Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 高分子科學與工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67842
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐治平
dc.contributor.authorShang-Hung Hsiehen
dc.contributor.author謝尚宏zh_TW
dc.date.accessioned2021-06-17T01:53:12Z-
dc.date.available2020-07-31
dc.date.copyright2017-07-31
dc.date.issued2017
dc.date.submitted2017-07-24
dc.identifier.citationchapter 1
[1] S.S. Dukhin, B.V. Derjaguin, Surface and colloid science, Vol. 7, Wiley, New York, 1974.
[2] S.P. Bakanov, V.V. Vysotskii, Effect of the concentration of aerosol-particles on the efficiency of their deposition in a flow thermal-diffusion chamber, Colloid J. USSR 53 (1991) 663-670.
[3] A. Meisen, A.J. Bobkowicz, N.E. Cooke, E.J. Farkas, The separation of micron-size particles from air by diffusiophoresis, Can. J. Chem. Eng. 49 (1971) 449-457.
[4] A. Zoulalian, T. Albiol, Evaluation of aerosol deposition by thermophoresis and diffusion phoresis during flow through a cylinder - applications to project tuba difussiophorese, Can. J. Chem. Eng. 76 (1998) 799-805.
[5] S.S. Voyutskii, Y.I. Markin, V.M. Gorchakova, V.E. Gul, Adhesion of high polymers to metals .4. The temperature dependence and the activation energy of adhesion, Zh. Fiz. Khim. 37 (1963) 2027-2032.
[6] M. Wanunu, W. Morrison, Y. Rabin, A.Y. Grosberg, A. Meller, Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient, Nat. Nanotechnol. 5 (2010) 160-165.
[7] P. Chandra, S.A. Zaidi, H.B. Noh, Y.B. Shim, Separation and simultaneous detection of anticancer drugs in a microfluidic device with an amperometric biosensor, Biosens. Bioelectron. 28 (2011) 326-32.
[8] T. Chou, Enhancement of charged macromolecule capture by nanopores in a salt gradient, J. Chem. Phys. 131 (2009) 034703.
[9] J.P. Ebel, J.L. Anderson, D.C. Prieve, Diffusiophoresis of latex-particles in electrolyte gradients, Langmuir 4 (1988) 396-406.
[10] D.C. Prieve, R. Roman, Diffusiophoresis of a rigid sphere through a viscous electrolyte solution, J. Chem. Soc., Faraday Trans. II 83 (1987) 1287-1306.
[11] S.S. Dukhin, E.S. Malkin, A.S. Dukhin, Aperiodic inertial drift of disperse particles in inhomogeneous alternating-fields, Colloid J. USSR 40 (1978) 536-540.
[12] S.S. Dukhin, E.S. Malkin, A.S. Dukhin, Noninertial electrophoretic and diffusiophoretic drift of particles in nonuniform, alternating electric-fields, Colloid J. USSR 41 (1979) 734-739.
[13] J.P. Hsu, W.L. Hsu, Z.S. Chen, Boundary effect on diffusiophoresis: Spherical particle in a spherical cavity, Langmuir 25 (2009) 1772-1784.
[14] J.P. Hsu, K.L. Liu, W.L. Hsu, L.H. Yeh, S. Tseng, Diffusiophoresis of a soft sphere normal to two parallel disks, Langmuir 26 (2010) 16037-16047.
[15] S. Tseng, T.W. Lo, C. Hsu, Y.K. Fu, J.P. Hsu, Importance of temperature on the diffusiophoretic behavior of a charge-regulated zwitterionic particle, Phys. Chem. Chem. Phys. 15 (2013) 7512-7519.
[16] H. Ohshima, Electrophoretic mobility of soft particles, J. Colloid Interface Sci. 163 (1994) 474-483.
[17] H. Ohshima, Modified henry function for the electrophoretic mobility of a charged spherical colloidal particle covered with an ion-penetrable uncharged polymer layer, J. Colloid Interface Sci. 252 (2002) 119-125.
[18] H. Ohshima, Limiting electrophoretic mobility of a highly charged soft particle in an electrolyte solution: Solidification effect, J. Colloid Interface Sci. 349 (2010) 641-4.
[19] H. Ohshima, Electrokinetics of soft particles, Colloid Polym. Sci. 285 (2007) 1411-1421.
[20] K.L. Liu, J.P. Hsu, W.L. Hsu, L.H. Yeh, S. Tseng, Diffusiophoresis of a polyelectrolyte in a salt concentration gradient, Electrophoresis 33 (2012) 1068-1078.
[21] J.P. Hsu, K.L. Liu, S. Tseng, Diffusiophoresis of polyelectrolytes in nanodevices: Importance of boundary, J. Phys. Chem. C 117 (2013) 9469-9476.
[22] L.H. Yeh, J.P. Hsu, Effects of double-layer polarization and counterion condensation on the electrophoresis of polyelectrolytes, Soft Matter 7 (2011) 396-411.
[23] S.W. Joo, S.Y. Lee, J. Liu, S.Z. Qian, Diffusiophoresis of an elongated cylindrical nanoparticle along the axis of a nanopore, Chem. Phys. Chem. 11 (2010) 3281-3290.
[24] T.W. Healy, L.R. White, Ionizable surface group models of aqueous interfaces, Advances in Colloid and Interface Science 9 (1978) 303-345.
[25] L.C. Gosule, J.A. Schellman, Compact form of DNA induced by spermidine, Nature 259 (1976) 333-335.
[26] V.A. Bloomfield, DNA condensation by multivalent cations, Biopolymers 44 (1997) 269-282.
[27] N.V. Hud, Double-stranded DNA organization in bacteriophage heads: An alternative toroid-based model, Biophys. J. 69 (1995) 1355-1362.
[28] X.-P. Kong, R. Onrust, M. O'Donnell, J. Kuriyan, Three-dimensional structure of the β subunit of e. Coli DNA polymerase iii holoenzyme: A sliding DNA clamp, Cell 69 (1992) 425-437.
[29] T.H. Eickbush, E.N. Moudrianakis, Compaction of DNA helices into either continuous supercoils or folded-fiber rods and toroids, Cell 13 (1978) 295-306.
[30] S. Tseng, Y.-R. Hsu, J.-P. Hsu, Diffusiophoresis of a charged toroidal polyelectrolyte, J. Colloid Interface Sci. 471 (2016) 14-19.
[31] J.P. Hsu, L.H. Yeh, M.H. Ku, Evaluation of the electric force in electrophoresis, J. Colloid Interface Sci. 305 (2007) 324-329.
[32] R.W. Obrien, L.R. White, Electrophoretic mobility of a spherical colloidal particle, J. Chem. Soc., Faraday Trans. II 74 (1978) 1607-1626.
[33] Y.K. Wei, H.J. Keh, Diffusiophoretic mobility of charged porous spheres in electrolyte gradients, J. Colloid Interface Sci. 269 (2004) 240-250.
Chapter 2
[1] G.L. Dvornichenko, Y.V. Nizhnik, T.V. Slavikovskii, L.V. Nikolaichuk, Diffusiophoretic deposition of polymeric dispersions with the goal of obtaining protective coatings on metals, Colloid J. Russ. Acad. Sci. 55 (1993) 36-39.
[2] S.P. Bakanov, V.V. Vysotskii, Effect of the concentration of aerosol-particles on the efficiency of their deposition in a flow thermal-diffusion chamber, Colloid J. USSR 53 (1991) 663-670.
[3] A. Meisen, A.j. Bobkowic, N.E. Cooke, E.J. Farkas, Separation of micron-size particles from air by diffusiophoresis, Can. J. Chem. Eng. 49 (1971) 449-457.
[4] S.S. Voyutskii, Y.I. Markin, V.M. Gorchakova, V.E. Gul, Adhesion of high polymers to metals .4. The temperature dependence and the activation energy of adhesion, Zh. Fiz. Khim. 37 (1963) 2027-2032.
[5] F.M. Moller, F. Kriegel, M. Kiess, V. Sojo, D. Braun, Steep pH gradients and directed colloid transport in a microfluidic alkaline hydrothermal pore, Angew. Chem. Int. Ed. 56 (2017) 2340-2344.
[6] S. Shin, E. Um, B. Sabass, J.T. Ault, M. Rahimi, P.B. Warren, H.A. Stone, Size-dependent control of colloid transport via solute gradients in dead-end channels, Proc. Nati. Acad. Sci. U. S. A. 113 (2016) 257-261.
[7] N. Chaturvedi, Y.Y. Hong, A. Sen, D. Velegol, Magnetic enhancement of phototaxing catalytic motors, Langmuir 26 (2010) 6308-6313.
[8] T. Chou, Enhancement of charged macromolecule capture by nanopores in a salt gradient, J. Chem. Phys. 131 (2009) 034703.
[9] W. Liu, R.X. He, H.W. Zhu, H. Hu, M.Y. Li, X.Z. Zhao, Ultrafast nanotube based diffusiophoresis nanomotors, Appl. Phys. Lett. 96 (2010) 053114.
[10] A. Sen, M. Ibele, Y. Hong, D. Velegol, Chemo and phototactic nano/microbots, Faraday Discuss. 143 (2009) 15-27.
[11] M. Wanunu, W. Morrison, Y. Rabin, A.Y. Grosberg, A. Meller, Electrostatic focusing of unlabelled DNA into nanoscale pores using a salt gradient, Nat. Nanotechnol. 5 (2010) 160-165.
[12] J.P. Ebel, J.L. Anderson, D.C. Prieve, Diffusiophoresis of latex-particles in electrolyte gradients, Langmuir 4 (1988) 396-406.
[13] D.C. Prieve, J.L. Anderson, J.P. Ebel, M.E. Lowell, Motion of a particle generated by chemical gradients part 2. Electrolytes, J. Fluid. Mech. 148 (1984) 247-269.
[14] S. Tseng, C.Y. Su, J.P. Hsu, Diffusiophoresis of a pH-regulated, zwitterionic polyelectrolyte in a solution containing multiple ionic species, Chem. Eng. Sci. 118 (2014) 164-172.
[15] J.P. Hsu, W.L. Hsu, Z.S. Chen, Boundary effect on diffusiophoresis: Spherical particle in a spherical cavity, Langmuir 25 (2009) 1772-1784.
[16] J.P. Hsu, K.L. Liu, W.L. Hsu, L.H. Yeh, S. Tseng, Diffusiophoresis of a soft sphere normal to two parallel disks, Langmuir 26 (2010) 16037-16047.
[17] K.L. Liu, J.P. Hsu, W.L. Hsu, L.H. Yeh, S. Tseng, Diffusiophoresis of a polyelectrolyte in a salt concentration gradient, Electrophoresis 33 (2012) 1068-1078.
[18] D. Velegol, A. Garg, R. Guha, A. Kar, M. Kumar, Origins of concentration gradients for diffusiophoresis, Soft Matter 12 (2016) 4686-4703.
[19] J.P. Hsu, W.L. Hsu, K.L. Liu, Diffusiophoresis of a charge-regulated sphere along the axis of an uncharged cylindrical pore, Langmuir 26 (2010) 8648-8658.
[20] J.P. Hsu, K.L. Liu, W.L. Hsu, L.H. Yeh, S. Tseng, Diffusiophoresis of a charge-regulated spherical particle normal to two parallel disks, J. Phys. Chem. B 114 (2010) 2766-2778.
[21] D.C. Prieve, R. Roman, Diffusiophoresis of a rigid sphere through a viscous electrolyte solution, J. Chem. Soc., Faraday Trans. II 83 (1987) 1287-1306.
[22] J. Lou, Y.Y. He, E. Lee, Diffusiophoresis of concentrated suspensions of spherical particles with identical ionic diffusion velocities, J. Colloid Interface Sci. 299 (2006) 443-451.
[23] Y.C. Chang, H.J. Keh, Diffusiophoresis and electrophoresis of a charged sphere perpendicular to two plane walls, J. Colloid Interface Sci. 322 (2008) 634-653.
[24] S.W. Joo, S.Y. Lee, J. Liu, S.Z. Qian, Diffusiophoresis of an elongated cylindrical nanoparticle along the axis of a nanopore, Chemphyschem 11 (2010) 3281-3290.
[25] S. Tseng, C.Y. Su, J.P. Hsu, Diffusiophoresis of a charged, rigid sphere in a carreau fluid, J. Colloid Interface Sci. 465 (2016) 54-57.
[26] P.Y. Huang, H.J. Keh, Diffusiophoresis of a spherical soft particle in electrolyte gradients, J. Phys. Chem. B 116 (2012) 7575-7589.
[27] S.J. Tseng, Y.C. Chung, J.P. Hsu, Diffusiophoresis of a soft, pH-regulated particle in a solution containing multiple ionic species, J. Colloid Interface Sci. 438 (2015) 196-203.
[28] W. Fang, E. Lee, Diffusiophoretic motion of an isolated charged porous sphere, J. Colloid Interface Sci. 459 (2015) 273-283.
[29] H.Y. Huang, H.J. Keh, Diffusiophoresis in suspensions of charged porous particles, J. Phys. Chem. B 119 (2015) 2040-2050.
[30] Y.K. Wei, H.J. Keh, Diffusiophoretic mobility of charged porous spheres in electrolyte gradients, J. Colloid Interface Sci. 269 (2004) 240-250.
[31] Y. Pawar, Y.E. Solomentsev, J.L. Anderson, Polarization effects on diffusiophoresis in electrolyte gradients, J. Colloid Interface Sci. 155 (1993) 488-498.
[32] Q.S. Pu, J.S. Yun, H. Temkin, S.R. Liu, Ion-enrichment and ion-depletion effect of nanochannel structures, Nano Lett. 4 (2004) 1099-1103.
[33] S.J. Kim, Y.C. Wang, J.H. Lee, H. Jang, J. Han, Concentration polarization and nonlinear electrokinetic flow near a nanofluidic channel, Phys. Rev. Lett. 99 (2007).
[34] R.B. Schoch, J.Y. Han, P. Renaud, Transport phenomena in nanofluidics, Rev. Mod. Phys. 80 (2008) 839-883.
[35] M. Wang, A. Revil, Electrochemical charge of silica surfaces at high ionic strength in narrow channels, J. Colloid Interface Sci. 343 (2010) 381-386.
[36] N. Hu, Y. Ai, S.Z. Qian, Field effect control of electrokinetic transport in micro/nanofluidics, Sens. Actuators B: Chem. 161 (2012) 1150-1167.
[37] L.H. Yeh, Y. Ma, S. Xue, S.Z. Qian, Gate manipulation of ionic conductance in a nanochannel with overlapped electric double layers, Sens. Actuators B: Chem. 215 (2015) 266-271.
[38] W.L. Hsu, J.P. Hsu, S. Tseng, Diffusiophoresis of a soft spherical particle along the axis of a cylindrical microchannel, Chem. Eng. Sci. 66 (2011) 2199-2210.
[39] S.Y. Lee, S.E. Yalcin, S.W. Joo, A. Sharma, O. Baysal, S.Z. Qian, The effect of axial concentration gradient on electrophoretic motion of a charged spherical particle in a nanopore, Microgravity Sci. Technol. 22 (2010) 329-338.
[40] S.E. Yalcin, S.Y. Lee, S.W. Joo, O. Baysal, S. Qian, Electrodiffusiophoretic motion of a charged spherical particle in a nanopore, J. Phys. Chem. B 114 (2010) 4082-4093.
[41] H.J. Keh, Y.L. Li, Diffusiophoresis in a suspension of charge-regulating colloidal spheres, Langmuir 23 (2007) 1061-1072.
[42] X.G. Zhang, W.L. Hsu, J.P. Hsu, S. Tseng, Diffusiophoresis of a soft spherical particle in a spherical cavity, J. Phys. Chem. B 113 (2009) 8646-8656.
[43] T.W. Lo, C. Hsu, K.L. Liu, J.P. Hsu, S. Tseng, Diffusiophoresis of a charged sphere in a necked nanopore, J. Phys. Chem. C 117 (2013) 19226-19233.
[44] C.Y. Su, J.P. Hsu, S. Tseng, Diffusiophoresis of a pH-regulated polyelectrolyte in a nanopore of nonuniform cross section, Microfluid. Nanofluid. 19 (2015) 647-652.
[45] H.J. Keh, J.S. Jan, Boundary effects on diffusiophoresis and electrophoresis: Motion of a colloidal sphere normal to a plane wall, J. Colloid Interface Sci. 183 (1996) 458-475.
[46] L.J. Wang, H.J. Keh, Diffusiophoresis of a colloidal cylinder in an electrolyte solution near a plane wall, Microfluid. Nanofluid. 19 (2015) 855-865.
[47] P.Y. Chen, H.J. Keh, Diffusiophoresis of a colloidal sphere in nonelectrolyte gradients parallel to one or two plane walls, Chem. Eng. Sci. 57 (2002) 2885-2899.
[48] J.P. Hsu, K.L. Liu, S. Tseng, Diffusiophoresis of polyelectrolytes in nanodevices: Importance of boundary, J. Phys. Chem. C 117 (2013) 9469-9476.
[49] Y.C. Chung, J.P. Hsu, S. Tseng, Electrodiffusioosmosis in a solid-state nanopore connecting two large reservoirs: Optimum pore size, J. Phys. Chem. C 118 (2014) 19498-19504.
[50] V. Hoshyargar, S.N. Ashrafizadeh, A. Sadeghi, Drastic alteration of diffusioosmosis due to steric effects, Phys. Chem. Chem. Phys. 17 (2015) 29193-29200.
[51] H.F. Huang, C.H. Yao, Electrokinetic diffusioosmosis of viscoelastic phan-thien-tanner liquids in slit microchannels, J. Non-Newtonian Fluid Mech. 206 (2014) 1-10.
[52] H.J. Keh, H.C. Ma, Diffusioosmosis of electrolyte solutions in a fine capillary tube, Langmuir 23 (2007) 2879-2886.
[53] K.L. Liu, J.P. Hsu, S. Tseng, Capillary osmosis in a charged nanopore connecting two large reservoirs, Langmuir 29 (2013) 9598-9603.
[54] S.Z. Qian, B. Das, X.B. Luo, Diffusioosmotic flows in slit nanochannels, J. Colloid Interface Sci. 315 (2007) 721-730.
[55] S. Atalay, L.H. Yeh, S.Z. Qian, Proton enhancement in an extended nanochannel, Langmuir 30 (2014) 13116-13120.
[56] C.C. Chang, Y. Kazoe, K. Morikawa, K. Mawatari, R.J. Yang, T. Kitamori, Numerical simulation of proton distribution with electric double layer in extended nanospaces, Anal. Chem. 85 (2013) 4468-4474.
[57] Y. Kazoe, K. Mawatari, Y. Sugii, T. Kitamori, Development of a measurement technique for ion distribution in an extended nanochannel by super-resolution-laser-induced fluorescence, Anal. Chem. 83 (2011) 8152-8157.
[58] M.B. Andersen, H. Bruus, J.P. Bardhan, S. Pennathur, Streaming current and wall dissolution over 48 h in silica nanochannels, J. Colloid Interface Sci. 360 (2011) 262-271.
[59] F.H.J. van der Heyden, D. Stein, C. Dekker, Streaming currents in a single nanofluidic channel, Phys. Rev. Lett. 95 (2005) 116104.
[60] M. Wang, Q.J. Kang, E. Ben-Naim, Modeling of electrokinetic transport in silica nanofluidic channels, Anal. Chim. Acta 664 (2010) 158-164.
[61] J.P. Hsu, L.H. Yeh, M.H. Ku, Evaluation of the electric force in electrophoresis, J. Colloid Interface Sci. 305 (2007) 324-329.
[62] R.W. Obrien, L.R. White, Electrophoretic mobility of a spherical colloidal particle, J. Chem. Soc., Faraday Trans. II 74 (1978) 1607-1626.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67842-
dc.description.abstract考量到近年來擴散泳在生物感測技術中的應用,我們模擬了電荷可調解之雙性聚電解質在多離子溶液中的擴散泳模型,特別是粒子形狀與帶電邊界對粒子擴散泳行為的影響。在前者中,我們延伸了過去對環形聚電解質分析從固定電荷密度到電荷可調節模型。藉由改變官能基密度、尺寸、軟硬度、溶液pH值和電解液濃度來測量環形聚電解質在不同情況下的擴散泳行為,我們的結果顯示環形聚電解質的擴散泳行為和相對應的球形有定量和定性上的差距。在後者中,我們藉由改變溶液pH值、電解液濃度和奈米管道半徑來模擬球形聚電解質在二氧化矽奈米管道的擴散泳行為。聚電解質和奈米管道的電雙層之間的交互作用預期會影響聚電解質旁的電場、流場和離子分佈,而對擴散泳行為產生重要的影響。其中,擴散泳速度的強度和方向皆與所假設的條件息息相關,代表我們所得的結果可以輔助設計出有效的分離程序。zh_TW
dc.description.abstractConsidering recent applications of diffusiophoresis in biosensing technology, we model the diffusiophoresis of a zwitterionic, pH-regulated polyelectrolyte (PE) in a solution containing multiple ionic species. In particular, the influences of particle shape and charged boundary are discussed. In the former, we extend previous analysis for the diffusiophoresis of a toroidal PE at a fixed charge density to the case of pH-regulated condition. The diffusiophoretic behaviors of the toroidal PE considered under various conditions are examined by varying its functional group density, size, and softness, and the solution pH and bulk salt concentration. We show that the diffusiophoretic behavior and the effective charge density of a toroidal PE can be different both quantitatively and qualitatively from the corresponding spherical PE. In the latter, we simulate the diffusiophoretic behaviors of a spherical PE in a silicon dioxide nanochannel by varying the solution pH, the bulk salt concentration, and the nanochannel radius. In this case, the interaction of the double layer of the PE and that of the nanochannel influences significantly the electric, the flow, and the ionic concentration fields near the PE, yielding profound diffusiophoretic behaviors. We show that both the magnitude and the direction of diffusiophoretic velocity depend highly on the conditions assumed in these two chapters, implying that an efficient separation process can be designed.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:53:12Z (GMT). No. of bitstreams: 1
ntu-106-R04549027-1.pdf: 2662723 bytes, checksum: 609f939462004addca9a9687d3998fb7 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 I
English Abstract II
Contents IV
List of Figures V
Chapter 1 Diffusiophoresis of a pH-regulated toroidal polyelectrolyte in a solution containing multiple ionic species 1
References 17
Chapter 2 Diffusiophoresis of a pH-regulated polyelectrolyte in a pH-regulated nanochannel 44
References 61
Conclusions 86
dc.language.isoen
dc.subject擴散泳zh_TW
dc.subject聚電解質zh_TW
dc.subject電荷可調節zh_TW
dc.subject環形zh_TW
dc.subject帶電管道zh_TW
dc.subjectDiffusiophoresisen
dc.subjectPolyelectrolytesen
dc.subjectpH-regulateden
dc.subjectToroidal shapeen
dc.subjectCharged nanochannelen
dc.title雙性聚電解質的擴散泳:粒子形狀與帶電管道的效應zh_TW
dc.titleDiffusiophoresis of Zwitterionic Polyelectrolyte: Influences of Particle Shape and Charged Boundaryen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾琇瑱,葉禮賢,郭勇志,張有義
dc.subject.keyword擴散泳,聚電解質,電荷可調節,環形,帶電管道,zh_TW
dc.subject.keywordDiffusiophoresis,Polyelectrolytes,pH-regulated,Toroidal shape,Charged nanochannel,en
dc.relation.page88
dc.identifier.doi10.6342/NTU201701783
dc.rights.note有償授權
dc.date.accepted2017-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept高分子科學與工程學研究所zh_TW
顯示於系所單位:高分子科學與工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.6 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved