowska, E., and Koncki, R. 2004. Screen-printed reference electrodes for potentiometric measurements. Analytica Chimica Acta, 526(1): 3-11. Uchida, R. 2000. Essential nutrients for plant growth: nutrient functions and deficiency symptoms. Plant nutrient management in Hawaii’s soils, 31-55. Umezawa, Y., Bühlmann, P., Umezawa, K., Tohda, K., and Amemiya, S. 2000. Potentiometric selectivity coefficients of ion-selective electrodes. Part I. Inorganic cations (technical report). Pure and Applied Chemistry, 72(10): 1851-2082. Umezawa, Y., Umezawa, K., Bühlmann, P., Hamada, N., Aoki, H., Nakanishi, J. and Nishimura, Y. 2002. Potentiometric selectivity coefficients of ion-selective electrodes. Part II. Inorganic anions (IUPAC Technical Report). Pure and applied chemistry, 74(6): 923-994. Vanamo, U., and Bobacka, J. 2014. Electrochemical control of the standard potential of solid-contact ion-selective electrodes having a conducting polymer as ion-to-electron transducer. Electrochimica Acta, 122: 316-321. Vázquez, M., Bobacka, J., Ivaska, A., and Lewenstam, A. 2002. Influence of oxygen and carbon dioxide on the electrochemical stability of poly (3, 4-ethylenedioxythiophene) used as ion-to-electron transducer in all-solid-state ion-selective electrodes. Sensors and Actuators B: Chemical, 82(1): 7-13. Ye, J., Li, F., Gan, S., Jiang, Y., An, Q., Zhang, Q., and Niu, L. 2015. Using sp 2-C dominant porous carbon sub-micrometer spheres as solid transducers in ion-selective electrodes. Electrochemistry Communications, 50: 60-63. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67862 | - |
dc.description.abstract | 本研究主要針對多元素固態離子選擇電極陣列之製程進行探討,並致力於水耕養液中硝酸根(NO3-)、銨根(NH4+)、鉀(K+)、鈣(Ca2+)等巨量元素離子濃度變化之監測。此電極陣列以四元素離子選擇電極與一平面式Ag/AgCl參考電極組成;為減少成本及微小化製作,以網版印刷的方式將銀漿及碳膠依序覆蓋至聚對苯二甲酸乙二酯 (polyethylene terephthalate, PET)上作為導電層與基版。然而,對於電位式感測器而言,參考電極的電位穩定性是不可或缺的條件,因此,本研究首先探討四種不同製程之固態式網印參考電極,分別針對有無薄膜及保存方式兩方面進行實驗,分析其性能並觀察其是否適用於本系統。然而缺少內溶液之固態式離子選擇電極會造成內部離子與電子之間的傳遞出現障礙,量測期間待測溶液中之水分子亦可能滲入至電極內部中,導致感測時電極發生電位訊號不穩定的情形,因此需要導入一層離子電子傳導層材料。因此,本研究針對三種導電高分子及無機材料進行探討,分別為聚(3,4-乙烯二氧基噻吩) (poly(3,4-ethylenedioxythiophene), PEDOT)、聚苯胺 (polyaniline, PANI) 及石墨烯 (graphene)。首先對以各材料修飾與未修飾任何材料之電極進行電容、電阻及靈敏度等性能之分析,並使用電化學方法、接觸角量測儀測試電極之穩定性及親疏水性,比較其關聯性,另外,為觀察電極內部是否確實有水層產生,本研究使用共軛焦顯微鏡進行驗證。最後,將網印參考電極與以PEDOT修飾之四元素離子選擇電極整合成一試片(長25 mm,寬20 mm),評估電極陣列之性能。實驗結果顯示,硝酸根離子選擇電極靈敏度為58.64 mV/decade (R2=0.9868),鉀離子選擇電極靈敏度為59.27 mV/decade (R2=0.9985),銨根離子選擇電極靈敏度為54.13 mV/decade (R2=0.9801),鈣離子選擇電極靈敏度為31.13 mV/decade (R2=0.9981)。此外,為評估四元素離子選擇電極於養液當中之測試情形,本實驗針對植物工廠水耕萵苣養液之比例進行分析,並配置各目標元素於變化50 %、75 %、100 %、125 %及150 %之樣品,量測四元素試片於混合溶液並改變微量濃度之情況下各離子濃度變化情形。實驗結果顯示以四元素離子選擇電極試片所測試之濃度與樣品配置濃度理論值均呈現高度相關性,其中,硝酸根、鉀、銨根及鈣離子選擇電極所測試之濃度與樣品配置濃度理論值之相關係數R分別為0.9891、0.9942、0.9804及0.8904。 | zh_TW |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:54:29Z (GMT). No. of bitstreams: 1 ntu-106-R04631043-1.pdf: 5627945 bytes, checksum: a0beb6ad2d824d51ff7aff8d9ac8a9bc (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 致謝 i
中文摘要 ii Abstract iv 目錄 vi 圖目錄 x 表目錄 xii 符號說明 xiii 第一章 緒論 1 1.1 前言 1 1.2 研究動機 2 1.3 研究目的 3 1.4 研究架構 5 第二章 文獻探討 7 2.1 固態式參考電極 7 2.2 離子選擇電極 8 2.2.1 感測原理 8 2.2.2離子載體與選擇性 9 2.2.3 離子電子傳導層 12 2.2.4 離子電子傳導層常遇到之問題 15 2.2.5 固態離子選擇電極發展與陣列 16 2.3 植物生理 18 2.4養液元素量測方法 20 第三章 研究方法 22 3.1 實驗儀器與藥品 22 3.1.1 實驗儀器與設備 22 3.1.2 實驗藥品 23 3.2 全固態式網印參考電極之開發製作 25 3.2.1 參考電極之薄膜製備 26 3.3全固態式網印離子選擇電極之開發製作 27 3.3.1 網版印刷電極的製作 27 3.3.2 離子電子傳導層製備 27 3.3.3 離子選擇薄膜製備 28 3.4電化學性能分析 30 3.4.1 開環電位法量測 30 3.4.2 計時電位法 30 3.4.3 循環伏安法 30 3.4.4 電化學交流阻抗法 30 3.5 表面性質與結構分析 31 3.5.1 接觸角量測儀 31 3.5.2 共軛焦顯微鏡 31 3.5.3 掃描式電子顯微鏡 32 3.6 高效液相層析法 32 第四章 結果與討論 33 4.1 固態式參考電極之討論 33 4.1.1 電荷轉移阻抗分析 33 4.1.2 網印參考電極之穩定度測試 36 4.1.3不同濃度及溶液下對網印參考電極之影響 39 4.2 離子電子傳導層材料之討論 41 4.2.1 電容分析 41 4.2.2 電荷轉移阻抗分析 43 4.2.3 材料疏水性與水層測試 45 4.2.4 X射線光電子能譜儀測試 53 4.2.5離子選擇電極之穩定性測試 55 4.2.6離子選擇電極之靈敏度測試 58 4.2.7 離子選擇電極之再現性測試 60 4.2.8 離子電子傳導層材料之綜合比較 64 4.3 離子選擇試片之性能測試 67 4.3.1 靈敏度及偵測極限 67 4.3.2 響應時間測試 71 4.4 植物工廠水耕養液之測試評估 75 第五章 結論與未來展望 80 5.1綜合討論 80 5.2 結論 83 5.3 未來展望 85 第六章 參考文獻 86 附錄 94 附錄一、各離子電子傳導層之SEM表面影像 94 附錄二、各離子電子傳導層之SEM縱切面影像 98 附錄三、硝酸根離子選擇電極邊緣之共軛焦顯微鏡影像 100 | |
dc.language.iso | zh-TW | |
dc.title | 固態離子選擇電極陣列試片製程及其應用於水耕栽培中營養離子感測之研究 | zh_TW |
dc.title | Fabrication of a Solid-Contact Ion-Selective Electrode Array on a Chip and Its Application to Nutrient Ion Sensing in Hydroponics | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 鄭宗記,方煒,陳建彰 | |
dc.subject.keyword | 固態式,多元素,網印參考電極,網印離子選擇電極,陣列,離子電子傳導層,聚(3,4-乙烯二氧基?吩),養液,水耕, | zh_TW |
dc.subject.keyword | All-solid-state,Multi-element,Screen-printed reference electrode,Screen-printed ion-selective electrode,Array,Ion-to-electron transducer,Poly(3,4-ethylenedioxythiophene),Nutrient solution,Hydroponics, | en |
dc.relation.page | 101 | |
dc.identifier.doi | 10.6342/NTU201701805 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-24 | |
dc.contributor.author-college | 生物資源暨農學院 | zh_TW |
dc.contributor.author-dept | 生物產業機電工程學研究所 | zh_TW |
顯示於系所單位: | 生物機電工程學系 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 5.5 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。