Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67829
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor徐治平(Jyh-Ping Hsu)
dc.contributor.authorSheng-Chang Linen
dc.contributor.author林聖昌zh_TW
dc.date.accessioned2021-06-17T01:52:24Z-
dc.date.available2017-08-08
dc.date.copyright2017-08-08
dc.date.issued2017
dc.date.submitted2017-07-24
dc.identifier.citationChapter 1
1. Comera, J.; Aksimentiev, A., DNA Sequence-Dependent Ionic Currents in Ultra-Small Solid-State Nanopores. Nanoscale 2016, 8, 9600-9613.
2. Choi, E.; Kwon, K.; Kim, D.; Park, J., An Electrokinetic Study on Tunable 3d Nanochannel Networks Constructed by Spatially Controlled Nanoparticle Assembly. Lab Chip 2015, 15, 512-523.
3. Yeh, L. H.; Hughes, C.; Zeng, Z. P.; Qian, S. Z., Tuning Ion Transport and Selectivity by a Salt Gradient in a Charged Nanopore. Anal. Chem. 2014, 86, 2681-2686.
4. Zhang, H. C.; Tian, Y.; Jiang, L., Fundamental Studies and Practical Applications of Bio-Inspired Smart Solid-State Nanopores and Nanochannels. Nano Today 2016, 11, 61-81.
5. Ali, M.; Yameen, B.; Cervera, J.; Ramirez, P.; Neumann, R.; Ensinger, W.; Knoll, W.; Azzaroni, O., Layer-by-Layer Assembly of Polyelectrolytes into Ionic Current Rectifying Solid-State Nanopores: Insights from Theory and Experiment. J. Am. Chem. Soc. 2010, 132, 8338-8348.
6. Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P., Salinity Gradient Power: Influences of Temperature and Nanopore Size. Nanoscale 2016, 8, 2350-2357.
7. Ma, Y.; Yeh, L. H.; Lin, C. Y.; Mei, L. J.; Qian, S. Z., pH-Regulated Ionic Conductance in a Nanochannel with Overlapped Electric Double Layers. Anal. Chem. 2015, 87, 4508-4514.
8. Mei, L. J.; Chou, T. H.; Cheng, Y. S.; Huang, M. J.; Yeh, L. H.; Qian, S. Z., Electrophoresis of pH-Regulated Nanoparticles: Impact of the Stern Layer. Phys. Chem. Chem. Phys. 2016, 18, 9927-9934.
9. Mei, L. J.; Yeh, L. H.; Qian, S. Z., Gate Modulation of Proton Transport in a Nanopore. Phys. Chem. Chem. Phys. 2016, 18, 7449-7458.
10. Kim, S. J.; Wang, Y. C.; Lee, J. H.; Jang, H.; Han, J., Concentration Polarization and Nonlinear Electrokinetic Flow near a Nanofluidic Channel. Phys. Rev. Lett. 2007, 99.
11. Lin, C. Y.; Yeh, L. H.; Hsu, J. P.; Tseng, S., Regulating Current Rectification and Nanoparticle Transport through a Salt Gradient in Bipolar Nanopores. Small 2015, 11, 4594-4602.
12. Butler, T. Z.; Pavlenok, M.; Derrington, I. M.; Niederweis, M.; Gundlach, J. H., Single-Molecule DNA Detection with an Engineered Mspa Protein Nanopore. P. Natl. Acad. Sci. U.S.A. 2008, 105, 20647-20652.
13. Derrington, I. M.; Butler, T. Z.; Collins, M. D.; Manrao, E.; Pavlenok, M.; Niederweis, M.; Gundlach, J. H., Nanopore DNA Sequencing with Mspa. P. Natl. Acad. Sci. U.S.A. 2010, 107, 16060-16065.
14. Feng, J. D.; Graf, M.; Liu, K.; Ovchinnikov, D.; Dumcenco, D.; Heiranian, M.; Nandigana, V.; Aluru, N. R.; Kis, A.; Radenovic, A., Single-Layer Mos2 Nanopores as Nanopower Generators. Nature 2016, 536, 197-200.
15. Qiu, Y.; Lin, C. Y.; Hinkle, P.; Plett, T. S.; Yang, C.; Chacko, J. V.; Digman, M. A.; Yeh, L. H.; Hsu, J. P.; Siwy, Z. S., Highly Charged Particles Cause a Larger Current Blockage in Micropores Compared to Neutral Particles ACS Nano 2016, 10, 8413-8422.
16. Ying, Y. L.; Zhang, J. J.; Gao, R.; Long, Y. T., Nanopore-Based Sequencing and Detection of Nucleic Acids. Angew. Chem. Int. Edit. 2013, 52, 13154-13161.
17. Zhang, H. C.; Hou, X.; Yang, Z.; Yan, D. D.; Li, L.; Tian, Y.; Wang, H. T.; Jiang, L., Bio-Inspired Smart Single Asymmetric Hourglass Nanochannels for Continuous Shape and Ion Transport Control. Small 2015, 11, 786-791.
18. Morris, C. A.; Friedman, A. K.; Baker, L. A., Applications of Nanopipettes in the Analytical Sciences. Analyst 2010, 135, 2190-2202.
19. Perera, R. T.; Johnson, R. P.; Edwards, M. A.; White, H. S., Effect of the Electric Double Layer on the Activation Energy of Ion Transport in Conical Nanopores. J. Phys. Chem. C 2015, 119, 24299-24306.
20. Zeng, Z. P.; Yeh, L. H.; Zhang, M. K.; Qian, S. Z., Ion Transport and Selectivity in Biomimetic Nanopores with pH-Tunable Zwitterionic Polyelectrolyte Brushes. Nanoscale 2015, 7, 17020-17029.
21. Vlassiouk, I.; Smirnov, S.; Siwy, Z., Ionic Selectivity of Single Nanochannels. Nano Lett. 2008, 8, 1978-1985.
22. Siwy, Z. S., Ion-Current Rectification in Nanopores and Nanotubes with Broken Symmetry. Adv. Funct. Mater. 2006, 16, 735-746.
23. Yin, X. H.; Zhang, S. D.; Dong, Y. T.; Liu, S. J.; Gu, J.; Chen, Y.; Zhang, X.; Zhang, X. H.; Shao, Y. H., Ionic Current Rectification in Organic Solutions with Quartz Nanopipettes. Anal. Chem. 2015, 87, 9070-9077.
24. Momotenko, D.; Girault, H. H., Scan-Rate-Dependent Ion Current Rectification and Rectification Inversion in Charged Conical Nanopores. J. Am. Chem. Soc. 2011, 133, 14496-14499.
25. Lin, D. H.; Lin, C. Y.; Tseng, S.; Hsu, J. P., Influence of Electroosmotic Flow on the Ionic Current Rectification in a pH-Regulated, Conical Nanopore. Nanoscale 2015, 7, 14023-14031.
26. Haywood, D. G.; Saha-Shah, A.; Baker, L. A.; Jacobson, S. C., Fundamental Studies of Nanofluidics: Nanopores, Nanochannels, and Nanopipets. Anal. Chem. 2015, 87, 172-187.
27. Sa, N. Y.; Lan, W. J.; Shi, W. Q.; Baker, L. A., Rectification of Ion Current in Nanopipettes by External Substrates. ACS Nano 2013, 7, 11272-11282.
28. Cervera, J.; Schiedt, B.; Neumann, R.; Mafe, S.; Ramirez, P., Ionic Conduction, Rectification, and Selectivity in Single Conical Nanopores. J. Chem. Phys. 2006, 124.
29. Steinbock, L. J.; Lucas, A.; Otto, O.; Keyser, U. F., Voltage-Driven Transport of Ions and DNA through Nanocapillaries. Electrophoresis 2012, 33, 3480-3487.
30. Bell, N. A. W.; Keyser, U. F., Specific Protein Detection Using Designed DNA Carriers and Nanopores. J. Am. Chem. Soc. 2015, 137, 2035-2041.
31. Gibb, T. R.; Ivanov, A. P.; Edel, J. B.; Albrecht, T., Single Molecule Ionic Current Sensing in Segmented Flow Microfluidics. Anal. Chem. 2014, 86, 1864-1871.
32. Fraccari, R. L.; Ciccarella, P.; Bahrami, A.; Carminati, M.; Ferrari, G.; Albrecht, T., High-Speed Detection of DNA Translocation in Nanopipettes. Nanoscale 2016, 8, 7604-7611.
33. Vlassiouk, I.; Kozel, T. R.; Siwy, Z. S., Biosensing with Nanofluidic Diodes. J. Am. Chem. Soc. 2009, 131, 8211-8220.
34. Ali, M.; Nasir, S.; Ramirez, P.; Cervera, J.; Mafe, S.; Ensinger, W., Calcium Binding and Ionic Conduction in Single Conical Nanopores with Polyacid Chains: Model and Experiments. ACS Nano 2012, 6, 9247-9257.
35. Liu, Q.; Xiao, K.; Wen, L. P.; Dong, Y.; Xie, G. H.; Zhang, Z.; Bo, Z. S.; Jiang, L., A Fluoride-Driven Ionic Gate Based on a 4-Aminophenylboronic Acid-Functionalized Asymmetric Single Nano Channel. ACS Nano 2014, 8, 12292-12299.
36. Gao, R.; Ying, Y. L.; Yan, B. Y.; Iqbal, P.; Preece, J. A.; Wu, X. Y., Ultrasensitive Determination of Mercury(Ii) Using Glass Nanopores Functionalized with Macrocyclic Dioxotetraamines. Microchim. Acta 2016, 183, 491-495.
37. Vogel, R.; Willmott, G.; Kozak, D.; Roberts, G. S.; Anderson, W.; Groenewegen, L.; Glossop, B.; Barnett, A.; Turner, A.; Trau, M., Quantitative Sizing of Nano/Microparticles with a Tunable Elastomeric Pore Sensor. Anal. Chem. 2011, 83, 3499-3506.
38. Lan, W. J.; White, H. S., Diffusional Motion of a Particle Translocating through a Nanopore. ACS Nano 2012, 6, 1757-1765.
39. German, S. R.; Luo, L.; White, H. S.; Mega, T. L., Controlling Nanoparticle Dynamics in Conical Nanopores. J. Phys. Chem. C 2013, 117, 703-711.
40. Qiu, Y. H.; Vlassiouk, I.; Chen, Y. F.; Siwy, Z. S., Direction Dependence of Resistive-Pulse Amplitude in Conically Shaped Mesopores. Anal. Chem. 2016, 88, 4917-4925.
41. Gamble, T.; Decker, K.; Plett, T. S.; Pevarnik, M.; Pietschmann, J. F.; Vlassiouk, I.; Aksimentiev, A.; Siwy, Z. S., Rectification of Ion Current in Nanopores Depends on the Type of Monovalent Cations: Experiments and Modeling. J. Phys. Chem. C 2014, 118, 9809-9819.
42. Cao, L. X.; Guo, W.; Wang, Y. G.; Jiang, L., Concentration-Gradient-Dependent Ion Current Rectification in Charged Conical Nanopores. Langmuir 2012, 28, 2194-2199.
43. Deng, X. L.; Takami, T.; Son, J. W.; Kang, E. J.; Kawai, T.; Park, B. H., Effect of Concentration Gradient on Ionic Current Rectification in Polyethyleneimine Modified Glass Nano-Pipettes. Sci. Rep.-Uk 2014, 4, 4005.
44. Wang, J. T.; Zhang, M. H.; Zhai, J.; Jiang, L., Theoretical Simulation of the Ion Current Rectification (ICR) in Nano-Pores Based on the Poisson-Nernst-Planck (PNP) Model. Phys. Chem. Chem. Phys. 2014, 16, 23-32.
45. Lan, W. J.; Holden, D. A.; White, H. S., Pressure-Dependent Ion Current Rectification in Conical-Shaped Glass Nanopores. J. Am. Chem. Soc. 2011, 133, 13300-13303.
46. Liu, J.; Kvetny, M.; Feng, J.; Wang, D.; Wu, B.; Brown, W.; Wang, G., Surface Charge Density Determination of Single Conical Nanopores Based on Normalized Ion Current Rectification. Langmuir 2012, 28, 1588-95.
47. Pietschmann, J. F.; Wolfram, M. T.; Burger, M.; Trautmann, C.; Nguyen, G.; Pevarnik, M.; Bayer, V.; Siwy, Z., Rectification Properties of Conically Shaped Nanopores: Consequences of Miniaturization. Phys. Chem. Chem. Phys. 2013, 15, 16917-16926.
48. Kovarik, M. L.; Zhou, K. M.; Jacobson, S. C., Effect of Conical Nanopore Diameter on Ion Current Rectification. J. Phys. Chem. B 2009, 113, 15960-15966.
49. Kubeil, C.; Bund, A., The Role of Nanopore Geometry for the Rectification of Ionic Currents. J. Phys. Chem. C 2011, 115, 7866-7873.
50. Apel, P. Y.; Blonskaya, I. V.; Orelovitch, O. L.; Ramirez, P.; Sartowska, B. A., Effect of Nanopore Geometry on Ion Current Rectification. Nanotechnology 2011, 22, 175302.
51. Wang, X. W.; Xue, J. M.; Wang, L.; Guo, W.; Zhang, W. M.; Wang, Y. G.; Liu, Q.; Ji, H.; Ouyang, Q. Y., How the Geometric Configuration and the Surface Charge Distribution Influence the Ionic Current Rectification in Nanopores. J. Phys. D. Appl. Phys. 2007, 40, 7077-7084.
52. Cervera, J.; Schiedt, B.; Ramirez, P., A Poisson/Nernst-Planck Model for Ionic Transport through Synthetic Conical Nanopores. Europhys. Lett. 2005, 71, 35-41.
53. White, H. S.; Bund, A., Ion Current Rectification at Nanopores in Glass Membranes. Langmuir 2008, 24, 2212-2218.
54. Constantin, D.; Siwy, Z. S., Poisson-Nernst -Planck Model of Ion Current Rectification through a Nanofluidic Diode. Phys. Rev. E 2007, 76, 041202.
55. Ai, Y.; Zhang, M. K.; Joo, S. W.; Cheney, M. A.; Qian, S. Z., Effects of Electroosmotic Flow on Ionic Current Rectification in Conical Nanopores. J. Phys. Chem. C 2010, 114, 3883-3890.
56. Laohakunakorn, N.; Thacker, V. V.; Muthukumar, M.; Keyser, U. F., Electroosmotic Flow Reversal Outside Glass Nanopores. Nano Lett. 2015, 15, 695-702.
57. Albrecht, T.; Edel, J. B., Engineered Nanopores for Bioanalytical Applications; Elsevier Science: Amsterdam, 2013; pp 1-30..
58. Siwy, Z. S.; Howorka, S., Engineered Voltage-Responsive Nanopores. Chem. Soc. Rev. 2010, 39, 1115-1132.
Chapter 2
1. Kamat, P. V., Meeting the Clean Energy Demand: Nanostructure Architectures for Solar Energy Conversion. J Phys Chem C 2007, 111, 2834-2860.
2. Majumdar, A., Thermoelectricity in Semiconductor Nanostructures. Science 2004, 303, 777-778.
3. Logan, B. E.; Elimelech, M., Membrane-Based Processes for Sustainable Power Generation Using Water. Nature 2012, 488, 313-319.
4. Loeb, S., Osmotic Power-Plants. Science 1975, 189, 654-655.
5. Post, J. W.; Hamelers, H. V. M.; Buisman, C. J. N., Energy Recovery from Controlled Mixing Salt and Fresh Water with a Reverse Electrodialysis System. Environ Sci Technol 2008, 42, 5785-5790.
6. La Mantia, F.; Pasta, M.; Deshazer, H. D.; Logan, B. E.; Cui, Y., Batteries for Efficient Energy Extraction from a Water Salinity Difference. Nano Lett 2011, 11, 1810-1813.
7. Jeong, H. I.; Kim, H. J.; Kim, D. K., Numerical Analysis of Transport Phenomena in Reverse Electrodialysis for System Design and Optimization. Energy 2014, 68, 229-237.
8. Siria, A.; Poncharal, P.; Biance, A. L.; Fulcrand, R.; Blase, X.; Purcell, S. T.; Bocquet, L., Giant Osmotic Energy Conversion Measured in a Single Transmembrane Boron Nitride Nanotube. Nature 2013, 494, 455-458.
9. Yip, N. Y.; Vermaas, D. A.; Nijmeijer, K.; Elimelech, M., Thermodynamic, Energy Efficiency, and Power Density Analysis of Reverse Electrodialysis Power Generation with Natural Salinity Gradients. Environ Sci Technol 2014, 48, 4925-36.
10. Tseng, S.; Li, Y. M.; Lin, C. Y.; Hsu, J. P., Salinity Gradient Power: Influences of Temperature and Nanopore Size. Nanoscale 2016, 8, 2350-7.
11. Kim, D. K.; Duan, C. H.; Chen, Y. F.; Majumdar, A., Power Generation from Concentration Gradient by Reverse Electrodialysis in Ion-Selective Nanochannels. Microfluid Nanofluid 2010, 9, 1215-1224.
12. Cao, L. X.; Guo, W.; Ma, W.; Wang, L.; Xia, F.; Wang, S. T.; Wang, Y. G.; Jiang, L.; Zhu, D. B., Towards Understanding the Nanofluidic Reverse Electrodialysis System: Well Matched Charge Selectivity and Ionic Composition. Energ Environ Sci 2011, 4, 2259-2266.
13. Veerman, J.; de Jong, R. M.; Saakes, M.; Metz, S. J.; Harmsen, G. J., Reverse Electrodialysis: Comparison of Six Commercial Membrane Pairs on the Thermodynamic Efficiency and Power Density. J Membrane Sci 2009, 343, 7-15.
14. Kang, B. D.; Kim, H. J.; Lee, M. G.; Kim, D. K., Numerical Study on Energy Harvesting from Concentration Gradient by Reverse Electrodialysis in Anodic Alumina Nanopores. Energy 2015, 86, 525-538.
15. Kim, D. K., Numerical Study of Power Generation by Reverse Electrodialysis in Ion-Selective Nanochannels. J Mech Sci Technol 2011, 25, 5-10.
16. Yeh, H. C.; Chang, C. C.; Yang, R. J., Reverse Electrodialysis in Conical-Shaped Nanopores: Salinity Gradient-Driven Power Generation. Rsc Adv 2014, 4, 2705-2714.
17. Siwy, Z.; Heins, E.; Harrell, C. C.; Kohli, P.; Martin, C. R., Conical-Nanotube Ion-Current Rectifiers: The Role of Surface Charge. J Am Chem Soc 2004, 126, 10850-10851.
18. Siwy, Z.; Gu, Y.; Spohr, H. A.; Baur, D.; Wolf-Reber, A.; Spohr, R.; Apel, P.; Korchev, Y. E., Rectification and Voltage Gating of Ion Currents in a Nanofabricated Pore. Europhys Lett 2002, 60, 349-355.
19. Apel, P. Y.; Korchev, Y. E.; Siwy, Z.; Spohr, R.; Yoshida, M., Diode-Like Single-Ion Track Membrane Prepared by Electro-Stopping. Nucl Instrum Meth B 2001, 184, 337-346.
20. Albrecht, T.; Edel, J. B., Engineered Nanopores for Bioanalytical Applications; Elsevier Science: Amsterdam, 2013.
21. Fair, J. C.; Osterle, J. F., Reverse Electrodialysis in Charged Capillary Membranes. J Chem Phys 1971, 54, 3307-&.
22. Wright, M. R., An Introduction to Aqueous Electrolyte Solutions; Wiley: New York, 2007.
23. Bard, A. J.; Faulkner, L. R., Electrochemical Methods: Fundamentals and Applications, 2nd Edition; John Wiley & Sons: New Jersey, 2000.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67829-
dc.description.abstract圓錐形奈米孔道在生物科技上有著高潛力的應用,它能夠產生特殊的電動力學現象,如離子濃度極化(ICP)和離子整流效應(ICR)。在第一章節中,我們利用數值模擬的方式,研究圓錐形奈米孔道的開口角度對離子整流效應所造成的影響。改變角度時有兩種方式,第一種方式是固定孔道尖端的開口尺寸,改變末端的開口尺寸;而第二種則是固定末端的開口尺寸,改變尖端的開口尺寸。我們發現,第一種改變角度的方式,對孔道的離子整流效應影響較顯著,而且隨著角度加大時,奈米孔道的整流效應係數會出現先增加後減低的結果。第二章節,我們則是討論運用圓錐形奈米孔道的逆電析法來進行海水鹽差能發電,透過這種方式能取得乾淨的能源,是一種具有前景的再生能源。由於圓錐形奈米孔道有著不對稱形狀的特性,因此我們考慮兩種相反的離子擴散方向對海水鹽差能的影響,一種是離子從孔道的尖端往末端擴散,另一種是離子從孔道末端往尖端擴散。結果顯示第二種擴散方向能產生較好的海水鹽差能發電效果。zh_TW
dc.description.abstractDue to its potential applications in biotechnology, ion current rectification (ICR) arising from the asymmetric nature of ion transport in a nanochannel has drawn the attention of researchers in various fields. In the former, the influences of the cone angle, surface charge density, and bulk salt concentration on this behavior are investigated, and mechanisms proposed to explain the results obtained. We show that if the cone angle is enlarged by fixing the nanopore tip radius and raising its base radius, the ICR ratio has a local maximum. This behavior may not present if the cone angle is enlarged by fixing the nanopore base radius and raising its tip radius. This ratio also has a local maximum as the surface charge density varies and the larger the cone angle the higher the surface charge density at which the local maximum in the ICR ratio occurs. In the latter, to assess the possibility of energy harvesting through reverse electrodialysis (RED), we consider the electrokinetic behavior of the ion transport in a pH-regulated conical nanopore connecting two large reservoirs having different bulk salt concentrations. In particular, the influences of the ion diffusion direction, the solution pH, and the bulk concentration ratio on that behavior are examined in detail, and the underlying mechanisms discussed. We show that the geometrically asymmetric nature of the nanopore yields profound and interesting phenomena arising mainly from the distribution of ions in its interior. We show that a power of 18.3 pW can be generated, and the maximum power efficiency of 0.53 achieved from a PET nanoporeen
dc.description.provenanceMade available in DSpace on 2021-06-17T01:52:24Z (GMT). No. of bitstreams: 1
ntu-106-R04524009-1.pdf: 2415220 bytes, checksum: 8b9e55b2881f7213f5968e0fa05efc46 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents中文摘要 I
English Abstract II
Contents IV
List of Figures V
Chapter 1 Influences of Cone Angle and Surface Charge Density on the Ion Current Rectification Behavior of a Conical Nanopore 1
Reference 18
Chapter 2 Power Generation by a pH-regulated Conical Nanopore through Reverse Electrodialysis 51
Reference 67
Conclusion 85
dc.language.isoen
dc.subject海水鹽差能zh_TW
dc.subject圓錐形奈米孔道zh_TW
dc.subject離子整流效應zh_TW
dc.subject形狀效應zh_TW
dc.subjectreverse electrodialysisen
dc.subjectConical nanoporeen
dc.subjectIon current rectificationen
dc.title圓錐形奈米孔道:角度對離子整流效應的影響與
離子擴散方向對濃鹽差發電的影響
zh_TW
dc.titleConical Nanopore : Influences of Cone Angle on the Ion Current Rectification Behavior and Influences of Diffusion Direction on Salinity Gradient Poweren
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee張有義,郭勇志,葉禮賢,曾琇瑱
dc.subject.keyword圓錐形奈米孔道,離子整流效應,海水鹽差能,形狀效應,zh_TW
dc.subject.keywordConical nanopore,Ion current rectification,reverse electrodialysis,en
dc.relation.page87
dc.identifier.doi10.6342/NTU201701787
dc.rights.note有償授權
dc.date.accepted2017-07-24
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.36 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved