Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 社會科學院
  3. 經濟學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67818
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳添枝(Tain-Jy Chen)
dc.contributor.authorJun-Hao Chenen
dc.contributor.author陳俊豪zh_TW
dc.date.accessioned2021-06-17T01:51:43Z-
dc.date.available2020-08-07
dc.date.copyright2017-08-07
dc.date.issued2017
dc.date.submitted2017-07-24
dc.identifier.citation[1] S. Browne. Optimal investment policies for a firm with a random risk process: Ex-ponential utility and minimizing the probability of ruin. Mathematics of Operations Research, 20(4):937–958, 1995.
[2] L. Di Persio and O. Honchar. Artificial neural networks approach to the forecast of stock market price movements.
[3] K. Fukushima and S. Miyake. Neocognitron: A self-organizing neural network model for a mechanism of visual pattern recognition. In Competition and cooperation in
neural nets, pages 267–285. Springer, 1982.
[4] S. E. Shreve. Stochastic Calculus for Finance II: Continuous-Time Models. Springer, New York, 2004.
[5] H. Wang, B. Raj, and E. P. Xing. On the origin of deep learning. arXiv preprint arXiv:1702.07800, 2017.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67818-
dc.description.abstract人們在進行金融交易時,經常會依靠直覺來進行思考。舉例而言,交易員經常一次接收多個螢幕的資訊並快速地做出決定,但往往詢問他們所得到的決策理由大多是依靠長年累積而來的「盤感」(domain knowledge)。為了去模擬出人們腦中的高複雜度模型,我們決定使用深度學習模型中的卷積神經網絡模型 (Convolutional Neural Networks, CNNs) 來進行此任務。卷積神經網絡模型在圖像識別領域上非常突出,這點如同利用電腦模擬人們的眼睛去進行看盤的行為一樣,這也是我們選擇卷積神經網絡模型而不採行常見的量化分析模型去建模的主要原因。
我們使用的資料是由幾何布朗運動過程 (Geometric Brownian Motion process) 所模擬出來的日幣走勢。我們會先把外匯的量化資料預處理成圖片,這些圖片包含了外匯價格、五日移動平均線 (Moving Average 5)、十日移動平均線 (Moving Average 10),以及二十日移動平均線 (Moving Average 20) 等等的資訊,並且以此作為輸入層 (input layer) 輸入卷積神經網絡模型之中,通過不斷試驗不同的結構與模型參數去進行實驗,最後再以各分類的準確度作為衡量模型的標準。我們的最終目標是在找出能夠極大化分類準確度的模型,同時在驗證卷積神經網路是否能夠複製人們的交易策略。
zh_TW
dc.description.abstractDeep learning is an effective approach to solve image recognition problems.
People like to think intuitively from the trading chart. This study used the characteristics of deep learning to train computers how to imitate people's thinking from the trading chart.
We have three steps as follows:
1. Before training, we need to pre-process our input data from quantitative data to images.
2. We use Convolutional-Neural-Network (CNN), which is a kind of the deep learning, to train our trading model.
3. We evaluate the model performance by the accuracy of classification.
With this approach, a trading model is obtained to help make trading strategies. The main application is designed to help clients automatically obtain personalized trading strategies.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:51:43Z (GMT). No. of bitstreams: 1
ntu-106-R03323035-1.pdf: 2466269 bytes, checksum: 4f87d1b776aa343a8870f15e8b4f9d1d (MD5)
Previous issue date: 2017
en
dc.description.tableofcontentsAbstract iii
List of Figures ix
Chapter 1: Introduction ... 1
1.1 Motivation ... 1
1.2 Related Works ... 2
1.3 Problem Definition ... 2
1.4 Structures of Dissertation ... 3
Chapter 2: Literature Review ... 5
Chapter 3: Mathematics ... 7
3.1 Geometric Brownian Motion (GBM) ... 7
3.2 Convolutional Neural Networks (CNNs) ... 8
3.2.1 History of the CNNs model ... 8
3.2.2 Introduce to CNNs model ... 9
3.2.3 Architectures of our CNNs: some architectures we have tried ... 11
3.2.4 Architectures of our CNNs model: AlexNet ... 14
Chapter 4: Workflow ... 15
4.1 Introduction to our workflow ...15
4.2 Workflow 1 ... 15
4.3 Workflow 2 ... 16
Chapter 5: Discussion ... 19
5.1 Workflow 1 ... 19
5.1.1 Architecture 1 ... 21
5.1.2 Architecture 2 ... 21
5.1.3 Architecture 3 ... 22
5.2 Workflow 2 ... 23
5.2.1 experiments 1 ... 24
5.2.2 experiments 2 ... 25
5.2.3 experiments 3 ... 26
Chapter 6: Conclusions ... 37
Bibliography ... 39
Index
dc.language.isoen
dc.subject卷積神經網路zh_TW
dc.subjectCNNen
dc.subjectConvolutional Neural Netwoken
dc.subjectForeign Exchangeen
dc.title利用卷積神經網路深度學習方法預測外匯走勢zh_TW
dc.titlePredict FX via Convolutional Neural Network (CNNs)en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor蔡芸琤(Yun-Cheng Tsai)
dc.contributor.oralexamcommittee周承復
dc.subject.keyword卷積神經網路,zh_TW
dc.subject.keywordCNN,Convolutional Neural Netwok,Foreign Exchange,en
dc.relation.page41
dc.identifier.doi10.6342/NTU201701722
dc.rights.note有償授權
dc.date.accepted2017-07-25
dc.contributor.author-college社會科學院zh_TW
dc.contributor.author-dept經濟學研究所zh_TW
顯示於系所單位:經濟學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.41 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved