請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67855完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 吳育任 | |
| dc.contributor.author | Chao-Wei Wu | en |
| dc.contributor.author | 吳昭緯 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:54:00Z | - |
| dc.date.available | 2018-08-04 | |
| dc.date.copyright | 2017-08-04 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-23 | |
| dc.identifier.citation | Bibliography
[1] [Online]Avaliable:http://www.thermoelectrics.caltech.edu/. [2] W. S. Capinski, H.J.Maris, T. Ruf, M. Cardona, K. Ploog, and D. S. Katzer,“Thermal-conductivity measurements of GaAs/AlAs super-lattices using a pico second optical pump-and-probe technique,” Phys. Rev.B., vol.59,pp.8105–8113,March 1999. [3] M. N. Luckyanova, J.A. Johnson, A.A. Maznev, J. Garg, A. Jandl, M. T. Bulsara, E.A. Fitzgerald, K.A. Nelson, and G. Chen, “Anisotropy of the thermal conductivity in GaAs/AlAs superlattices,” Nano Lett., vol.13,no.9,pp.3973–3977,2013. [4] A.I. Boukai, Y. Bunimovich, J.T. Kheli, J.K. Yu, W.A. G.III,and J. R. Heath, “Silicon nanowires as efficient thermoelectric materials,” Nature, vol.451,pp.168–171, January 2008. [5] A.I. Hochbaum, R. Chen, R.D. Delgado, W. Liang, E.C. Garett, M. Najarian, A. Majumdar, and P. Yang, “Enhanced thermoelectric performance of rough silicon nanowires,” Nature, vol.451,p.163, January 2008. [6] Y. Pei, X.Shi, A. LaLonde, H.Wang, L.Chen, and G.J. Snyder, “Convergence of electronic bands for high performance bulk thermo-electrics,” Nature, vol.473,pp.66–69,May 2011. [7] J.S. Rhyee, K.H.Lee, S.M.Lee, E. Cho, S.I.Kim, E.Lee, Y.S. Kwon, J.H. Shim, and G. Kotliar, “Peierls distortion as a route to high thermoelectric performance in In4Se3− crystal,” Nature, vol.459, pp. 965–968,June 2009. [8] R. Venkatasubramanian, E. Siivola, T. Colpitts, and B.O’Quinn, “Thin-film thermoelectric devices with high room-temperature figures of merit,” Nature, vol.413, p.597, October 2001. [9] W.Liu and A.A.Balandin, “Thermoelectric effects in wurtzite GaN and AlxGa1−xN/GaN,” J.Appl.Phys., vol.97,p.123705,June 2005. [10] S. Yamaguchia, R.Izaki, N. Kaiwa, and A. Yamamoto, “Thermo-electric properties of and devices based on free-standing GaN,” Appl. Phys. Lett, vol.86,p.252102,June 2005. [11] B.N. Pantha, R. Dahal, J.Li, J.Y.Lin, H.X.Jiang, and G.Pomrenke, “Thermoelectric properties of InxGa1−xN alloys,” Applied Physics Letters, vol.92,p.042112,January 2008. [12] A. Majumdar, “Thermoelectricity in semiconductor nanostructures,” Science, vol.303,pp.777–778,February 2004. [13] C.W. Wu and Y.R. Wu, “Thermoelectric characteristic of the rough InN/GaN core-shell nanowires,” J. Appl. Phys., vol.116,p.103707, September 2014. [14] T.J.Seebeck, “Ueber die magnetische Polarisation der Metalle und Erze durchTemperatur-Differenz,” Ann. Phys., vol.82,pp.133–160, 1826. [15] W.Thomson, “On the dynamical theory of heat,” Transactions of the Royal Society of Edinburgh Earth Sciences, 1851. [16][Online] Avaliable: https://www.britannica.com/biography/E-Altenkirch. [17] M.V. Vedernikov and E.K. Iordanishvili, “A.f.ioffe and origin of modern semiconductor thermoelectric energy conversion,” 17th Int. Conf.on Thermoelectrics, vol.1,pp.37–42,1998. [18] H.J. Goldsmidand R.W. Douglas, “The use of semiconductors in thermoelectric refrigeration,” J.Appl.Phys., vol.5,no.11,p.386, 1954. [19] T. Hamachiyo, M.Ashida, and K.Hasezaki, “Thermal conductivity of Bi0:5Sb1:5Te3 affected by grain size and pores,” Journal of Electronic Materials, vol.38,pp.1048–1051,March 2009. [20] F.Yu, J.Zhang, D.Yu, J.He, and Y. Tian, “Enhanced thermoelectric figure of merit in nano crystalline Bi2Te3 bulk,” J.Appl.Phys., vol.105,p.094303,May 2009. [21] D.H. Kim and T. Mitani, “Thermoelectric properties of fine-grained Bi2Te3 alloys,” Journal of Alloys and Compounds, vol.399,pp.14–19, May 2005. [22] Y.Zhao, J.S. Dyck, B.M.Hernandez, and C.Burda, “Improving thermoelectric properties of chemically synthesized Bi2Te3-based nanocrystals by annealing,” J.Phys.Chem.C, vol.114,no.26, pp. 11607–11613,2010. [23] D.M.Rowe, Thermoelectrics Handbook: Macroto Nano. CRC Press, 92005. [24]X.B.Zhao, X.H. Ji, Y.H.Zhang, J.P.Tu, and X.B.Zhang, “Bismuth telluride nanotubes and the effects on the thermoelectric properties of nanotube-containing nanocomposites, ” Appl. Phys.Lett, vol.86, p. 062111,February 2005. [25] G. A. Slack and V.G.Tsoukala, “Some properties of semiconducting IrSb3,” J.Appl.Phys., vol.76,p.1665, August 1994. [26] J.Tang, H.T.Wang, D.H.Lee, M.Fardy, Z.Huo, T.P.Russell,and P.Yang,“Holey silicon as an efficient thermoelectric material,” Nano Lett., vol.10,pp.4279–4283,September 2010. [27] J.F.Li,W.-S. Liu, L.-D.Zhao, and M.Zhou,“High-performance nanostructured thermoelectric materials,” Nature, vol.2,pp.152–158, October 2010. [28] C. Glassbrenner and G.Slack, “Thermal conductivity of silicon and germanium from 30 K to the melting point,” Phys. Rev., vol.134, p. A1058, May 1964. [29] A.Ioffe, Semiconductor Thermo elements and Thermoelectric Cooling. London,In fosearch, 1957. [30] L.D.Hicks, T.C.Harman, and M.S. Dresselhaus, “Use of quantum-well superlattices to obtain a high figure of merit from nonconventional thermoelectric materials,” Appl. Phys.Lett., vol.63,p.3230, December 1993. [31] L. D. Hicks and M.S. Dresselhaus, “Effect of quantum-well structures on the thermoelectric figure of merit,” Phys. Rev.B, vol.47, p. 12727, MAY 1993. [32] B.Poudel, Q.Hao, Y.Ma, Y.Lan, A.Minnich, B.Yu, X.Yan,D. Wang, A.Muto, D.Vashaee, X.Chen, J.Liu, M.S. Dresselhaus, G. Chen, and Z.Ren, “High-thermoelectric performance of nanos- tructured bismuth antimony telluride bulk alloys,” Science, vol.320, pp. 634–638, May 2008. [33] J.Zhang, S.Kutlu, G.Liu, and N.Tansu, “High-temperature characteristics of seebeck coefficients for AlInN alloys grown by metalorganic vapor phase epitaxy,” J.Appl.Phys., vol.110,p.043710, August 2011. [34] A. Balandin and K.L. Wang, “Effect of phonon confinement on the thermoelectric figure of merit of quantum wells,” J.Appl.Phys., vol.84,p.6149, August 1998. [35] I.Ponomareva, D.Srivastava, and M. Menon, “Thermal conductivity in thin silicon nanowires : Phonon confinement effect, ” Nano Lett., vol.7,no.5,pp.1155–1159, 2007. [36] P. Martin, Z. Aksamija, E.Pop, and U. Ravaioli, “Impact of phonon- surface roughness scattering on thermal conductivity of thin Si nanowires,” Phys. Rev.Lett., vol.102,p.125503, March 2009. [37] P.Martin, Z.Aksamija, E.Pop, and U.Ravaioli, “Reduced thermal conductivity in nano engineered rough Ge and GaAs nanowires, ”Nano Lett., vol.10,pp.1120–1124, March 2010. [38] J. Lim, K. Hippalgaonkar, S.C.Andrews, A.Majumdar, and P. Yang, “Quantifying surface roughness effects on phonon transport in silicon nanowires,” Nano Lett., vol.12,pp.2475–2482, April 2012. [39] H.Tong,H.Zhao, V.A. Handara, J.A. Herbsommer, and N. Tansu, “Analysis of thermo electric characteristics of AlGaN and InGaN semiconductors,” Proc. of SPIE, vol.7211,p.721103, 2009. [40] G.Liang, W.Huang, C.S. Koong,J.-S.Wang, and J. Lan, “Geometry effects on thermoelectric properties of silicon nanowires based on electronic band structures,” J.Appl.Phys., vol.107,p.014317, January 2010. [41] J.Zou, “Lattice thermal conductivity of freestanding gallium nitride nanowires,” J.Appl.Phys., vol.108,p.034324, August 2010. [42] E.P. Pokatilov, D.L. Nika, and A.A. Balandin, “Phonon spectrum and group velocities in AlN/GaN/AlN and related heterostructures,” Superlattices and Microstructures, vol.33,pp.155–171, October 2003. [43] D.L. Nika, A.I. Cocemasov, D.V. Crismari, and A.A. Balandin, “Thermal conductivity inhibition in phonon engineered core-shell cross-section modulated Si/Ge nanowires,” Appl. Phys.Lett, vol.102, p. 213109, May 2013. [44] D.L.Nika, A.I. Cocemasov, C.I. Isacova, A.A. Balandin, V.M. Fomin, and O.G.Schmidt, “Suppression of phonon heat conduction in cross-section-modulated nanowires,” Phys. Rev.B., vol.85, p. 205439, May 2012. [45] P.J.Lin Chung and T.L. Reinecke, “Thermoelectric figure of merit of composite superlattice systems,” Phys. Rev.B., vol.51,p.13244, May 1995. [46] G.Chen, “Size and interface effects on thermal conductivity of super- lattices and periodic thin-film structures,” J.Heat Transfer, vol.119, pp. 220–229, December 1997. [47] G. Chen, “Thermal conductivity and ballistic-phonon transport in the cross-plane direction of superlattices,” Phys. Rev.B., vol.57, p. 14958, June 1998. [48] B.Yang and G.Chen, “Partially coherent phonon heat conduction in superlattices, ” Phys. Rev.B., vol.67,p.195311, May 2003. [49] D.L.Nika and E.P. Pokatilov, “Reduction of lattice thermalconduc- tivity in one-dimensional quantum-dot superlattices due to phonon filtering,” Phys. Rev.B., vol.84,p.165415, October 2011. [50] W. Capinski and H.J.Maris, “Thermal conductivity of GaAs/AlAs superlattices, ” Physica B, vol.219-220,pp.699–701,July 1996. [51] P.Chen, J.J.Zhang, J.P.Feser, F.Pezzoli, O.Moutanabbir, S.Cecchi, G. Isella, T.Gemming, S.Baunack, G.Chen, O.G.Schmidt, and A. Rastelli, “Thermal transport through short-period SiGe nanodot superlattices,” J.Appl.Phys., vol.115, p.044312, January 2014. [52] D.L.NikaandA.A.Balandin,“Two-dimensionalphonontrans- port ingraphene,” JournalofPhysics:CondensedMatter, vol.24, p. 233203,May2012. [53] A. WardandD.A.Broido,“Intrinsiclatticethermalconductiv- ity ofSi/GeandGaAs/AlAssuperlattices,” Phys. Rev.B., vol.77, p. 245328,June2008. [54] F.Hofmann,J.Garg,A.A.Maznev,A.Jandl,M.Bulsara,E.A. Fitzgerald, G.Chen,andK.A.Nelson,“Intrinsictoextrinsicphonon lifetime transitioninaGaAs-AlAssuperlattice,” J.Phys.:Condens. Matter, vol.25,p.295401,July2013. [55] S.MeiandI.Knezevic,“ThermalconductivityofIII-Vsemicon- ductor superlattices,” J.Appl.Phys., vol.118,p.175101,November 2015. [56] D.VashaeeandA.Shakouri,“Electronicandthermoelectrictransport in semiconductorandmetallicsuperlattices,” J.Appl.Phys., vol.95, p. 1233,February2004. [57] D.Vashaee,Y.Zhang,A.Shakouri,G.Zeng,andY.-J.Chiu,“Cross- plane seebeckcoefficientinsuperlatticestructuresintheminiband conduction regime,” Phys. Rev.B., vol.74,p.195315,November 2006. [58] N.W.AshcroftandN.D.Mermin, Solid StatePhysics. Cengage Learning, 1976. [59] N. Mingo, “Calculationofnanowirethermalconductivityusingcom- plete phonondispersionrelations,” Phys. Rev.B., vol.68,no.11, p. 113308,2003. [60] A.A.Balandin,E.P.Pokatilov,andD.L.Nika,“Phononengineer- ing inhetero-andnanostructures,” JournalofNanoelectronicsand Optoelectronics, vol.2,no.2,pp.140–170,2007. [61] W.LiuandA.A.Balandin,“ThermalconductioninAlxGa1−xN al- loysandthinfilms,” J.Appl.Phys., vol.97,p.073710,March2005. [62] C.Guthy,C.Y.Nam,andJ.E.Fischer,“Unusuallylowthermal conductivityofgalliumnitridenanowires,” J.Appl.Phys., vol.103, p. 064319,March2008. [63] J.ZouandA.Balandin,“Phononheatconductioninasemiconductor nanowire,” J.Appl.Phys., vol.89,p.2932,March2001. [64] Z.AksamijaandI.Knezevic,“Thermalconductivityof Si1−xGex/Si1−yGey superlattices: Compositionbetweeninterfa- cial andinternalscattering,” Phys. Rev.B., vol.88,p.155318, October 2013. [65] G. D. MahanandJ.O.Sofo,“Thebestthermoelectric,” Proc.Natl. Acad. Sci., vol.93,no.15,pp.7436–7439,1996. [66] M.Lundstrom, Fundamentals ofCarrierTransport. CambridgeUni- versityPress,2000. [67] Y.J.Wang,R.Kaplan,H.K.Ng,K.Doverspike,D.K.Gaskill, T.Ikedo,I.Akasaki,andH.Amono,“Magneto-opticalstudiesof GaN andGaN/AlxGa1−x N: Donorzeemanspectroscopyandtwodi- mensional electrongascyclotronresonance,” J.Appl.Phys., vol.79, p. 8007,February1996. [68] D.C.LookandJ.R.Sizelove,“DislocationscatteringinGaN,” Phys. Rev.Lett., vol.82,pp.1237–1240,Febuary1999. [69] B.K.Ridley, Quantum processinSemiconductor. OxfordUniversity Press, 1999. [70] A.E.Romanov,T.J.Baker,S.Nakamura,J.S.Speck,andE.U. Group, “Strain-inducedpolarizationinwurtziteIII-nitridesemipolar layers,” J.Appl.Phys., vol.100,p.023522,July2006. [71] I.VurgaftmanandJ.R.Meyer,“Bandparametersfornitrogen- containing semiconductors,” J.Appl.Phys., vol.94,no.6,p.3675, 2003. [72] S.-H. Park,D.Ahn,andS.-L.Chuang,“Electronicandopticalprop- erties ofa-andm-planewurtziteInGaN/GaNquantumwells,” IEEE J.QuantumElectron., vol.43,p.1175,December2007. [73] K.Kim,W.R.L.Lambrecht,andB.Segall,“Elasticconstantsand related propertiesoftetrahedrallybondedBN,AlN,GaN,andInN,” Phys. Rev.B., vol.53,pp.16310–16326,June1996. [74] S.Q.WangandH.Q.Ye,“Aplane-wavepseudopotentialstudyonIII- V zinc-blendeandwurtzitesemiconductorsunderpressure,” J.Phys.: Condens. Matter, vol.14,no.41,p.9579,2002. [75] M.Shur,B.Gelmont,andM.A.Khan,“Electronmobilityintwo- dimensional electrongasinAIGaN/GaNheterostructuresandinbulk GaN,” JournalofElectronicMaterials, vol.25,no.5,p.777,1996. [76] V.W.L.Chin,T.L.Tansley,andT.Osotchan,“Electronmobilities in gallium,indium,andaluminumnitrides,” J.Appl.Phys., vol.75, p. 7365,June1994. [77] S.N.MohammadandH.Morkoc,“Progressandprospectsofgroup- III nitridesemiconductors,” Prog.QuantumElectron, vol.20,no.5-6, pp. 361–525, 1996. [78] I.Vurgaftman,J.R.Meyer,andL.R.Ram-Mohan,“Bandparameters for III-Vcompoundsemiconductorsandtheiralloys,” J.Appl.Phys., vol.89,no.11,p.5815,2001. [79] T.Simlinger,H.Brech,T.Grave,andS.Selberherr,“Simulationof submicron doubleheterojunctionhighelectronmobilitytransistors with MINIMOS-NT,” IEEE Trans.ElectronDevices, vol.44,pp.700– 707, May1997. [80] S.Adachi,“GaAs,AlAs,andAlxGa1−xAs: Materialparametersfor use inresearchanddeviceapplications,” J.Appl.Phys., vol.58,no.1, p. R1,1985. [81] J.Singh, Physics ofSemiconductorsandTheirHeterostructures. Mcgraw-HillCollege,1992. [82] J.S.Blakemore,“Semiconductingandothermajorpropertiesofgal- lium arsenide,” J.Appl.Phys., vol.53,p.R123,May1982. [83] S.BarmanandG.P.Srivastava,“Thermalconductivityofsuspended GaAs nanostructures:Theoreticalstudy,” Phys. Rev.B., vol.73, p. 205308,May2006. [84] S. L. ShindeandJ.Goela, High ThermalConductivityMaterials. Springer,2005. [85] S.ichiroTamura,Y.Tanaka,andH.J.Maris,“Phonongroupveloc- ity andthermalconductioninsuperlattices,” Phys. Rev.B., vol.60, p. 2627,July1999. [86] E.Pokatilov,D.Nika,andA.A.Balandin,“Acousticphononen- gineering incoatedcylindricalnanowires,” Superlattices andMi- crostructures, vol.38,pp.168–183,July2005. [87] S.M.Goodnick,R.G.Gann,J.R.Sites,D.K.Ferry,andC.W. Wilmsen,“SurfaceroughnessscatteringattheSi-SiO2 interface,” J. Vac.Sci.Technol.B, vol.1,no.3,p.803,1983. [88] A.BalandinandK.L.Wang,“Significantdecreaseofthelatticether- mal conductivityduetophononconfinementinafree-standingsemi- conductor quantumwell,” Phys. Rev.B., vol.58,p.1544,July1998. [89] J.Jimenez,J.Anaya,andT.Rodriguez, Thermal TransportinSemi- conductor Nanowires, ch.11,p.231.InTech,2012. [90] D.Li,Y.Wu,P.Kim,L.Shi,P.Yang,andA.Majundar,“Ther- mal conductivityofindividualsiliconnanowires,” Appl. Phys.Lett, vol. 83,p.2934,October2003. [91] P.Harrison, Quantum wells,wiresanddots. Wiley-Interscience, 2005. [92] P.PichanusakornandP.Bandaru,“Nanostructuredthermoelectrics,” Materials ScienceandEngineeringR, vol.67,pp.19–63,January 2010. [93] S.L.S.J.Goela,ed., High ThermalConductivityMaterials. Springer- VerlagNewYork,2006. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67855 | - |
| dc.description.abstract | 本論文中,第一章我們會先介紹研究InN/GaN 和 GaAs/AlAs 材料
為基礎之熱電元件效率的動機。在第二章,我們介紹了使用彈性連 續模型和有限差分法建立了模擬計算聲子散射關係的模型。 此外, 我們提出的熱電元件中,波茲曼方程式和馳豫時間估計也被我們應 用於解出不同的電子和聲子散射的機制。本論文的目的是結合了電 子和聲子相關的物理特性來設計一個高效率的熱電元件。 第三章和 第四章的內容為探討在不同低維度下的奈米線結構和超晶格結構, 提供完整的熱電效率分析給元件設計者。 第三章的內容為探討低維度下的奈米線結構之熱電效率分析。本 章中,我們提出了具有粗糙表面且由InN/GaN所組成的核心和外殼 的奈米線作為有潛力的熱電元件。 核心和外殼材料在此奈米線中分 別是InN和GaN。當和InN和GaN塊狀半導體比較的時候,奈米線的 聲子侷限效應可以讓晶格熱傳導率降低。再者,在奈米線上,故意 製作粗糙的表面使得晶格熱傳導率降得更低,但因為表面費米釘效 應,此粗糙的表面並不會影響電子的導電特性。 電導率,斯貝克係 數,電熱傳導率和晶格熱傳導率都在本論文中用來計算評估此粗糙 表面之InN和GaN奈米線的熱電效率。 第四章的內容為探討低維度下的超晶格結構之熱電效率分析。在本章中,我們採用了兩個晶格常數接近的GaAs和AlAs作為超晶格奈 米結構材料。 和個別的材料比較之下,傳統的超晶格顯示了晶格熱 傳導率可以被降低。 然而,我們覺得設計一個優良的熱電元件這樣 還不夠。因此,不同於傳統的超晶格結構,我們提出了使用粗糙表 面之GaAs和AlAs奈米脊超晶格架構來進一步降低晶格熱傳導率。 有 了此奈米脊的特性,超晶格架構之表面可以故意製作粗糙,用以探 討粗糙程度對於超晶格之晶格熱傳導率的影響。 藉由在此奈米脊 中,在不影響電子的移動率,且能讓聲子遭受到此粗糙表面的影響 下,適當的選擇表面粗糙的程度,我們可以得到更低的晶格熱傳導 率。 熱電轉換效率也在此粗糙的奈米脊超晶格結構中被評估。 最後,我們對於我們的模擬設計結果做一總結,並對未來提出相 關的研發工作。 | zh_TW |
| dc.description.abstract | In thisdissertation,wepresentthemotivationofinvestigatingthether-
moelectric(TE) propertiesofthedevicesbasedonInN/GaNandGaAs/AlAs materials inChapter1.InChapter2,weintroducethesimulationalgorithm established usingtheelasticcontinuummodelandfinitedifferencemeth- ods forstudyingthephonondispersionrelation.Inaddition,theBoltz- mann transportequationsandrelaxationtimeapproximationareapplied for solvingthedifferentelectronandphononscatteringmechanismsin our proposedTEdevice.Thepurposeofthisdissertationistocombine the electronandphononrelatedphysicalcharacteristicsfordesigninga high performanceTEdevice.InChapter3and4,weexplorethelowdi- mensional nanowire(NW)andsupperlattice(SL)structuresforprovidinga complete analysisofTEconversionefficiencytothedevicedesigner. In Chapter3,weproposetheroughInN/GaNcore-shellNWsasapo- tential candidateofTEdevices.Thecoreandshellmaterialsconsideredin the NWsareInNandGaN,respectively.Wefoundthatthephononcon- finement effectsoftheNWswouldlowerthelatticethermalconductivity when comparedtothebulkInNandGaNmaterials.Moreover,thesurface of theNWswasintentionallyroughenedforreducingthethermalconductivity considerably;however,theelectricalconductivitywasmaintained owningtothesurfacefermilevelpinningeffects.Theelectricalconductiv- ity,Seebeckcoefficient,andelectronicthermalconductivityarecalculated and discussedaswellforevaluatingtheperformanceoftheroughsurface of theInN/GaNNWs. In Chapter4,westudythelowdimensionalSLstructuresasaTEde- vice. WeconsiderthenearlylatticematchedGaAsandAlAsmaterialsas SL structures.ThetraditionalSLsshowedthatlatticethermalconductiv- ity couldbereducedwhencomparedtoindividualconstituentmaterials. Nonetheless, weperceivethatitwasnotsufficientfordesigningapromi- nent TEdevice.Therefore,differentfromthetraditionalGaAs/AlAsSL structures, weproposedtheroughsurfaceofthenano-ridgeGaAs/AlAs SLs forfurtherreducingthelatticethermalconductivity.Withtheaidof the nano-ridgefeature,thesurfaceoftheSLstructurescouldbeinten- tionally roughenedforexploringthesurfaceroughnesseffectsoftheSL structures. Byselectingasuitabledegreeofroughnessforthenano-ridge SL structuresurface,wecanobtainconsiderablylowerlatticethermalcon- ductivitywithoutreducingtheelectronmobility.Theperformanceofthe rough nano-ridgeSLstructureisevaluated. Finally,weconcludewithoursimulationresultsandproposesomefu-ture studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:54:00Z (GMT). No. of bitstreams: 1 ntu-106-D98941009-1.pdf: 2733873 bytes, checksum: c833278d093a0d040c9ba3acbe796b62 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | CONTENTS
口試委員會審查表 . . ........................i 誌謝 . .................................ii 摘要 . .................................iii ABSTRACT..............................v CONTENTS ..............................viii LIST OF FIGURES..........................xi LIST OF TABLES..........................xix 1 Introduction............................1 1.1 Some History........................1 1.1.1 Seebeck effect...................2 1.1.2 Peltier effect....................3 1.1.3 Thomson effect...................4 1.1.4 TE applications...................5 1.2 Thermoelectric Efficiency..................8 1.3 Reviews of Thermoelectric Technologies..........9 1.3.1 Strategy to enhance figure of merit ZT.......9 1.3.2 The TE materials selection.............12 1.4 Fundamental Physics of Thermoelectric Device......16 1.5 Thesis Overview......................18 2 Formulas..............................21 2.1 Methods for Modeling Lattice Thermal Conductivity...21 2.1.1 Elastic continuum model for core-shell nanowires.24 2.1.2 One dimensional elastic continuum model for SLs 27 2.1.3 Two dimensional elastic continuum model for SLs 30 2.1.4 Phonon scattering mechanisms...........33 2.2 Methods for modeling electrical conductivity, Seebeck coefficient, and electronic thermal conductivity........35 2.2.1 Calculation for electron dispersion relation....37 2.2.2 Electronic scattering mechanisms.........38 2.3 Flow Chart for Calculating Thermoelectric Related Parameters .............................42 3 Thermoelectric characteristics of rough InN/GaN core-shell nanowires 47 3.1 Introduction.........................47 3.2 Results and Discussions...................48 3.3 Summary..........................58 4 Optimization of thermoelectric properties for rough nano-ridge GaAs/AlAs superlattices.....................60 4.1 Introduction.........................60 4.2 Results and Discussions...................62 4.2.1 Design of electron miniband structures for super- lattice structures..................63 4.2.2 Calculation of thermal conductivity in bulk super- lattice structures without nano-ridge structure and comparison to experimental results........66 4.2.3 Finding the optimal configuration of the nano-ridges superlattice structure................67 4.2.4 Reducing kph by surface roughness scattering in nano-ridge superlattice structures.........73 4.2.5 Calculation of electrical conductivity σ, Seebeck coefficient S, electronic thermal conductivity ke, and ZT.......................77 4.3 Summary..........................83 5 Conclusion.............................85 Bibliography.............................87 Appendices ..............................102 .1 Finite difference equations for core-shell NWs.......103 .2 Finite difference equations for one dimensional SLs....105 .3 Finite difference equations for two dimensional SLs....107 | |
| dc.language.iso | en | |
| dc.subject | 奈米線 | zh_TW |
| dc.subject | 熱電 | zh_TW |
| dc.subject | 超晶格 | zh_TW |
| dc.subject | 最佳化 | zh_TW |
| dc.subject | Thermoelectric | en |
| dc.subject | Nanowire | en |
| dc.subject | Superlattice | en |
| dc.subject | Optimization | en |
| dc.title | 低維度熱電元件最佳化設計與分析 | zh_TW |
| dc.title | Optimization of Low Dimensional Thermoelectric Device Design and Analysis | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 吳肇欣,陳奕君,溫政彥,黃美嬌,余沛慈 | |
| dc.subject.keyword | 熱電,奈米線,超晶格,最佳化, | zh_TW |
| dc.subject.keyword | Thermoelectric,Nanowire,Superlattice,Optimization, | en |
| dc.relation.page | 109 | |
| dc.identifier.doi | 10.6342/NTU201701807 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-24 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.67 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
