Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 應用物理研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67766
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳永芳(Yang-Fang Chen)
dc.contributor.authorChen-Chung Yenen
dc.contributor.author閻正中zh_TW
dc.date.accessioned2021-06-17T01:48:38Z-
dc.date.available2027-07-25
dc.date.copyright2017-07-28
dc.date.issued2017
dc.date.submitted2017-07-25
dc.identifier.citation[1] Denkov, N., Velev, O., Kralchevski, P., Ivanov, I., Yoshimura, H. and Nagayama, K. (1992). Mechanism of formation of two-dimensional crystals from latex particles on substrates. Langmuir, 8(12), pp.3183-3190.
[2] A. D. Ormonde, E. C. M. Hicks, J. Castillo, and R. P. Van Duyne, “Nanosphere Lithography: Fabrication of Large-Area Ag Nanoparticle Arrays by Convective Self-Assembly and Their Characterization by Scanning UV-Visible Extinction Spectroscopy.” Langmuir, vol. 20, no. 16, pp. 6927–6931, 2004.
[3] A. J. Haes, C. L. Haynes, A. D. Mcfarland, and G. C. Schatz, “Plasmonic Materials for Surface-Enhanced Sensing and Spectrosopy.,” MRS BULLETIN, vol. 30, no. May, 2005.
[4] A. Koroleva, M. L. Arnedillo, R. Kiyan, O. Marti, and B. N. Chichkov, “Laser Fabrication of Large-Scale Nanoparticle Arrays for Sensing Applications.,” ACSNANO, vol. 5, no. 6, pp. 4843–4849, 2011.
[5] L. S. Live and O. R. Bolduc, “Propagating Surface Plasmon Resonance on Microhole Arrays.,” Analytical Chemistry, vol. 82, no. 9, pp. 3780–3787, 2010.
[6] Hegner, M., Wagner, P. and Semenza, G. (1993). Immobilizing DNA on gold via thiol modification for atomic force microscopy imaging in buffer solutions. FEBS Letters, 336(3), pp.452-456.
[7] Hegner, M., Wagner, P. and Semenza, G. (1993). Ultralarge atomically flat template-stripped Au surfaces for scanning probe microscopy. Surface Science Letters, 291(1-2), p.A562.
[8] Vogel, N., Zieleniecki, J. and Köper, I. (2012). As flat as it gets: ultrasmooth surfaces from template-stripping procedures. Nanoscale, 4(13), p.3820.
[9] Lee, Y., A. Kamal, A., Abasaki, M., Ho, Y., Takakura, Y. and Delaunay, J. (2016). Gap Plasmons Multiple Mirroring from Spheres in Pyramids for Surface-Enhanced Raman Scattering. ACS Photonics, 3(12), pp.2405-2412.
[10] 吳民耀、劉威志, “表面電漿子理論與模擬,” 物理雙月刊, vol. 二十八卷二期, pp. 486–496, 2006.
[11] 邱國斌、蔡定平, “金屬表面電漿簡介,” 物理雙月刊, vol. 二十八卷二期, pp. 472–485, 2006.
[12] Hou, Y., Renwick, P., Liu, B., Bai, J. and Wang, T. (2014). Room temperature plasmonic lasing in a continuous wave operation mode from an InGaN/GaN single nanorod with a low threshold. Scientific Reports, 4(1).
[13] Zhang, Q., Li, G., Liu, X., Qian, F., Li, Y., Sum, T., Lieber, C. and Xiong, Q. (2014). A room temperature low-threshold ultraviolet plasmonic nanolaser. Nature Communications, 5, p.4953.
[14] Chou, Y., Wu, Y., Hong, K., Chou, B., Shih, J., Chung, Y., Chen, P., Lin, T., Lin, C., Lin, S. and Lu, T. (2016). High-Operation-Temperature Plasmonic Nanolasers on Single-Crystalline Aluminum. Nano Letters, 16(5), pp.3179-3186.
[15] Zhou, W., Dridi, M., Suh, J., Kim, C., Co, D., Wasielewski, M., Schatz, G. and Odom, T. (2013). Lasing action in strongly coupled plasmonic nanocavity arrays. Nature Nanotechnology, 8(7), pp.506-511.
[16] Yang, A., Wang, D., Wang, W. and Odom, T. (2017). Coherent Light Sources at the Nanoscale. Annual Review of Physical Chemistry, 68(1), pp.83-99.
[17] Yang, A., Hryn, A., Bourgeois, M., Lee, W., Hu, J., Schatz, G. and Odom, T. (2016). Programmable and reversible plasmon mode engineering. Proceedings of the National Academy of Sciences, 113(50), pp.14201-14206.
[18] Zou, S. and Schatz, G. (2004). Narrow plasmonic/photonic extinction and scattering line shapes for one and two dimensional silver nanoparticle arrays. The Journal of Chemical Physics, 121(24), p.12606.
[19] 施敏 原著,黃調元譯“半導體元件物理與製作技術半導體元件物理與製作技術(第二版)”交大出版社, 2002
[20] B. P. Timko, T. Cohen-Karni, Q. Qing, B. Tian, and C. M. Lieber, “Design and implementation of functional nanoelectronic interfaces with biomolecules, cells, andtissue using nanowire device arrays,” IEEE Transactions on Nanotechnology 9(3), pp.269–280, 2010.
[21] A. Gao, N. Lu, Y. Wang, and T. Li, “Robust ultrasensitive tunneling-fet biosensor for point-of-care diagnostics,” Scientific Reports 6, 2016.
[22] S.-P. Lin, T.-Y. Chi, T.-Y. Lai, and M.-C. Liu, “Investigation into the effect of varied functional biointerfaces on silicon nanowire MOSFETs,” Sensors 12(12), pp.16867–16878, 2012.
[23] J.-I. Hahm and C. M. Lieber, “Direct ultrasensitive electrical detection of DNA and DNA sequence variations using nanowire nanosensors,” Nano Letters 4(1), pp. 51–54, 2004.
[24] Taflove, A.; Hagness, S. C.: Computational Electrodynamics: The Finite‐Difference Time‐Domain Method, Third Edition; Artech House; 3 edition, 2005.
[25] Inan, U. S.; Marshall, R. A.: Numerical Electromagnetics: The FDTD Method;Cambridge University Press; 1 edition, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67766-
dc.description.abstract在本論文中, 我們將會展示各種運用奈米球微影術製作出的奈米及光電元件。首先我們會先運用奈米球徑微影術配合非等向性濕蝕刻以及模板剝離等技術在可撓式和可拉伸式的基板上製作出金奈米粒子陣列和金金字塔陣列,同時我們運用時域有限差分法模擬出其光學特性,並且跟實驗量測結果比較討論。 第二,我們利用時域有限差分法模擬出,當在單一介質環境中,週期性的鋁奈米圓盤陣列能產生一個在可見光範圍的極小限寬共振,而且其共振波長可以隨著陣列的週期和介質環境的折射率變動。我們將運用奈米技術將此陣列製作出來並與增益介質結合,希望能觀察到雷射的現象。最後,我們運用奈米球徑微影術製作矽奈米網場效應電晶體,並測量它的電學特性和將此元件應用於化學及生物感測。zh_TW
dc.description.abstractIn this study, we will demonstrate several nanoscale optoelectronic devices fabricated using Nanosphere Lithography (NSL). First, periodic nanoparticles and inverted pyramid nanostructures are fabricated on top of flexible substrates using template-stripping method. Optical properties of these nanostructures are investigated experimentally and verified theoretically by using finite-difference time domain (FDTD) methods. Second, optical properties of periodic aluminum nanodisks are also investigated and the simulated extinction spectra reveal a tunable lattice plasmon mode peak within the visible spectra range. We will cover the fabricated nanodisks arrays with gain materials to study the lattice plasmon assisted lasing. In the last part of this dissertation, we will demonstrate the fabrication of silicon nanonet field-effect transistors (FETs). The electric properties of these nanonet FETs are investigated. We will also discuss the results measured by these Si nanonet FETs for chemical and biosensing applications.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:48:38Z (GMT). No. of bitstreams: 1
ntu-106-R04245015-1.pdf: 6190861 bytes, checksum: 0f2b46cac82603bfe690f48f86de7bba (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 i
中文摘要 ii
Abstract iii
Contents iv
List of Figures viii
Chapter 1 Introduction 1
1.1 Motivation 1
1.2 The Assembling of the Polystyrene Nanosphere 2
1.2.1 Fabrication of nanonet 4
1.3 Template Stripping 6
1.4 Silicon Inverted Pyramid Array 8
1.4.1 Formation of Silicon inverted pyramid 8
1.4.2 Application for Silicon inverted pyramid 9
1.5 Principle of Surface Plasmon 11
1.5.1 Surface Plasmon 11
1.5.2 Localized Surface Plasmon Resonance (LSPR) 13
1.5.3 Plasmonic laser 16
1.5.4 Optical properties of Aluminum nanostructure 19
1.6 Nanowire Field-Effect Transistor 22
1.6.1 Applications of Field-Effect Transistor 22
1.6.2 Si Nanowire FET as a pH sensor 25
1.6.3 Si nanowire FET as a DNA sensor 26
Chapter 2 Instrument 28
2.1 Fabrication instrument 28
2.1.1 Polystyrene Sphere and Convective Self-Assembly System 28
2.1.2 Plasma Etching System 29
2.1.3 E-beam Evaporator 30
2.1.4 Mask Aligner 31
2.1.5 High-Temperature Furnace Tube 33
2.1.6 Inductively Coupled Plasma 34
2.2 Measurement instrument 35
2.2.1 Scanning Electron Microscope 35
2.2.2 Spectrophotometer 35
2.2.3 Lock-in Amplifier 36
2.2.4 Electrical properties measurement system 37
2.2.5 E beam lithography 37
2.3 Design of mask 38
2.3.1 Mask of Silicon Nanonet Field-Effect Transistor 38
2.4 Finite Difference Time Domain (FDTD) Calculations 39
Chapter 3 Combinations of Nanosphere Lithography with the Other Fabrication Processes 42
3.1 Wet etching Silicon inverted pyramid 42
3.1.1 Cr nanonet as an etching mask 42
3.1.2 Fabrication of inverted pyramid by anisotropic wet etching 43
3.2 Template stripped nanostructure array 47
3.2.1 Template stripping without surface modification 48
3.2.2 Template stripping with surface modification 49
3.2.3 Template stripped gold nanoparticle array 51
3.3 Optical properties of nanostructures 54
3.3.1 Measured and simulated Reflection spectra of gold pyramid array 54
3.3.2 Measured and simulated transmittance spectra of gold nanoparticle array 57
3.4 Aluminum nanostructure 59
3.4.1 E beam lithography 61
3.4.2 Perovskite deposition 62
Chapter 4 Silicon nanonet FET 63
4.1 Fabrication 63
4.1.1 Fabrication of nanonet 63
4.2 Fabrication of Silicon Nanonet FET 64
4.3 Measurement 66
4.3.1 Electrical properties of back gate measurement 66
4.3.2 Electrical properties of liquid gate measurement 67
4.3.3 Nanonet FET for pH value sensing 70
4.3.4 Nanonet FET for molecule sensing 73
4.3.5 Abeta sensing with antibody 75
Chapter 5 Conclusions and Future Work 77
5.1 Conclusions 77
5.1.1 Combination of nanosphere lithography with the other nanofabrication processes 77
5.1.2 Si nanonet FET 77
5.2 Future Work 78
5.2.1 Combination of nanosphere lithography with the other nanofabrication processes 78
5.2.2 Si nanonet FET 78
REFERENCE 79
dc.language.isoen
dc.subject奈米球微影術zh_TW
dc.subject光電元件zh_TW
dc.subject奈米線場效應電晶體zh_TW
dc.subject生物感測zh_TW
dc.subject電漿子學zh_TW
dc.subject電漿子雷射zh_TW
dc.subjectNanowire FETsen
dc.subjectOptoelectronic Devicesen
dc.subjectNanosphere Lithographyen
dc.subjectPlasmonic Laseren
dc.subjectBiosensingen
dc.subjectPlasmonicsen
dc.title利用低成本奈米球微影術製作奈米級光電元件之研究與應用zh_TW
dc.titleApplications of Nanoscale Optoelectronic Devices Fabricated Using Low-cost Nanosphere Lithographyen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor張允崇(Yun-Chorng Chang)
dc.contributor.oralexamcommittee藍永強(Yung-Chiang Lan)
dc.subject.keyword奈米球微影術,光電元件,奈米線場效應電晶體,生物感測,電漿子學,電漿子雷射,zh_TW
dc.subject.keywordNanosphere Lithography,Optoelectronic Devices,Nanowire FETs,Biosensing,Plasmonics,Plasmonic Laser,en
dc.relation.page81
dc.identifier.doi10.6342/NTU201701921
dc.rights.note有償授權
dc.date.accepted2017-07-26
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept應用物理研究所zh_TW
顯示於系所單位:應用物理研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.05 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved