Please use this identifier to cite or link to this item:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67774Full metadata record
| ???org.dspace.app.webui.jsptag.ItemTag.dcfield??? | Value | Language |
|---|---|---|
| dc.contributor.advisor | 張茂山 | |
| dc.contributor.author | Hsin-An Shih | en |
| dc.contributor.author | 施信安 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:49:06Z | - |
| dc.date.available | 2027-07-22 | |
| dc.date.copyright | 2017-08-01 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-25 | |
| dc.identifier.citation | 1. Massagué, J. & Obenauf, A. C. Metastatic colonization by circulating tumour cells. Nature 529, 298–306 (2016).
2. Lamouille, S., Xu J. & Derynck, R. Molecular mechanisms of epithelial–mesenchymal transition. Nat. Rev. Mol. Cell Biol. 15, 178-196 (2014). 3. Ye, X. & Weinberg, R. A. Epithelial–Mesenchymal Plasticity: A central regulator of cancer progression. Trends Cell Biol. 25, 675–686 (2015). 4. Nieto, M. A., Huang, R. Y., Jackson, R. A. & Thiery, J. P. EMT: 2016. Cell 166, 21-45 (2016). 5. Wei, S. C. & Yang, J. Forcing through tumor metastasis: The interplay between tissue rigidity and epithelial-mesenchymal transition. Trends Cell Biol. 26, 111-120 (2016). 6. Shirakihara, T., Saitoh, M. & Miyazono, K. Differential regulation of epithelial and mesenchymal markers by EF1 proteins in epithelial mesenchymal transition induced by TGF-β. Mol. Biol. Cell 18, 3533-3544 (2007). 7. Krishnamachary, B. et al. Hypoxia-inducible factor-1-dependent repression of E-cadherin in von Hippel-Lindau tumor suppressor-null renal cell carcinoma mediated by TCF3, ZFHX1A, and ZFHX1B. Cancer Res. 66, 2725- 2731 (2006). 8. Burk, U. et al. A reciprocal repression between ZEB1 and members of the miR-200 family promotes EMT and invasion in cancer cells. EMBO Rep. 9, 582–589 (2008). 9. Gregory, P. A. et al. The miR-200 family and miR-205 regulate epithelial to mesenchymal transition by targeting ZEB1 and SIP1. Nature Cell Biol. 10, 593–601 (2008). 10. Gemmill, R.M. et al. ZEB1-responsive genes in non-small cell lung cancer. Cancer Lett. 300, 66–78 (2011). 11. Dohadwala, M. et al. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res. 66 (10), 5338–5345 (2006). 12. Zhang, J., Lu, C., Zhang, J., Kang, J., Cao, C. & Li, M. Involvement of ZEB1 and E-cadherin in the invasion of lung squamous cell carcinoma. Mol. Biol. Rep. 40, 949–956 (2013). 13. Takeyama, Y. et al. Knockdown of ZEB1, a master epithelial-to-mesenchymal transition (EMT) gene, suppresses anchorage-independent cell growth of lung cancer cells. Cancer Lett. 296, 216–224 (2010). 14. Larsen, J. E. et al. ZEB1 drives epithelial-to-mesenchymal transition in lung cancer. J. Clin. Invest. 126, 3219–3235 (2016). 15. Jeronimo, C., Collin, P. & Robert, F. The RNA Polymerase II CTD: The increasing complexity of a low-complexity protein domain. J. Mol. Biol. 428, 2607-2622 (2016). 16. Jonkers, I. & Lis, J. T. Getting up to speed with transcription elongation by RNA polymerase II. Nat. Rev. Mol. Cell. Biol. 26, 167-177 (2015). 17. Hsin, J. P. & Manley, J. L. The RNA polymerase II CTD coordinates transcription and RNA processing. Genes & Dev. 26, 2119-2137 (2012). 18. Adelman, K. & Lis, J. T. Promoter-proximal pausing of RNA polymerase II: emerging roles in metazoans. Nat. Rev. Genet. 13, 720-731 (2012). 19. Zhou, Q., Li, T. & Price, D. H. RNA Polymerase II elongation control. Annu. Rev. Biochem. 81, 119-143 (2012). 20. Kwak, H. & Lis, J. T. Control of transcriptional elongation. Annu. Rev. Genet. 47, 483-508 (2013). 21. Aso, T., Lane, W. S., Conaway, J. W. & Conaway, R. C. Elongin (SIII): a multisubunit regulator of elongation by RNA polymerase II. Science 269, 1439-1443 (1995). 22. Duan, D. R. et al. Inhibition of transcription elongation by the VHL tumor suppressor protein. Science 269, 1402-1406 (1995). 23. Rebehmed, J., Revy, P., Faure, G., de Villartay J. P. & Callebaut, I. Expanding the SRI domain family: a common scaffold for binding the phosphorylated C-terminal domain of RNA polymerase II. FEBS Lett. 588, 4431-4437 (2014). 24. Ettahar, A. et al. Identification of PHRF1 as a tumor suppressor that promotes the TGF-β cytostatic program through selective release of TGIF-driven PML inactivation. Cell Rep. 4, 530-541 (2013). 25. Prunier, C. et al. Disruption of the PHRF1 Tumor Suppressor Network by PML-RARα Drives Acute Promyelocytic Leukemia Pathogenesis. Cell Rep. S2211-1247 (2015). 26. Chang, C. F. et al. PHRF1 promotes genome integrity by modulating non-homologous end-joining. Cell Death Dis. 6, e1716 (2015). 27. Wang, Y. et al. Overexpression of PHRF1 attenuates the proliferation and tumorigenicity of non-small cell lung cancer cells. Oncotarget 7, 64360-64370 (2016). 28. Zhang, W. et al. HIF-1α Promotes Epithelial-Mesenchymal Transition and Metastasis through Direct Regulation of ZEB1 in Colorectal Cancer. PLoS One 10, e0129603 (2015). 29. Cai, Q. & Robertson, E. S. Ubiquitin/SUMO modification regulates VHL protein stability and nucleocytoplasmic localization. PLoS One 5, e12636 (2010). 30. Jung, C.R. et al. E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis. Nat. Med. 12(7), 809-16 (2006). 31. Spaderna, S. et al. The transcriptional repressor ZEB1 promotes metastasis and loss of cell polarity in cancer. Cancer Res. 68, 537-544 (2008). 32. Dohadwala, M. et al. Cyclooxygenase-2-dependent regulation of E-cadherin: prostaglandin E(2) induces transcriptional repressors ZEB1 and snail in non-small cell lung cancer. Cancer Res. 66, 5338-5345 (2006). 33. Spoelstra, N. S. et al. The transcription factor ZEB1 is aberrantly expressed in aggressive uterine cancers. Cancer Res. 66, 3893-3902 (2006). 34. Spaderna, S. et al. A transient, EMT-linked loss of basement membranes indicates metastasis and poor survival in colorectal cancer. Gastroenterology 131, 830-840 (2006). 35. Singh, M. et al. ZEB1 expression in type I vs type II endometrial cancers: a marker of aggressive disease. Mod. Pathol. 21, 912–923 (2008). 36. Graham, T. R. et al. Insulin-like growth factor-I-dependent up-regulation of ZEB1 drives epithelial-to-mesenchymal transition in human prostate cancer cells. Cancer Res. 68, 2479-2488 (2008). 37. Adachi, Y., Takeuchi, T., Nagayama, T., Ohtsuki, Y. & Furihata, M. ZEB1-mediated T-cadherin repression increases the invasive potential of gallbladder cancer. FEBS Lett. 583, 430-436 (2009). 38. Peterlin, B. M. & Price, D. H. Controlling the elongation phase of transcription with P-TEFb. Mol. Cell 23, 297–305 (2006). 39. Czudnochowski, N., Bosken, C. A. & Geyer, M. Serine-7 but not serine-5 phosphorylation primes RNA polymerase II CTD for P-TEFb recognition. Nature Commun. 3, 842 (2012). 40. Kizer, K., Phatnani, H., Shibata, Y., Hall, H., Greenleaf, A. & Strahl, B. A novel domain in Set2 mediates RNA polymerase II interaction and couples histone H3 K36 methylation with transcript elongation. Mol. Cell. Biol. 25, 3305–3316 (2005). 41. Phatnani, H., Jones, J. & Greenleaf, A. Expanding the functional repertoire of CTD kinase I and RNA polymerase II: novel phosphoCTD associating proteins in the yeast proteome. Biochemistry 43, 15702–15719 (2004). 42. Daulny, A. et al. Modulation of RNA polymerase II subunit composition by ubiquitylation. Proc. Natl. Acad. Sci. USA. 105, 19649–19654 (2008). 43. Liu, L. et al. Triptolide reverses hypoxia-induced epithelial-mesenchymal transition and stem-like features in pancreatic cancer by NF-κB downregulation. Int. J. Cancer 134 (10). 2489–2503 (2014). 44. Liu, Y. et al. HIFs enhance the migratory and neoplastic capacities of hepatocellular carcinoma cells by promoting EMT. Tumour Biol. 35 (8), 8103–8114 (2014). 45. Du, J. et al. Hypoxia promotes vasculogenic mimicry formation by inducing epithelial-mesenchymal transition in ovarian carcinoma. Gynecol. Oncol. 133 (3), 575–583 (2014). 46. Shaikh, D. et al. cAMP-dependent protein kinase is essential for hypoxia-mediated epithelial-mesenchymal transition, migration, and invasion in lung cancer cells, Cell. Signal. 24, 2396–2406 (2012). 47. Rankin, E. B. & Giaccia, A. J. Hypoxic control of metastasis. Science 352, 175-80 (2016). 48. Lan, K. et al. A dynamic model of the hypoxia-inducible factor 1α (HIF-1α) network. J. Cell Sci. 126, 1454-1463 (2013). 49. Gossage, L., Eisen, T. & Maher, E. R. VHL, the story of a tumour suppressor gene. Nat. Rev. Cancer. 15, 55-64 (2015). 50. Kaelin, W. G. Jr. The von Hippel-Lindau tumour suppressor protein: O2 sensing and cancer. Nat Rev Cancer. 8, 865-73 (2008). 51. Jung, C. R. et al. E2-EPF UCP targets pVHL for degradation and associates with tumor growth and metastasis. Nat. Med. 12, 809-816 (2006) | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67774 | - |
| dc.description.abstract | PHRF1 是一個E3泛素連接酶,並且在C端包含一個SRI功能區塊,被預測能與RNA 聚合複合體中最大的次單元RPB1的 C-terminal domain (CTD) 進行結合。當DNA遭受雙股斷裂,PHRF1能促進非同源性末端接合 (non-homologous end joining, NHEJ)。另一方面,PHRF1也能促進細胞增生與癌症的發生。然而,PHRF1促使細胞進行入侵與轉移的機制,目前仍處於未知的狀態。從分子機制的層面切入,我們發現PHRF1能夠增加一個和癌症轉移相關的因子ZEB1的mRNA的表現量。從肺癌病人解體的組織切片染色結果中,PHRF1 具有相對較高的表現量。另外, PHRF1也能促進上皮變間質型的轉換 (Epithelial-mesenchymal transition),在整個癌症轉移中,扮演早期一個重要的步驟。我們的實驗結果指出,PHRF1可以和RPB1-CTD中的磷酸化Ser-2與Ser-2/5進行結合。Ser-2與Ser-2/5的磷酸化是一個代表調控轉錄延長階段 (transcription elongation stage)的重要特徵。藉由反轉錄-定量聚合酶連鎖反應 (RT-qPCR),我們發現PHRF1也能促進ZEB1其mRNA的表現量。此外,PHRF1能對pVHL進行K48型的聚泛素化的蛋白質修飾,造成pVHL被降解,pVHL是一個腫瘤抑制子與轉錄延長階段抑制子。因此PHRF1能調控ZEB1的RNA表現量,是藉由與RPB1進行結合,減少轉錄延長階段抑制子pVHL,進而促進其轉錄延長階段的效率。總結上述,我們的研究發現PHRF1能促進ZEB1表現,造成癌症轉移的發生,並了解其背後的分子機制。 | zh_TW |
| dc.description.abstract | PHRF1 is an E3 ligase and contains an SRI domain which is a putative binding domain with the C-terminal domain (CTD) of RPB1, the biggest subunit on RNA polymerase II complex. PHRF1 promotes non-homologous end joining (NHEJ) when DNA suffers double-strand breaks, and also increases cell proliferation and cancer progression. However, the mechanism that PHRF1 facilitates cancer invasion and metastasis remains unknown. On molecular aspect, we report that PHRF1 can increase mRNA levels of ZEB1 which contributes to metastasis development in lung cancer. PHRF1 has relatively higher expression in human lung cancer specimens on immunohistochemistry and enhances epithelial-mesenchymal transition (EMT), which is a crucial step in early metastasis. Our results indicated that PHRF1 could bind phospho-Ser2 and phospho-Ser2/Ser5 of the CTD of RPB1, a prominent signature of transcription elongation, and elevated the level of ZEB1 transcription on RT-qPCR assay. Besides, PHRF1 ubiquitinates pVHL, which is a tumor suppressor and a transcription elongation inhibitor, with K48-linked polyUb chains and makes pVHL degraded. Therefore, promotion of ZEB1 by PHRF1 may be explained by the PHRF1- RPB1 interaction which regulates transcription elongation. Collectively, our studies indicate that PHRF1 promotes metasatasis by ZEB1 transcription regulation and realize the mechanism behind it. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:49:06Z (GMT). No. of bitstreams: 1 ntu-106-R04b46002-1.pdf: 5067294 bytes, checksum: b5c0c95ec7960c20e11964489a7619f6 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 口試委員會審定書 i
誌謝 ii 中文摘要 iii Abstract iv Chapter I. Introduction 1 1.1 Metastasis and epithelial–mesenchymal transition 1 1.2 Epithelial–mesenchymal transition regulation 1 1.3 C-terminal repeat domain of RPB1 and transcription regulation 2 1.4 PHD and ring finger domains 1 (PHRF1) 3 1.5 The relationship between PHRF1 and lung cancer 4 Chapter II. Materials and Methods 5 Table 1. Antibodies 5 2.1 Cell lines and cell culture 8 Table 2. volume medium and number of cells for cell culture 9 2.2 Quantitative RT-PCR 9 Table 3. Primer sequences of RT-qPCR 10 2.3 Chromatin immunoprecipitation assay (ChIP) 10 Table 4. Primer sequences of ChIP 11 2.4 DNA transfection 11 Table 5 Number of cells to seed the day before transfection 11 2.5 RNA interference 12 Table 6. shRNA sequence 12 2.6 Retroviral transduction 12 2.7 Co-immunoprecipitation or pull down assay 13 2.8 Western blotting 13 Table 7. SDS-PAGE running gel 14 Table 8. Western blotting reagents 15 2.9 Wound healing assay 16 2.10 Cell migration assay 16 2.11 Cell invasion assay 16 2.12 Immunohistochemistry (IHC) 17 2.13 Ubiquitination assay 17 2.14 Statistical analyses 18 Chapter III. Results 19 3.1 High expression of PHRF1 in lung cancer cell lines and specimens 19 3.2 Expression of PHRF1 promotes lung cancer cells migration 20 3.3 PHRF1 affects cancer cell invasion and metastasis 21 3.4 ZEB1 is responsible for PHRF1-mediated migration and invasion 22 3.5 PHRF1 affects expression of ZEB1 on RNA level 23 3.6 PHRF1 ubiquitinates pVHL by K48-polyubiquitin chain 24 Chapter IV. Discussion 27 References 32 Chapter V. Figures 39 Figure 1. Expression of PHRF1 in lung cancer specimens. 41 Figure 2. Effects of PHRF1 in wound-healing assay. 42 Figure 3. PHRF1 promotes cell migration. 44 Figure 4. PHRF1 promotes cell invasion in cellulo 46 Figure 5. PHRF1 promotes tumor metastasis in vivo. 47 Figure 6. PHRF1 promotes ZEB1 expression and affects the EMT process. 48 Figure 7. ZEB1 is required for PHRF1-driven invasion. 50 Figure 8. PHRF1 modulates the transcription of ZEB1. 52 Figure 9. PHRF1 responses to hypoxia and ubiquitinates pVHL. 54 Figure 10. PHRF1 promotes ZEB1expression clinically. 56 Figure 11. PHRF1 promotes colony formation. 58 Figure 12. PHRF1 promotes invasion in CL1-0 and CL1-5 lung cancer cells. 60 Appendix 61 Raw data of immunoprecipiatation from this study. 62 | |
| dc.language.iso | en | |
| dc.subject | PHRF1 | zh_TW |
| dc.subject | ZEB1 | zh_TW |
| dc.subject | 癌症轉移 | zh_TW |
| dc.subject | 轉錄調控 | zh_TW |
| dc.subject | pVHL | zh_TW |
| dc.subject | Transcription regulation | en |
| dc.subject | ZEB1 | en |
| dc.subject | Metastasis | en |
| dc.subject | pVHL | en |
| dc.subject | PHRF1 | en |
| dc.title | PHRF1促進肺癌轉移藉由ZEB1的轉錄調控 | zh_TW |
| dc.title | PHRF1 Promotes Metastasis by Regulating ZEB1 Transcription in Lung Cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 朱伯振,李明學,張震東 | |
| dc.subject.keyword | PHRF1,ZEB1,癌症轉移,轉錄調控,pVHL, | zh_TW |
| dc.subject.keyword | PHRF1,ZEB1,Metastasis,Transcription regulation,pVHL, | en |
| dc.relation.page | 63 | |
| dc.identifier.doi | 10.6342/NTU201701913 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-26 | |
| dc.contributor.author-college | 生命科學院 | zh_TW |
| dc.contributor.author-dept | 生化科學研究所 | zh_TW |
| Appears in Collections: | 生化科學研究所 | |
Files in This Item:
| File | Size | Format | |
|---|---|---|---|
| ntu-106-1.pdf Restricted Access | 4.95 MB | Adobe PDF |
Items in DSpace are protected by copyright, with all rights reserved, unless otherwise indicated.
