Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 電機工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67765
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor陳和麟
dc.contributor.authorChung-Hui Chenen
dc.contributor.author陳重輝zh_TW
dc.date.accessioned2021-06-17T01:48:34Z-
dc.date.available2017-07-27
dc.date.copyright2017-07-27
dc.date.issued2017
dc.date.submitted2017-07-25
dc.identifier.citation[1] R. Aboolian, O. Berman, and D. Krass. Competitive facility location model with concave demand. European Journal of Operational Research, 181(2):598–619, 2007.
[2] H.-K. Ahn, S.-W. Cheng, O. Cheong, M. Golin, and R. van Oostrum. Competitive facility location: the voronoi game. Theoretical Computer Science, 310(1-3):457–467,2004.
[3] M. Bādoiu, S. Har-Peled, and P. Indyk. Approximate clustering via core-sets. In Proceedings of the 34th annual ACM symposium on Theory of computing, pages 250–257, 2002.
[4] S. Bandyapadhyay, A. Banik, S. Das, and H. Sarkar. Voronoi game on graphs. Theoretical Computer Science, 562:270–282,2015.
[5] O. Cheong, S. Har-Peled, N. Linial, and J. Matousek. The one-round voronoi game. Discrete and Computational Geometry, 31(1):125–138, 2004.
[6] T. Drezner, Z. Drezner, and P. Kalczynski. A leader-follower model for discrete competitive facility location. Journal of the Operational Research Society, 62(1):100–113, 2011.
[7] T. Drezner, Z. Drezner, and P. Kalczynski. A cover-based competitive location model. Computers and Operations Research, 64:51–59, 2015.
[8] C. Dürr and N. K. Thang. Nash equilibria in voronoi games on graphs. European Symposium on Algorithms, pages 17–28, 2007.
[9] J. Fernándeza, B. Pelegrín, F. Plastriab, and B. Tóth. Solving a huff-like competitive location and design model for profit maximization in the plane. European Journal of Operational Research, 179(3):1274–1287, 2007.
[10] V. C. Guzmán, D. A. Pelta, and J. L. Verdegay. An approach for solving maximal covering location problems with fuzzy constraints. International Journal of Computational Intelligence Systems, 9(4):734–744, 2016.
[11] D. L. Huff. Defining and estimating a trading area. Journal of Marketing, 28(3):34–38, 1964.
[12] E. Koutsoupiasa and C. Papadimitriou. Worst-case equilibria. Computer Science Review, 3(2):65–69, 2009.
[13] P. Kumar and P. Kumar. Almost optimal solutions to k-clustering problems. International Journal of Computational Geometry and Applications, 20(4), 2010.
[14] J. F. Nash. Equilibrium points in n-person games. In Proceedings of the National,Academy of Sciences of the United States of America, 36(1):48–49, 1950.
[15] J. L. Redondo, J. Fernández, I. García, and P. M. Ortigosa. A robust and efficient,algorithm for planar competitive location problems. Annals of Operations Research,167(1):87–105, 2009.
[16] J. L. Redondo, J. Fernández, J. D. Álvarez Hervás, A. G. Arrondo, and P. M. Ortigosa. Approximating the pareto-front of a planar bi-objective competitive facility location and design problem. Computers and Operations Research, 62:337–349, 2015.
[17] T. Roughgarden. Intrinsic robustness of the price of anarchy. Journal of the ACM,62(5):article 32, 2015.
[18] M. E. Sáiz, E. M. T. Hendrixb, and B. Pelegrín. On nash equilibria of a competitive location-design problem. European Journal of Operational Research, 210(3):588–593, 2011.
[19] L.-N. Tellier. The weber problem: solution and interpretation. Geographical Analysis, 4(3):215–233, 1972.
[20] A. Vetta. Nash equilibria in competitive societies, with applications to facility location,traffic routing and auctions. In Proceedings of the 43rd Annual Symposium on Foundations of Computer Science, pages 416–425, 2002.
[21] M. H. F. Zarandi, S. Davari, and S. A. H. Sisakht. The large scale maximal covering location problem. Scientia Iranica, 18(6):1564–1570, 2011.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67765-
dc.description.abstract選址(facility location) 是長期以來被研究的問題,探討如何找到最佳的設施(facility) 位置以滿足各種目標,例如最大化覆蓋面積、最大化市占率、最小化運輸成本…。在此篇論文中,我們關注於服務提供者們彼此的競爭,以設施位置競逐消費者的需求。競爭選址問題常用賽局建模,服務提供者們為玩家,並以設施位置作為他們的策略。
根據顧客行為,可以歸為三類:Voronoi 模型、覆蓋(cover-based) 模型、Huff-based 模型。我們主要的結果是建立廣義競爭選址(Generalized Competitve Facility Location) 以涵蓋以上三種模型。此外我們證明了 GCFL 的自主行為代價 2,也就是說,即使是最糟的情況,在玩家 (服務提供者) 們自私行為下所得到的總體收入,至少會是玩家們合作時的一半。
zh_TW
dc.description.abstractFacility location is a well-studied problem that concerns locations of facilities to optimize cerntain objective function such as maximizing covering area, maximizing market share, minimizing the transportation costs to serve the customers. We focus on competitive version of facility location problems, where sevice-providers selecting their facility locations in order to compete
for customers’ demand. These problems are often modeled as games in previous researches, where sevice-providers are the players with facility locations being their stratefies. Most of the competitive facility location games can be categorized into the Voronoi model, the cover-based model, and the Huffbased model. The behaviors of customers under each model are different. Our main result is to build a general model - Generalized Competitve Facility Location (GCFL) to cover all three types of prior models so that research findings on GCFL can be applied to them naturally. We also prove that the efficiency degradation incurred by self-interest behaviors of players, the Price of Anarchy (PoA) of GCFL is upper bounded by 2. In other words, in the worst case scenario, the sum of payoffs of self-interested players is at least one-half of optimal payoffs of cooperative players.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:48:34Z (GMT). No. of bitstreams: 1
ntu-106-R03943133-1.pdf: 730533 bytes, checksum: 310a36ced1ebff854b0670c4ad67f242 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書iii
誌謝v
摘要vii
Abstract ix
1 Introduction 1
2 Models and Notations 5
2.1 Basic settings and notations . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Prior Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.1 Voronoi Model . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.2 Cover-Based Model . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.3 Huff-based model (aka gravity model) . . . . . . . . . . . . . . . 7
3 Generalized Competitive Facility Location Game 9
4 GCFL Covers Prior Works of Competitive Facility Location Games 11
4.1 GCFL Covers Voronoi Models . . . . . . . . . . . . . . . . . . . . . . . 11
4.2 GCFL Covers Cover-based Model . . . . . . . . . . . . . . . . . . . . . 14
4.3 GCFL Covers Huff-based Model . . . . . . . . . . . . . . . . . . . . . . 16
5 The Price of Anarchy of GCFL 19
5.1 Prior Works . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
5.1.1 Nash Equilibrium and it’s Extensions . . . . . . . . . . . . . . . 19
5.1.2 Price of Anarchy . . . . . . . . . . . . . . . . . . . . . . . . . . 20
5.1.3 Valid Utility Game . . . . . . . . . . . . . . . . . . . . . . . . . 21
5.2 PoA of GCFL . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
6 Conclusion 29
Bibliography 31
dc.language.isoen
dc.subject競爭選址zh_TW
dc.subject廣義競爭選址模型zh_TW
dc.subject賽局理論zh_TW
dc.subject納許均衡zh_TW
dc.subject自主行為代價zh_TW
dc.subjectCompetitive Facility Locationen
dc.subjectGame Theoryen
dc.subjectGeneralized Competitive Facility Locationen
dc.subjectNash equilibriumen
dc.subjectPrice of Anarchyen
dc.title競爭選址的推廣模型zh_TW
dc.titleA Generalized Model for Competitve Facility Location Gamesen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee魏宏宇,呂及人,張時中
dc.subject.keyword競爭選址,廣義競爭選址模型,賽局理論,納許均衡,自主行為代價,zh_TW
dc.subject.keywordCompetitive Facility Location,Game Theory,Generalized Competitive Facility Location,Nash equilibrium,Price of Anarchy,en
dc.relation.page33
dc.identifier.doi10.6342/NTU201701960
dc.rights.note有償授權
dc.date.accepted2017-07-26
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept電機工程學研究所zh_TW
顯示於系所單位:電機工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
713.41 kBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved