Skip navigation

DSpace JSPUI

DSpace preserves and enables easy and open access to all types of digital content including text, images, moving images, mpegs and data sets

Learn More
DSpace logo
English
中文
  • Browse
    • Communities
      & Collections
    • Publication Year
    • Author
    • Title
    • Subject
    • Advisor
  • Search TDR
  • Rights Q&A
    • My Page
    • Receive email
      updates
    • Edit Profile
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
Please use this identifier to cite or link to this item: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67821
Full metadata record
???org.dspace.app.webui.jsptag.ItemTag.dcfield???ValueLanguage
dc.contributor.advisor林祥泰(Shiang-Tai Lin)
dc.contributor.authorWei-Lin Chenen
dc.contributor.author陳威霖zh_TW
dc.date.accessioned2021-06-17T01:51:54Z-
dc.date.available2017-08-08
dc.date.copyright2017-08-08
dc.date.issued2017
dc.date.submitted2017-07-24
dc.identifier.citation[1] D.S. Abrams, J.M. Prausnitz, STATISTICAL THERMODYNAMICS OF LIQUID-MIXTURES - NEW EXPRESSION FOR EXCESS GIBBS ENERGY OF PARTLY OR COMPLETELY MISCIBLE SYSTEMS, Aiche Journal 21 (1975) 116-128.
[2] D. Peng, D.B. Robinson, A New Two-Constant Equation of State, Industrial & Engineering Chemistry Fundamentals 15 (1976) 59-64.
[3] R.C. Reid, J.M. Prausnitz, B.E. Poling, The Properties of Gases and Liquids, McGraw-Hill1987.
[4] H.V. Kehiaian, Group contribution methods for liquid mixtures: A critical review, Fluid Phase Equilibria 13 (1983) 243-252.
[5] A.R. Katritzky, U. Maran, V.S. Lobanov, M. Karelson, Structurally diverse quantitative structure-property relationship correlations of technologically relevant physical properties, Journal of Chemical Information and Computer Sciences 40 (2000) 1-18.
[6] A.R. Katritzky, M. Kuanar, S. Slavov, C.D. Hall, M. Karelson, I. Kahn, D.A. Dobchev, Quantitative Correlation of Physical and Chemical Properties with Chemical Structure: Utility for Prediction, Chemical Reviews 110 (2010) 5714-5789.
[7] A. Klamt, V. Jonas, T. Bürger, J.C.W. Lohrenz, Refinement and Parametrization of COSMO-RS, The Journal of Physical Chemistry A 102 (1998) 5074-5085.
[8] S.T. Lin, S.I. Sandler, A priori phase equilibrium prediction from a segment contribution solvation model, Ind. Eng. Chem. Res. 41 (2002) 899-913.
[9] D. Ravindranath, B.J. Neely, R.L. Robinson, K.A.M. Gasem, QSPR generalization of activity coefficient models for predicting vapor-liquid equilibrium behavior, Fluid Phase Equilibria 257 (2007) 53-62.
[10] S. Wang, J.M. Stubbs, J.I. Siepmann, S.I. Sandler, Effects of Conformational Distributions on Sigma Profiles in COSMO Theories, The Journal of Physical Chemistry A 109 (2005) 11285-11294.
[11] E. Mullins, Y.A. Liu, A. Ghaderi, S.D. Fast, Sigma Profile Database for Predicting Solid Solubility in Pure and Mixed Solvent Mixtures for Organic Pharmacological Compounds with COSMO-Based Thermodynamic Methods, Ind. Eng. Chem. Res. 47 (2008) 1707-1725.
[12] C.-M. Hsieh, S. Wang, S.-T. Lin, S.I. Sandler, A Predictive Model for the Solubility and Octanol-Water Partition Coefficient of Pharmaceuticals, Journal of Chemical and Engineering Data 56 (2011) 936-945.
[13] C.C. Shu, S.T. Lin, Prediction of Drug Solubility in Mixed Solvent Systems Using the COSMO-SAC Activity Coefficient Model, Ind. Eng. Chem. Res. 50 (2011) 142-147.
[14] Y.C. Kuo, C.C. Hsu, S.T. Lin, Prediction of Phase Behaviors of Polymer-Solvent Mixtures from the COSMO-SAC Activity Coefficient Model, Ind. Eng. Chem. Res. 52 (2013) 13505-13515.
[15] L. Yang, C.W. Chang, S.T. Lin, A novel multiscale approach for rapid prediction of phase behaviors with consideration of molecular conformations, Aiche Journal 62 (2016) 4047-4054.
[16] C.M. Hsieh, S.T. Lin, J. Vrabec, Considering the dispersive interactions in the COSMO-SAC model for more accurate predictions of fluid phase behavior, Fluid Phase Equilibria 367 (2014) 109-116.
[17] C.-M. Hsieh, S.I. Sandler, S.-T. Lin, Improvements of COSMO-SAC for vapor–liquid and liquid–liquid equilibrium predictions, Fluid Phase Equilibria 297 (2010) 90-97.
[18] S. Wang, S.I. Sandler, C.-C. Chen, Refinement of COSMO−SAC and the Applications, Ind. Eng. Chem. Res. 46 (2007) 7275-7288.
[19] S.-T. Lin, J. Chang, S. Wang, W.A. Goddard, S.I. Sandler, Prediction of Vapor Pressures and Enthalpies of Vaporization Using a COSMO Solvation Model, The Journal of Physical Chemistry A 108 (2004) 7429-7439.
[20] B.S. Lee, S.T. Lin, Prediction of phase behaviors of ionic liquids over a wide range of conditions, Fluid Phase Equilibria 356 (2013) 309-320.
[21] B.S. Lee, S.T. Lin, A Priori Prediction of Dissociation Phenomena and Phase Behaviors of Ionic Liquids, Ind. Eng. Chem. Res. 54 (2015) 9005-9012.
[22] A. Klamt, F. Eckert, COSMO-RS: a novel and efficient method for the a priori prediction of thermophysical data of liquids, Fluid Phase Equilibria 172 (2000) 43-72.
[23] J. Kroon, J.A. Kanters, Vanduijneveldtv.Jg, F.B. Vanduijneveldt, J.A. Vliegenthart, O-H..O HYDROGEN-BONDS IN MOLECULAR-CRYSTALS - STATISTICAL AND QUANTUM-CHEMICAL ANALYSIS, J. Mol. Struct. 24 (1975) 109-129.
[24] R. Taylor, O. Kennard, W. Versichel, GEOMETRY OF THE N-H=/=C HYDROGEN-BOND .1. LONE-PAIR DIRECTIONALITY, Journal of the American Chemical Society 105 (1983) 5761-5766.
[25] W.L. Jorgensen, QUANTUM AND STATISTICAL MECHANICAL STUDIES OF LIQUIDS .7. STRUCTURE AND PROPERTIES OF LIQUID METHANOL, Journal of the American Chemical Society 102 (1980) 543-549.
[26] A. Luzar, D. Chandler, STRUCTURE AND HYDROGEN-BOND DYNAMICS OF WATER-DIMETHYL SULFOXIDE MIXTURES BY COMPUTER-SIMULATIONS, J. Chem. Phys. 98 (1993) 8160-8173.
[27] Almennin.A, Bastians.O, Motzfeld.T, A REINVESTIGATION OF STRUCTURE OF MONOMER AND DIMER FORMIC ACID BY GAS ELECTRON DIFFRACTION TECHNIQUE, Acta Chemica Scandinavica 23 (1969) 2848-&.
[28] J.L. Derissen, REINVESTIGATION OF MOLECULAR STRUCTURE OF ACETIC ACID MONOMER AND DIMER BY GAS ELECTRON DIFFRACTION, J. Mol. Struct. 7 (1971) 67-80.
[29] H. Bertagnolli, THE STRUCTURE OF LIQUID ACETIC-ACID - AN INTERPRETATION OF NEUTRON-DIFFRACTION RESULTS BY GEOMETRICAL MODELS, Chemical Physics Letters 93 (1982) 287-292.
[30] J.E. Bertie, H.H. Eysel, D.N.S. Permann, D.H. Kalantar, CORRECTION OF THE LOW-FREQUENCY RAMAN-SPECTRA OF GASEOUS FORMIC AND ACETIC-ACIDS TO PDS SPECTRA, Journal of Raman Spectroscopy 16 (1985) 137-138.
[31] M.H. Brooker, O.F. Nielsen, E. Praestgaard, ASSESSMENT OF CORRECTION PROCEDURES FOR REDUCTION OF RAMAN-SPECTRA, Journal of Raman Spectroscopy 19 (1988) 71-78.
[32] T. Nakabayashi, K. Kosugi, N. Nishi, Liquid structure of acetic acid studied by Raman spectroscopy and ab initio molecular orbital calculations, Journal of Physical Chemistry A 103 (1999) 8595-8603.
[33] T. Nakabayashi, N. Nishi, States of molecular associates in binary mixtures of acetic acid with protic and aprotic polar solvents: A Raman spectroscopic study, Journal of Physical Chemistry A 106 (2002) 3491-3500.
[34] K. Heyne, N. Huse, J. Dreyer, E.T.J. Nibbering, T. Elsaesser, S. Mukamel, Coherent low-frequency motions of hydrogen bonded acetic acid dimers in the liquid phase, J. Chem. Phys. 121 (2004) 902-913.
[35] J.M. Briggs, T.B. Nguyen, W.L. Jorgensen, MONTE-CARLO SIMULATIONS OF LIQUID ACETIC-ACID AND METHYL ACETATE WITH THE OPLS POTENTIAL FUNCTIONS, Journal of Physical Chemistry 95 (1991) 3315-3322.
[36] J. Chocholousova, J. Vacek, P. Hobza, Acetic acid dimer in the gas phase, nonpolar solvent, microhydrated environment, and dilute and concentrated acetic acid: Ab initio quantum chemical and molecular dynamics simulations, Journal of Physical Chemistry A 107 (2003) 3086-3092.
[37] A. Ben-Naim, Solvation thermodynamics, Plenum Press1987.
[38] S.T. Lin, C.M. Hsieh, M.T. Lee, Solvation and chemical engineering thermodynamics, J. Chin. Inst. Chem. Eng. 38 (2007) 467-476.
[39] W.C. Still, A. Tempczyk, R.C. Hawley, T. Hendrickson, Semianalytical Treatment of Solvation for Molecular Mechanics and Dynamics, J. Am. Chem. Soc. 112 (1990) 6127-6129.
[40] S. Miertuš, E. Scrocco, J. Tomasi, Electrostatic Interaction of a Solute with a Continuum - a Direct Utilization of Abinitio Molecular Potentials for the Prevision of Solvent Effects, Chem. Phys. 55 (1981) 117-129.
[41] A. Klamt, G. Schuurmann, COSMO - a New Approach to Dielectric Screening in Solvents with Explicit Expressions for the Screening Energy and Its Gradient, J. Chem. Soc.-Perkin Trans. 2 (1993) 799-805.
[42] J. Tomasi, B. Mennucci, R. Cammi, Quantum mechanical continuum solvation models, Chem. Rev. 105 (2005) 2999-3093.
[43] J. Tomasi, M. Persico, Molecular-Interactions in Solution - an Overview of Methods Based on Continuous Distributions of the Solvent, Chem. Rev. 94 (1994) 2027-2094.
[44] C.J.F. Bötcher, Theory of electric polarisation, first ed. ed., Elsevier, Amsterdam, 1952.
[45] J. Tomasi, B. Mennucci, E. Cances, The IEF version of the PCM solvation method: an overview of a new method addressed to study molecular solutes at the QM ab initio level, J. Mol. Struct. 464 (1999) 211-226.
[46] S.T. Lin, C.M. Hsieh, Efficient and accurate solvation energy calculation from polarizable continuum models, J. Chem. Phys. 125 (2006).
[47] A. Klamt, CONDUCTOR-LIKE SCREENING MODEL FOR REAL SOLVENTS - A NEW APPROACH TO THE QUANTITATIVE CALCULATION OF SOLVATION PHENOMENA, Journal of Physical Chemistry 99 (1995) 2224-2235.
[48] W.-L. Chen, C.-M. Hsieh, L. Yang, C.-C. Hsu, S.-T. Lin, A Critical Evaluation on the Performance of COSMO-SAC Models for Vapor–Liquid and Liquid–Liquid Equilibrium Predictions Based on Different Quantum Chemical Calculations, Ind. Eng. Chem. Res. 55 (2016) 9312-9322.
[49] H. Grensemann, J. Gmehling, Performance of a conductor-like screening model for real solvents model in comparison to classical group contribution methods, Ind. Eng. Chem. Res. 44 (2005) 1610-1624.
[50] S. Wang, Y. Song, C.-C. Chen, Extension of COSMO-SAC Solvation Model for Electrolytes, Ind. Eng. Chem. Res. 50 (2011) 176-187.
[51] T. Ingram, T. Gerlach, T. Mehling, I. Smirnova, Extension of COSMO-RS for monoatomic electrolytes: Modeling of liquid–liquid equilibria in presence of salts, Fluid Phase Equilibria 314 (2012) 29-37.
[52] B.S. Lee, S.T. Lin, Screening of ionic liquids for CO2 capture using the COSMO-SAC model, Chem. Eng. Sci. 121 (2015) 157-168.
[53] M. Diedenhofen, A. Klamt, COSMO-RS as a tool for property prediction of IL mixtures—A review, Fluid Phase Equilibria 294 (2010) 31-38.
[54] L. Yang, X. Xu, C. Peng, H. Liu, Y. Hu, Prediction of vapor–liquid equilibrium for polymer solutions based on the COSMO-SAC model, AIChE Journal 56 (2010) 2687-2698.
[55] C. Loschen, A. Klamt, Prediction of Solubilities and Partition Coefficients in Polymers Using COSMO-RS, Ind. Eng. Chem. Res. 53 (2014) 11478-11487.
[56] S.T. Lin, J. Chang, S. Wang, W.A. Goddard, S.I. Sandler, Prediction of vapor pressures and enthalpies of vaporization using a COSMO solvation model, J. Phys. Chem. A 108 (2004) 7429-7439.
[57] A.J. Staverman, The Entropy of High Polymer Solutions, Rec. Trav. Chim. Pays-bas 69 (1950) 163-174.
[58] S.T. Lin, M.K. Hsieh, C.M. Hsieh, C.C. Hsu, Towards the development of theoretically correct liquid activity coefficient models, J. Chem. Thermodyn. 41 (2009) 1145-1153.
[59] S.T. Lin, S.I. Sandler, Prediction of octanol-water partition coefficients using a group contribution solvation model, Ind. Eng. Chem. Res. 38 (1999) 4081-4091.
[60] G.C. Pimentel, A.L. McClellan, The Hydrogen Bond, Freeman, San Francisco, 1960.
[61] R.H. Petrucci, General chemistry : principles and modern applications, Learning Solutions, New York, 2011.
[62] J.r. Gmehling, U. Onken, W. Arlt, Vapor-liquid equilibrium data collection, Dechema, Frankfurt, 1977.
[63] J.M. Sørensen, W. Arlt, Liquid-liquid equilibrium data collection, DECHEMA, Frankfurt, 1979.
[64] D. Tiegs, Activity coefficients at infinite dilution, DECHEMA, Frankfurt, 1986.
[65] W.M. Haynes, D.R. Lide, T.J. Bruno, CRC handbook of chemistry and physics : a ready-reference book of chemical and physical data, 2015.
[66] J. Gmehling, J. Lohmann, A. Jakob, J.D. Li, R. Joh, A modified UNIFAC (Dortmund) model. 3. Revision and extension, Ind. Eng. Chem. Res. 37 (1998) 4876-4882.
[67] C.S. Chen, S.T. Lin, Prediction of pH Effect on the Octanol-Water Partition Coefficient of Ionizable Pharmaceuticals, Ind. Eng. Chem. Res. 55 (2016) 9284-9294.
[68] R.L. Myers, The 100 most important chemical compounds : a reference guide, Greenwood Press, Westport, Conn., 2007.
[69] J.G. Hayden, J.P. Oconnell, GENERALIZED METHOD FOR PREDICTING 2ND VIRIAL-COEFFICIENTS, Industrial & Engineering Chemistry Process Design and Development 14 (1975) 209-216.
[70] H. Renon, J.M. Prausnitz, Local Compositions in Thermodynamic Excess Functions for Liquid Mixtures, AlChE J. 14 (1968) 135-144.
[71] A. Fredenslund, R.L. Jones, J.M. Prausnitz, Group-Contribution Estimation of Activity-Coefficients in Nonideal Liquid-Mixtures, AlChE J. 21 (1975) 1086-1099.
[72] 11 27. DECHEMA-Annual Conference of Biotechnologists Abstract, Chem-Ing-Tech 81 (2009) 1238-1320.
[73] M.C. dos Ramos, J.D. Haley, J.R. Westwood, C. McCabe, Extending the GC-SAFT-VR approach to associating functional groups: Alcohols, aldehydes, amines and carboxylic acids, Fluid Phase Equilib. 306 (2011) 97-111.
[74] Y.S. Chen, A. Afef, M. Fabrice, S. Roland, M.R. Jeday, Thermodynamic Modeling of Mixtures Containing Carboxylic Acids Using the PC-SAFT Equation of State, Ind. Eng. Chem. Res. 51 (2012) 13846-13852.
[75] M.L. Yu, Y.P. Chen, CORRELATION OF LIQUID-LIQUID PHASE-EQUILIBRIA USING THE SAFT EQUATION OF STATE, Fluid Phase Equilib. 94 (1994) 149-165.
[76] J.K. Gregory, D.C. Clary, Structure of water clusters. The contribution of many-body forces, monomer relaxation, and vibrational zero-point energy, Journal of Physical Chemistry 100 (1996) 18014-18022.
[77] S.S. Xantheas, C.J. Burnham, R.J. Harrison, Development of transferable interaction models for water. II. Accurate energetics of the first few water clusters from first principles, Journal of Chemical Physics 116 (2002) 1493-1499.
[78] D. Ericksen, W.V. Wilding, J.L. Oscarson, R.L. Rowley, Use of the DIPPR database for development of QSPR correlations: Normal boiling point, J. Chem. Eng. Data 47 (2002) 1293-1302.
[79] E.A. Muller, K.E. Gubbins, Molecular-based equations of state for associating fluids: A review of SAFT and related approaches, Ind. Eng. Chem. Res. 40 (2001) 2193-2211.
[80] I.G. Economou, Statistical associating fluid theory: A successful model for the calculation of thermodynamic and phase equilibrium properties of complex fluid mixtures, Ind. Eng. Chem. Res. 41 (2002) 953-962.
[81] ProcessNet Medals and DECHEMA student prizes in Karlsruhe, Chem-Ing-Tech 84 (2012) 1617-1623.
[82] G.M. Kontogeorgis, E.C. Voutsas, I.V. Yakoumis, D.P. Tassios, An Equation of State for Associating Fluids, Ind. Eng. Chem. Res. 35 (1996) 4310-4318.
[83] G.M. Kontogeorgis, M.L. Michelsen, G.K. Folas, S. Derawi, N. von Solms, E.H. Stenby, Ten years with the CPA (Cubic-Plus-Association) equation of state. Part 1. Pure compounds and self-associating systems, Ind. Eng. Chem. Res. 45 (2006) 4855-4868.
[84] G.M. Kontogeorgis, M.L. Michelsen, G.K. Folas, S. Derawi, N. von Solms, E.H. Stenby, Ten years with the CPA (Cubic-Plus-Association) equation of state. Part 2. Cross-associating and multicomponent systems, Ind. Eng. Chem. Res. 45 (2006) 4869-4878.
[85] S.O. Derawi, J. Zeuthen, M.L. Michelsen, E.H. Stenby, G.M. Kontogeorgis, Application of the CPA equation of state to organic acids, Fluid Phase Equilib. 225 (2004) 107-113.
[86] N. Muro-Sune, G.M. Kontogeorgis, N. von Solms, M.L. Michelsen, Phase equilibrium modelling for mixtures with acetic acid using an association equation of state, Ind. Eng. Chem. Res. 47 (2008) 5660-5668.
[87] C. Emmeluth, M.A. Suhm, D. Luckhaus, A monomers-in-dimers model for carboxylic acid dimers, Journal of Chemical Physics 118 (2003) 2242-2255.
[88] J.E. Bertie, K.H. Michaelian, THE RAMAN-SPECTRUM OF GASEOUS ACETIC-ACID AT 21-DEGREES-C, Journal of Chemical Physics 77 (1982) 5267-5271.
[89] C.-M. Hsieh, S.-T. Lin, Determination of cubic equation of state parameters for pure fluids from first principle solvation calculations, Aiche Journal 54 (2008) 2174-2181.
[90] C.M. Hsieh, S.T. Lin, First-Principles Predictions of Vapor-Liquid Equilibria for Pure and Mixture Fluids from the Combined Use of Cubic Equations of State and Solvation Calculations, Ind. Eng. Chem. Res. 48 (2009) 3197-3205.
[91] C.M. Hsieh, S.T. Lin, Prediction of liquid-liquid equilibrium from the Peng-Robinson plus COSMOSAC equation of state, Chem. Eng. Sci. 65 (2010) 1955-1963.
[92] C.M. Hsieh, S.T. Lin, First-Principles Prediction of Vapor-Liquid-Liquid Equilibrium from the PR plus COSMOSAC Equation of State, Ind. Eng. Chem. Res. 50 (2011) 1496-1503.
[93] D. Peng, D.B. Robinson, New 2-Constant Equation of State, Ind Eng Chem Fund 15 (1976) 59-64.
[94] D.S.H. Wong, S.I. Sandler, A THEORETICALLY CORRECT MIXING RULE FOR CUBIC EQUATIONS OF STATE, Aiche Journal 38 (1992) 671-680.
[95] A. Klamt, G. Schuurmann, COSMO: a new approach to dielectric screening in solvents with explicit expressions for the screening energy and its gradient, Journal of the Chemical Society, Perkin Transactions 2 (1993) 799-805.
[96] R. Stryjek, J.H. Vera, PRSV - AN IMPROVED PENG-ROBINSON EQUATION OF STATE FOR PURE COMPOUNDS AND MIXTURES, Can. J. Chem. Eng. 64 (1986) 323-333.
[97] E. Mullins, R. Oldland, Y.A. Liu, S. Wang, S.I. Sandler, C.C. Chen, M. Zwolak, K.C. Seavey, Sigma-profile database for using COSMO-based thermodynamic methods, Ind. Eng. Chem. Res. 45 (2006) 4389-4415.
[98] B. Delley, AN ALL-ELECTRON NUMERICAL-METHOD FOR SOLVING THE LOCAL DENSITY FUNCTIONAL FOR POLYATOMIC-MOLECULES, Journal of Chemical Physics 92 (1990) 508-517.
[99] B. Delley, From molecules to solids with the DMol(3) approach, J. Chem. Phys. 113 (2000) 7756-7764.
[100] J. Karle, L.O. Brockway, An electron diffraction investigation of the monomers and dimers of formic, acetic and trifluoroacetic acids and the dimer of deuterium acetate, [n. p., 1944.
[101] E. Bich, A.K. Neumann, N.E. Vogel, Dimerization in acetic acid vapor and evaluation of ppT measurements with an equation of state for a reactive fluid, Fluid Phase Equilib. 125 (1996) 67-78.
[102] J.R. Barton, C.C. Hsu, P-V-T-X PROPERTIES OF ASSOCIATED VAPORS OF FORMIC AND ACETIC ACIDS, J. Chem. Eng. Data 14 (1969) 184-&.
[103] M.D. Taylor, THE VAPOR PHASE DISSOCIATION OF SOME CARBOXYLIC ACIDS .1. ACETIC ACID, J. Am. Chem. Soc. 73 (1951) 315-317.
[104] E.W. Johnson, L.K. Nash, THE VAPOR-PHASE ASSOCIATION OF ACETIC AND TRIMETHYLACETIC ACIDS, J. Am. Chem. Soc. 72 (1950) 547-556.
[105] H.L. Ritter, J.H. Simons, THE MOLECULAR STATE OF ACETIC ACID VAPOR, J. Am. Chem. Soc. 67 (1945) 757-762.
[106] F.H. MacDougall, The molecular state of the vapor of acetic acid at low pressures at 25, 30, 35 and 40o, J. Am. Chem. Soc. 58 (1936) 2585-2591.
[107] J. Gmehling, U. Onken, J.R. Rarey-Nies, Vapor-liquid equilibrium data collection, Dechema1978.
[108] G. Maurer, Thermodynamic properties of complex fluid mixtures, Wiley-VCH, Weinheim, 2004.
[109] Wagner, Ben Gurion University of Negev, 1979.
[110] MACARRON, Determination of liquid-vapor equilibrium diagrams in binary systems with chemical reactions, A. Rev. R. Acad. Cienc. Exactas 53 (1959) 607-647.
[111] S. Miyamoto, S. Nakamura, Y. Iwai, Y. Arai, Measurement of isothermal vapor-liquid equilibria for monocarboxylic acid plus monocarboxylic acid binary systems with a flow-type apparatus, J. Chem. Eng. Data 46 (2001) 405-409.
[112] M. Schmitt, H. Hasse, Phase equlibria for hexyl acetate reactive distillation, J. Chem. Eng. Data 50 (2005) 1677-1683.
[113] S.b.A. Design Institute for Physical Properties, DIPPR Project 801 - Full Version, Design Institute for Physical Property Research/AIChE.
[114] J.M. Sørensen, W. Arlt, Liquid-liquid Equilibrium Data Collection: Binary systems, DECHEMA, Deutsche Gesellschaft für Chemisches Apparatewesen1979.
[115] W.L. Chen, C.C. Hsu, S.T. Lin, Prediction of phase behaviors of acetic acid containing fluids, Fluid Phase Equilibria 353 (2013) 61-68.
[116] L.-H. Wang, S.-T. Lin, A predictive method for the solubility of drug in supercritical carbon dioxide, Journal of Supercritical Fluids 85 (2014) 81-88.
[117] S.-T. Lin, L.-H. Wang, W.-L. Chen, P.-K. Lai, C.-M. Hsieh, Prediction of miscibility gaps in water/ether mixtures using COSMO-SAC model, Fluid Phase Equilibria 310 (2011) 19-24.
[118] A. Fredenslund, J. Gmehling, M.L. Michelsen, P. Rasmussen, J.M. Prausnitz, Computerized Design of Multicomponent Distillation Columns Using the UNIFAC Group Contribution Method for Calculation of Activity Coefficients, Industrial & Engineering Chemistry Process Design and Development 16 (1977) 450-462.
[119] J. Gmehling, J.D. Li, M. Schiller, A MODIFIED UNIFAC MODEL .2. PRESENT PARAMETER MATRIX AND RESULTS FOR DIFFERENT THERMODYNAMIC PROPERTIES, Ind. Eng. Chem. Res. 32 (1993) 178-193.
[120] V. Flemr, A Note on Excess Gibbs Energy Equations Based on Local Composition Concept, Collect. Czech. Chem. Commun. 41 (1976) 3347-3349.
[121] R. Ahlrichs, M. Bär, M. Häser, H. Horn, C. Kölmel, Electronic structure calculations on workstation computers: The program system turbomole, Chemical Physics Letters 162 (1989) 165-169.
[122] M.W. Schmidt, K.K. Baldridge, J.A. Boatz, S.T. Elbert, M.S. Gordon, J.H. Jensen, S. Koseki, N. Matsunaga, K.A. Nguyen, S. Su, T.L. Windus, M. Dupuis, J.A. Montgomery, General atomic and molecular electronic structure system, Journal of Computational Chemistry 14 (1993) 1347-1363.
[123] M.J. Frisch, G.W. Trucks, H.B. Schlegel, G.E. Scuseria, M.A. Robb, J.R. Cheeseman, G. Scalmani, V. Barone, B. Mennucci, G.A. Petersson, H. Nakatsuji, M. Caricato, X. Li, H.P. Hratchian, A.F. Izmaylov, J. Bloino, G. Zheng, J.L. Sonnenberg, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, T. Vreven, J.A. Montgomery, J.E. Peralta, F. Ogliaro, M. Bearpark, J.J. Heyd, E. Brothers, K.N. Kudin, V.N. Staroverov, R. Kobayashi, J. Normand, K. Raghavachari, A. Rendell, J.C. Burant, S.S. Iyengar, J. Tomasi, M. Cossi, N. Rega, J.M. Millam, M. Klene, J.E. Knox, J.B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R.E. Stratmann, O. Yazyev, A.J. Austin, R. Cammi, C. Pomelli, J.W. Ochterski, R.L. Martin, K. Morokuma, V.G. Zakrzewski, G.A. Voth, P. Salvador, J.J. Dannenberg, S. Dapprich, A.D. Daniels, Farkas, J.B. Foresman, J.V. Ortiz, J. Cioslowski, D.J. Fox, Gaussian 09, Revision B.01, Wallingford CT, 2009.
[124] T.C. Mu, J. Rarey, J. Gmehling, Performance of COSMO-RS with sigma profiles from different model chemistries, Ind. Eng. Chem. Res. 46 (2007) 6612-6629.
[125] R. Franke, B. Hannebauer, On the influence of basis sets and quantum chemical methods on the prediction accuracy of COSMO-RS, Phys. Chem. Chem. Phys. 13 (2011) 21344-21350.
[126] E. Paulechka, V. Diky, A. Kazakov, K. Kroenlein, M. Frenkel, Reparameterization of COSMO-SAC for Phase Equilibrium Properties Based on Critically Evaluated Data, Journal of Chemical & Engineering Data 60 (2015) 3554-3561.
[127] S.T. Lin, S.I. Sandler, Infinite dilution activity coefficients from ab initio solvation calculations, Aiche Journal 45 (1999) 2606-2618.
[128] A.D. Becke, DENSITY-FUNCTIONAL THERMOCHEMISTRY .3. THE ROLE OF EXACT EXCHANGE, J. Chem. Phys. 98 (1993) 5648-5652.
[129] J.-D. Chai, M. Head-Gordon, Systematic optimization of long-range corrected hybrid density functionals, J. Chem. Phys. 128 (2008) 084106.
[130] J.-D. Chai, M. Head-Gordon, Long-range corrected hybrid density functionals with damped atom-atom dispersion corrections, Phys. Chem. Chem. Phys. 10 (2008) 6615-6620.
[131] I.V. Tetko, V.Y. Tanchuk, Application of associative neural networks for prediction of lipophilicity in ALOGPS 2.1 program, Journal of Chemical Information and Computer Sciences 42 (2002) 1136-1145.
[132] Y.L. Wang, J.W. Xiao, T.O. Suzek, J. Zhang, J.Y. Wang, S.H. Bryant, PubChem: a public information system for analyzing bioactivities of small molecules, Nucleic Acids Research 37 (2009) W623-W633.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67821-
dc.description.abstract活性係數對於了解混合物的熱力學性質與相平衡來說相當重要。COSMO-SAC活性係數模型藉由量子力學計算取得分子資訊 (如分子表面屏蔽電荷分佈),因此可不需仰賴實驗值迴歸分子相關參數,對一般系統均可提供可靠的流體相行為預測。然而在過往研究中也發現COSMO-SAC模型對於耦合系統的預測準確性較差,有鑑於此本研究提出以下方法來改善COSMO-SAC模型在耦合系統上的預測能力。
首先由於過往COSMO-SAC方法中對於氫鍵作用的描述僅利用分子表面屏蔽電荷密度的強度,而未考慮到在形成氫鍵時施體和受體所具有的特殊方向性,換言之在形成氫鍵時施體(連接於氟、氧、氮等上的氫原子)傾向與受體(氟、氧、氮等原子)的孤對電子對齊。由此特性,本研究在第一部分提出新的COSMO-SAC(DHB)模型,將氫鍵在空間上特殊的方向性納入考慮。此模型利用價層電子對互斥理論 (VSEPR)理論,將受體的孤對電子投影至分子表面上作為在空間上氫鍵作用範圍的限制。研究結果顯示在引入氫鍵的方向性後,能夠減少模型參數並且提升耦合系統在汽液相平衡、無限稀釋下活性係數和水與正辛烷分布係數等係質預測上的精準度與可靠性。
然而COSMO-SAC(DHB)模型應用於有機酸的相平衡時,表現與以往的COSMO-SAC模型一樣仍有極大的誤差存在。對此從過往文獻的研究中發現對於氫鍵作用力較強的系統,分子間容易發生聚合現象,產生二聚體或分子簇(molecular cluster)等局部流體結構(local fluid structure)。因此本研究的第二部分以乙酸為例,利用PR+COSMOSAC狀態方程式,探討局部流體結構對於乙酸在相平衡上的影響。本研究中提出利用反應平衡的方式同時考慮乙酸的單體(monomer)、環狀二聚(cyclic dimer)、鏈狀碎片(chain fragment)以及與水(或醇)形成的共聚體(cross-associating structure)。研究結果顯示出只有在同時考慮乙酸各種局部結構,才能一致地預測出乙酸在各種環境下的相行為,因此也證實了局部結構對於乙酸相平衡的重要性。
除了以上針對耦合系統的研究外,本研究的第三部分著重在不同量子化學方法,在虛擬溶劑模型(COSMO solvation)計算上造成分子表面屏蔽電荷分佈的差異,對於COSMO-SAC模型的影響。此研究對常見的量子化學方法重新優化模型的參數,並利用大量的實驗資料測試三種模型的表現,包括汽液相平衡、液液相平衡、無限稀釋下活性係數和水與正辛烷分布係數等總共超過22,000個數據點。結果顯示COSMO-SAC 2010和COSMO-SAC(DHB)在理論上的修正,皆適用於各種量子力學方法,而其中以COSMO-SAC(DHB)模型表現最好。此外COSMO-SAC(DHB)模型會敏感地受到量子化學方法的影響,一般而言使用描述分子屏蔽電荷越極化程度越好的基底函數組(如b3lyp/6-31+G(d,p)),COSMO-SAC(DHB)模型具有較佳的預測精準度度。此結果也顯出除了在COSMO-SAC模型本身的開發上,量子力學計算上的進展對於提升COSMO-SAC模型的精準度也相當重要。
zh_TW
dc.description.abstractThe activity coefficient of a chemical in a mixture is important to understand the thermodynamic properties and the phase behaviors of the mixture. The COSMO-SAC model based on the result of quantum mechanical implicit solvation calculations has been shown to provide reliable predictions of activity coefficients for mixture fluids. However, it is found that the prediction accuracy is in general inferior for associating fluids. This work aims to improve the prediction of phase behaviors of associating fluids through consideration of hydrogen bond direction and the formation of local fluid structures.
First existing COSMO-SAC methods for describing the hydrogen-bonding interaction consider the strength of interaction based only on the polarity of the screening charges, neglecting the fact that the formation of hydrogen bonds require specific orientation between the donor and acceptor pairs. We develop a new approach that takes into account the spatial orientational constraints in hydrogen bonds. Based on the Valence Shell Electron Pair Repulsion (VSEPR) theory, the molecular surfaces associated with the formation of hydrogen bonds are limited to those in the projection of the lone pair electrons of hydrogen bond acceptors, in additional to the polarity of the surface screening charges. Our results show that the directional hydrogen bond approach, denoted as the COSMO-SAC(DHB) model, requires fewer number of universal parameters and is significantly more accurate and reliable compared to previous models for a variety of properties, including vapor-liquid equilibria (VLE), infinite dilution activity coefficient (IDAC) and water-octanol partition coefficient (Kow).
With the increasing strength of interactions between hydrogen bonded molecules, the formation of local fluid structure, such as the dimers and/or hydrogen bonded clusters, can strongly affect the phase behavior of fluids. For acetic acid, we identify four local fluids structures, including the acetic acid monomer, cyclic dimer and chain fragment and the cross-associating structure with water (or alcohol), and develop a novel approach to explicitly consider these local fluid structures in the predictive thermodynamic model, PR+COSMOSAC equation of state. The transition of acetic acid in these local fluid structures are considered via chemical reaction. The results show that the phase behaviors of pure acetic acid and its mixtures with various chemicals can be described only when all the significant local fluid structures are included.
In addition to the efforts on the development of a better description for associating fluids, the utilization of different quantum calculation methods for COSMO solvation calculation is carefully examined for different COSMO-SAC models. The model parameters are reoptimized for each quantum calculation method, and the performance is evaluated using a large set of experimental databases covering VLE, liquid-liquid equilibrium (LLE), IDAC and Kow (containing more than 22,000 data points). The results show that the modification introduced in either COSMO-SAC 2010 or COSMO-SAC(DHB) is applicable for all quantum calculation methods and the performance of COSMO-SAC(DHB) model is generally better than others. Besides, the COSMO-SAC(DHB) model is sensitive to the quantum chemical method used. The use of a basis set that allows for higher molecular polarity, such as b3lyp/6-31+G(d,p), often results in a better prediction accuracy. The finding implies apart from the refinement in COSMO-based method itself, the improvement in the COSMO solvation calculation is also important for the development of COSMO-based model.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:51:54Z (GMT). No. of bitstreams: 1
ntu-106-F00524020-1.pdf: 5759056 bytes, checksum: 08eb063714bd633528d58420ba911c84 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT v
CONTENTS vii
LIST OF FIGURES xi
LIST OF TABLES xviii
Chapter 1 Overview 1
1.1 Perspectives for Thermodynamic Modeling in Chemical Engineering 1
1.2 The Challenge in the Development of COSMO-SAC Model 3
1.3 A Brief Guide of This Work 5
Chapter 2 Prediction of Phase Behaviors of Moderately Associating Fluid by Explicit Consideration of Spatial Hydrogen Bond Direction 8
2.1 Introduction 8
2.2 Theory 10
2.2.1 Solvation energy and activity coefficient 10
2.2.2 Hydrogen bonding interactions based on strength of donor-acceptor screening charges 13
2.2.3 Hydrogen bonding interactions based on type of donor-acceptor pairs 13
2.2.4 Hydrogen bonding interactions with explicit consideration of hydrogen bond direction 16
2.3 Computational Details 20
2.4 Result and Discussion 22
2.4.1 Vapor-liquid equilibrium and liquid-liquid equilibrium. 22
2.4.2 Infinite dilution activity coefficient and octanol-water partition coefficient. 29
2.4.3 Statistical analysis on VLE, IDAC and Kow. 31
2.4.4 The Limitation of COSMO-SAC Model 34
2.5 Summary 35
2.6 Supporting Information 36
2.6.1 The determination of vector from atom i toward hydrogen bonding center (Dij-th) 36
2.6.2 Examples on the orientational hydrogen bonding surface 41
2.6.3 Detail prediction accuracy in VLE 41
Chapter 3 Prediction of Phase Behaviors of Strongly Associating Fluid with Explicit Consideration of Local Fluid Structure 45
3.1 Introduction 45
3.2 Theory 49
3.2.1 Chemical Equilibrium 49
3.2.2 Phase equilibrium in reactive system 50
3.2.3 PR+COSMOSAC equation of state 50
3.3 Computational Details 52
3.3.1 Details in calculation of phase equilibrium in reactive system using PR+COSMOSAC EOS 52
3.3.2 Evaluation of chemical equilibrium constant 53
3.4 Result and Discussion 56
3.4.1 Properties of pure acetic acid 56
3.4.2 VLE of acetic acid and aprotic solvent 64
3.4.3 LLE of acetic acid and alkane 72
3.4.4 VLE of acetic acid and protic compound 75
3.4.5 Distribution of local fluid structures of acetic acid. 82
3.5 Summary 85
3.6 Supporting Information 86
3.6.1 Chemical equilibrium calculation algorithm 86
3.6.2 Modified bubble point calculation for reactive system 88
3.6.3 Determination of the solvation charging free energy 89
3.6.4 Calculation of the compressibility 92
3.6.5 Comparison of prediction accuracy in VLE 94
Chapter 4 Performance of COSMO-SAC Models for Thermodynamic Properties Based on Different Quantum Chemical Calculations 96
4.1 Introduction 96
4.2 Theory 99
4.3 Computational Details 100
4.4 Result and Discussion 106
4.4.1 Comparison of the molecular properties among different quantum calculations 106
4.4.2 Performance of COSMO-SAC 2002 model based on different QM/COSMO methods 113
4.4.3 Performance of COSMO-SAC 2010 model based on different QM/COSMO methods 117
4.4.4 Performance of COSMO-SAC(DHB) model based on different QM/COSMO methods 125
4.5 Summary 130
4.6 Supporting Information 131
4.6.1 Molecular structure from different quantum calculation method 131
4.6.2 Details on comparison among different quantum calculation methods 134
Chapter 5 Conclusions and Future Work 138
REFERENCE 141
作者簡介 149
dc.language.isoen
dc.subjectCOSMO-SAC模型zh_TW
dc.subjectPR+COSMOSAC狀態方程式zh_TW
dc.subject耦合系統zh_TW
dc.subject氫鍵方向性zh_TW
dc.subject局部流體結構zh_TW
dc.subjectCOSMO-SAC modelen
dc.subjectPR+COSMO-SAC EOSen
dc.subjectassociating fluidsen
dc.subjectdirectional hydrogen bonden
dc.subjectlocal fluid structureen
dc.title運用氫鍵特性預測耦合系統之相行為zh_TW
dc.titlePrediction of Phase Behaviors of Associating Fluids with Consideration of Hydrogen Bonding Charactersen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree博士
dc.contributor.oralexamcommittee康敦彥(Dun-Yen Kang),諶玉真(Yu-Jane Sheng),汪上曉(David Shan-Hill Wong),蘇至善(Chie-Shaan Su),謝介銘
dc.subject.keywordCOSMO-SAC模型,PR+COSMOSAC狀態方程式,耦合系統,氫鍵方向性,局部流體結構,zh_TW
dc.subject.keywordCOSMO-SAC model,PR+COSMO-SAC EOS,associating fluids,directional hydrogen bond,local fluid structure,en
dc.relation.page150
dc.identifier.doi10.6342/NTU201701326
dc.rights.note有償授權
dc.date.accepted2017-07-25
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
Appears in Collections:化學工程學系

Files in This Item:
File SizeFormat 
ntu-106-1.pdf
  Restricted Access
5.62 MBAdobe PDF
Show simple item record


Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved