Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67754
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor吳紀聖
dc.contributor.authorKuan-Yu Linen
dc.contributor.author林冠宇zh_TW
dc.date.accessioned2021-06-17T01:47:55Z-
dc.date.available2018-08-01
dc.date.copyright2017-08-01
dc.date.issued2017
dc.date.submitted2017-07-25
dc.identifier.citation1. J. P. Smol, Climate Change: A planet in flux. Nature, 483 (2012) S12-S15.
2. T. Zubkov, D. Stahl, T. L. Thompson, D. Panayotov, O. Diwald and J. T. Yates, Jr., Ultraviolet light-induced hydrophilicity effect on TiO2(110)(1 x 1). Dominant role of the photooxidation of adsorbed hydrocarbons causing wetting by water droplets. J Phys Chem B, 109 (2005) 15454-62.
3. D. Chen, G. Du, Q. Zhu and F. Zhou, Synthesis and characterization of TiO2 pillared montmorillonites: application for methylene blue degradation. J Colloid Interface Sci, 409 (2013) 151-7.
4. J. C. S. Wu, Renewable Energy from the Photocatalytic Reduction of CO2 with H2O, in Environmentally Benign Photocatalysts, P. V. K. Masakazu Anpo, Editor. 2010. 673-696.
5. C. Dong, M. Xing and J. Zhang, Economic Hydrophobicity Triggering of CO2 Photoreduction for Selective CH4 Generation on Noble-Metal-Free TiO2-SiO2. J Phys Chem Lett, 7 (2016) 2962-6.
6. Y. Cao, F. Song, Y. Zhao and Q. Zhong, Capture of carbon dioxide from flue gas on TEPA-grafted metal-organic framework Mg2(dobdc). Journal of Environmental Sciences, 25 (2013) 2081-2087.
7. T. M. McDonald, W. R. Lee, J. A. Mason, B. M. Wiers, C. S. Hong and J. R. Long, Capture of carbon dioxide from air and flue gas in the alkylamine-appended metal-organic framework mmen-Mg2(dobpdc). J Am Chem Soc, 134 (2012) 7056-65.
8. C. A. Fernandez, S. K. Nune, H. V. Annapureddy, L. X. Dang, B. P. McGrail, F. Zheng, E. Polikarpov, D. L. King, C. Freeman and K. P. Brooks, Hydrophobic and moisture-stable metal-organic frameworks. Dalton Trans, 44 (2015) 13490-7.
9. H. C. V. N. J.M. Smith, M.M.Abbott, Introduction to Chemical Engineering Thermodynamics. (2005) 694.
10. K. H. Akira Fujichima, Electrochemical photolysis of water at a semiconductor electrode. Nature, 238 (1972) 37-38.
11. H. Yoshida, Heterogeneous Photocatalytic Conversion of Carbon Dioxide2011, p.
12. S. Xie, Q. Zhang, G. Liu and Y. Wang, Photocatalytic and photoelectrocatalytic reduction of CO2 using heterogeneous catalysts with controlled nanostructures. Chem Commun (Camb), 52 (2016) 35-59.
13. S. N. Habisreutinger, L. Schmidt-Mende and J. K. Stolarczyk, Photocatalytic reduction of CO2 on TiO2 and other semiconductors. Angew Chem Int Ed Engl, 52 (2013) 7372-408.
14. M. Mohamad, B. Ul Haq, R. Ahmed, A. Shaari, N. Ali and R. Hussain, A density functional study of structural, electronic and optical properties of titanium dioxide: Characterization of rutile, anatase and brookite polymorphs. Materials Science in Semiconductor Processing, 31 (2015) 405-414.
15. D. Ali, H. Abdulah and R. Alani, Synthesis, Characterization and Photo Catalytic Application of TiO2 Co-doped with Pt+4, Au+4 and S-2. American Chemical Science Journal, 7 (2015) 201-212.
16. Y. J. Jia, W. X. Su, Y. B. Hu and H. N. Chen, Pt doped TiO2 (Pt-TiO2) sol gel thin films. Bulgarian Chemical Communications, 49 (2017) 190-192.
17. S. I. Mogal, V. G. Gandhi, M. Mishra, S. Tripathi, T. Shripathi, P. A. Joshi and D. O. Shah, Single-Step Synthesis of Silver-Doped Titanium Dioxide: Influence of Silver on Structural, Textural, and Photocatalytic Properties. Industrial & Engineering Chemistry Research, 53 (2014) 5749-5758.
18. J. Hansen, R. Ruedy, M. Sato and K. Lo, Global Surface Temperature Change. Reviews of Geophysics, 48 (2010)
19. P. Forster, B. Ramaswamy, P. Artaxo, T. Berntsen and R. Betts, Climate Change 2007: The Physical Science Basis.2007, p. 131-217.
20. I. E. Agency, key world energy statistics. (2016)
21. P. Usubharatana, D. McMartin, A. Veawab and P. Tontiwachwuthikul, Photocatalytic process for CO2 emission reduction from industrial flue gas streams. Industrial & Engineering Chemistry Research, 45 (2006) 2558-2568.
22. D. Y. C. Leung, G. Caramanna and M. M. Maroto-Valer, An overview of current status of carbon dioxide capture and storage technologies. Renewable & Sustainable Energy Reviews, 39 (2014) 426-443.
23. S. Das and W. M. A. Wan Daud, Photocatalytic CO2 transformation into fuel: A review on advances in photocatalyst and photoreactor. Renewable and Sustainable Energy Reviews, 39 (2014) 765-805.
24. R. Obert and B. C. Dave, Enzymatic Conversion of Carbon Dioxide to Methanol:  Enhanced Methanol Production in Silica Sol−Gel Matrices. Journal of the American Chemical Society, 121 (1999) 12192-12193.
25. T. Abe, M. Tanizawa, K. Watanabe and A. Taguchi, CO2 methanation property of Ru nanoparticle-loaded TiO2 prepared by a polygonal barrel-sputtering method. Energy & Environmental Science, 2 (2009) 315.
26. T. Yui, A. Kan, C. Saitoh, K. Koike, T. Ibusuki and O. Ishitani, Photochemical reduction of CO2 using TiO2: effects of organic adsorbates on TiO2 and deposition of Pd onto TiO2. ACS Appl Mater Interfaces, 3 (2011) 2594-600.
27. R. F. Service, Catalyst Offers New Hope for Capturing CO2 on the Cheap. Science, 327 (2010) 257-257.
28. W. C. Chueh, C. Falter, M. Abbott, D. Scipio, P. Furler, S. M. Haile and A. Steinfeld, High-Flux Solar-Driven Thermochemical Dissociation of CO2 and H2O Using Nonstoichiometric Ceria. Science, 330 (2010) 1797-1801.
29. K. Li, B. Peng and T. Peng, Recent Advances in Heterogeneous Photocatalytic CO2 Conversion to Solar Fuels. ACS Catalysis, 6 (2016) 7485-7527.
30. A. F. Tooru Inoue, Satoshi Konishi, Kenichi Honda, Photoelectrocatalytic reduction of carbon dioxide in aqueous suspensions of semiconductor powders. Nature, 277 (1979) 637-638.
31. X. Chang, T. Wang and J. Gong, CO2 photo-reduction: insights into CO2 activation and reaction on surfaces of photocatalysts. Energy Environ. Sci., 9 (2016) 2177-2196.
32. K. Li, X. An, K. H. Park, M. Khraisheh and J. Tang, A critical review of CO2 photoconversion: Catalysts and reactors. Catalysis Today, 224 (2014) 3-12.
33. T. Mizuno, K. Adachi, K. Ohta and A. Saji, Effect of CO2 pressure on photocatalytic reduction of CO2 using TiO2 in aqueous solutions. Journal of Photochemistry and Photobiology a-Chemistry, 98 (1996) 87-90.
34. H. K. Satoshi Kaneco , Yasuhiro Shimizu, Kiyohisa Ohta, Takayuki Mizuno, Photocatalytic reduction of CO2 using TiO2 powders in supercritical fluid CO2. Energy, 24 (1999) 21-30.
35. Y. Q. Zhong, K. Ueno, Y. Mori, T. Oshikiri and H. Misawa, Cocatalyst Effects on Hydrogen Evolution in a Plasmon-Induced Water-Splitting System. Journal of Physical Chemistry C, 119 (2015) 8889-8897.
36. D. W. JINHUI YANG, HONGXIAN HAN, AND CAN LI, SocietyRoles of Cocatalysts in Photocatalysis and Photoelectrocatalysis. Accounts of chemical research, 46 (2012) 1900-1909.
37. O. Ishitani, C. Inoue, Y. Suzuki and T. Ibusuki, Photocatalytic Reduction of Carbon-Dioxide to Methane and Acetic-Acid by an Aqueous Suspension of Metal-Deposited Tio2. Journal of Photochemistry and Photobiology a-Chemistry, 72 (1993) 269-271.
38. Y. Hori, K. Kikuchi and S. Suzuki, Production of CO and C/h4 in Electrochemical Reduction of Co2at Metal Electrodes in Aqueous Hydrogencarbonate Solution. Chemistry Letters, 14 (1985) 1695-1698.
39. Q. Zhai, S. Xie, W. Fan, Q. Zhang, Y. Wang, W. Deng and Y. Wang, Photocatalytic conversion of carbon dioxide with water into methane: platinum and copper(I) oxide co-catalysts with a core-shell structure. Angew Chem Int Ed Engl, 52 (2013) 5776-9.
40. X. Meng, S. Ouyang, T. Kako, P. Li, Q. Yu, T. Wang and J. Ye, Photocatalytic CO2 conversion over alkali modified TiO2 without loading noble metal cocatalyst. Chem Commun (Camb), 50 (2014) 11517-9.
41. F. Gonell, A. V. Puga, B. Julián-López, H. García and A. Corma, Copper-doped titania photocatalysts for simultaneous reduction of CO 2 and production of H 2 from aqueous sulfide. Applied Catalysis B: Environmental, 180 (2016) 263-270.
42. L. Matějová, K. Kočí, M. Reli, L. Čapek, A. Hospodková, P. Peikertová, Z. Matěj, L. Obalová, A. Wach, P. Kuśtrowski and A. Kotarba, Preparation, characterization and photocatalytic properties of cerium doped TiO2: On the effect of Ce loading on the photocatalytic reduction of carbon dioxide. Applied Catalysis B: Environmental, 152-153 (2014) 172-183.
43. J. W. Lekse, M. K. Underwood, J. P. Lewis and C. Matranga, Synthesis, Characterization, Electronic Structure, and Photocatalytic Behavior of CuGaO2 and CuGa1–xFexO2(x= 0.05, 0.10, 0.15, 0.20) Delafossites. The Journal of Physical Chemistry C, 116 (2012) 1865-1872.
44. D. Lozano Castello, D. Lozano-Castell, F. Surez-Garca, n. Linares-Solano, D. Cazorla-Amors, L. M Gandia, G. Arzamedi, G. Arzamendi, P. M. Diâeguez and L. M. Gandâia, Advances in Hydrogen Storage in Carbon Materials Renewable Hydrogen Technologies. Renewable Hydrogen Technologies, (2013) 269-291.
45. B. R. Chen, V. H. Nguyen, J. C. S. Wu, R. Martin and K. Koci, Production of renewable fuels by the photohydrogenation of CO2: effect of the Cu species loaded onto TiO2 photocatalysts. Physical Chemistry Chemical Physics, 18 (2016) 4942-4951.
46. C.-C. Lo, C.-H. Hung, C.-S. Yuan and J.-F. Wu, Photoreduction of carbon dioxide with H2 and H2O over TiO2 and ZrO2 in a circulated photocatalytic reactor. Solar Energy Materials and Solar Cells, 91 (2007) 1765-1774.
47. C.-Y. Chen, J. Yu, V.-H. Nguyen, J. Wu, W.-H. Wang and K. Kočí, Reactor Design for CO2 Photo-Hydrogenation toward Solar Fuels under Ambient Temperature and Pressure. Catalysts, 7 (2017) 63.
48. H. H. Yoshiumi Kohno, Sakae Takenaka, Tsunehiro Tanaka,Takuzo Funabiki, Satohiro Yoshida, Photo-enhanced reduction of carbon dioxide with hydrogen over Rh/TiO2. Journal of Photochemistry and Photobiology A: Chemistry, 126 (1999) 117-123.
49. Hideo Tsuneoka, Kentaro Teramura, Tetsuya Shishido and T. Tanaka, Adsorbed Species of CO2 and H2 on Ga2O3 for the Photocatalytic Reduction of CO2. J. Phys. Chem. C, 114 (2010) 8892-8898.
50. A. Cornelis and P. Laszlo, Clay-Supported Copper(Ii) and Iron(Iii) Nitrates - Novel Multi-Purpose Reagents for Organic-Synthesis. Synthesis-Stuttgart, 10 (1985) 909-918.
51. K. G. Bhattacharyya and S. S. Gupta, Adsorption of a few heavy metals on natural and modified kaolinite and montmorillonite: a review. Adv Colloid Interface Sci, 140 (2008) 114-31.
52. L ́ılian Zarpona, Gilberto Abateb, Luciana B.O. dos Santosa and J. C. Masini, Montmorillonite as an adsorbent for extraction and concentration of atrazine, propazine, deethylatrazine, deisopropylatrazine and hydroxyatrazine. Analytica Chimica Acta, 579 (2006) 81-87.
53. O. Bouras, T. Chami, M. Houari, H. Khalaf, J. C. Bollinger and M. Baudu, Removal of sulfacid brilliant pink from an aqueous stream by adsorption onto surfactant-modified Ti-pillared montmorillonite. Environ Technol, 23 (2002) 405-11.
54. C. Ooka, H. Yoshida, K. Suzuki and T. Hattori, Highly hydrophobic TiO2 pillared clay for photocatalytic degradation of organic compounds in water. Microporous and Mesoporous Materials, 67 (2004) 143-150.
55. J. N. Wang and Z. P. Mao, Modified Montmorillonite and Its Application as a Flame Retardant for Polyester. Journal of Applied Polymer Science, 131 (2014) 8.
56. X. Ding, T. An, G. Li, S. Zhang, J. Chen, J. Yuan, H. Zhao, H. Chen, G. Sheng and J. Fu, Preparation and characterization of hydrophobic TiO(2) pillared clay: the effect of acid hydrolysis catalyst and doped Pt amount on photocatalytic activity. J Colloid Interface Sci, 320 (2008) 501-7.
57. S. Yang, G. Liang, A. Gu and H. Mao, Synthesis of TiO2 pillared montmorillonite with ordered interlayer mesoporous structure and high photocatalytic activity by an intra-gallery templating method. Materials Research Bulletin, 48 (2013) 3948-3954.
58. K. Chen, J. Li, J. Li, Y. Zhang and W. Wang, Synthesis and characterization of TiO2–montmorillonites doped with vanadium and/or carbon and their application for the photodegradation of sulphorhodamine B under UV–vis irradiation. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 360 (2010) 47-56.
59. P. Akhter, Photocatalytic reduction of CO2 to valuable fuels by novel nanostructured titania materials. 2015, Politecnico di Torino. 193.
60. D. A. Doshi, E. B. Watkins, J. N. Israelachvili and J. Majewski, Reduced water density at hydrophobic surfaces: effect of dissolved gases. Proc Natl Acad Sci U S A, 102 (2005) 9458-62.
61. X. Wang, Y. Du, J. Yang, Y. Tang and J. Luo, Preparation, characterization, and antimicrobial activity of quaternized chitosan/organic montmorillonite nanocomposites. J Biomed Mater Res A, 84 (2008) 384-90.
62. S. Brunauer, P. H. Emmett and E. Teller, Adsorption of gases in multimolecular layers. Journal of the American Chemical Society, 60 (1938) 309-319.
63. M. A. W.H. Bragg, F.R.S, The reflection of X-rays by crystals. Physical and Engineering Sciences, 88 (1913) 428-438.
64. R. L. B. Grob, Eugene F. , Modern Practice of Gas Chromatography. 4. John Wiley & Sons, 2004, p. 228.
65. A. Wexler, Vapor Pressure Formulation for Water in Range 0 to f 00 °C. A Revision. JOURNAL OF RESEARCH of the Nation a l Bureau of Sta nda rds- A. Physics and Chem istry, 80A (1976) 775-785.
66. A. Galarneau, F. Villemot, J. Rodriguez, F. Fajula and B. Coasne, Validity of the t-plot method to assess microporosity in hierarchical micro/mesoporous materials. Langmuir, 30 (2014) 13266-74.
67. M. Tahir and N. S. Amin, Photocatalytic CO2 reduction with H2O vapors using montmorillonite/TiO2 supported microchannel monolith photoreactor. Chemical Engineering Journal, 230 (2013) 314-327.
68. X. Jian, W. Xuebing, D. Bingyao and L. Qingsheng, Modification of montmorillonite by different surfactants and its use for the preparation of polyphenylene sulfide nanocomposites. High Performance Polymers, 28 (2015) 618-629.
69. Q. Yin, Z. Zhang, S. Wu, J. Tan and K. Meng, Preparation and characterization of novel cationic–nonionic organo-montmorillonite. Materials Express, 5 (2015) 180-190.
70. H. KhalaP, O. Bouras and V. Perrichon, Synthesis and characterization of Al-pillared and cationic surfactant modified Al-pillared Algerian bentonite. Microporous Materials, 8 (1997) 141-150.
71. E. Dvininov, E. Popovici, R. Pode, L. Cocheci, P. Barvinschi and V. Nica, Synthesis and characterization of TiO2-pillared Romanian clay and their application for azoic dyes photodegradation. J Hazard Mater, 167 (2009) 1050-6.
72. J. L. Valverde, P. Sánchez, F. Dorado, C. B. Molina and A. Romero, Influence of the synthesis conditions on the preparation of titanium-pillared clays using hydrolyzed titanium ethoxide as the pillaring agent. Microporous and Mesoporous Materials, 54 (2002) 155-165.
73. A. d. L. Jose´ L. Valverde, Fernando Dorado, Rosario Sun-Kou, Paula Sa´nchez, Isaac Asencio, Agustı´n Garrido, and Amaya Romero, Characterization and Catalytic Properties of Titanium-Pillared Clays Prepared at Laboratory and Pilot Scales: A Comparative Study. Ind. Eng. Chem. Res., 42 (2003) 2783-2790.
74. J. A. O. H. Y. Zhu, J.-Y. Li,, J.-C. Zhao, G. J. Churchman, and E. F. Vansant, Novel Composites of TiO2 (Anatase) and Silicate Nanoparticles. Chem. Mater., 14 (2002) 5037-5044.
75. J. L. Valverde, P. Sánchez, F. Dorado, I. Asencio and A. Romero, Preparation and Characterization of Ti-Pillared Clays Using Ti Alkoxides. Influence of the Synthesis Parameters. Clays and Clay Minerals, 51 (2003) 41-51.
76. A. K. Helmy, E. A. Ferreiro and S. G. Debussetti, Cation-Exchange Capacity and Condition of Zero Charge of Hydroxy-Al Montmorillonite. Clays and Clay Minerals, 42 (1994) 444-450.
77. X. Z. Tang, W. Q. Xu, Y. F. Shen and S. L. Suib, Preparation and Characterization of Pillared Gallium Aluminum Clays with Enriched Pillars. Chemistry of Materials, 7 (1995) 102-110.
78. N.D. Hutson, M.J. Hoekstra and R. T. Yang, Control of microporosity of Al2O3-pillared clays: effect of pH,calcination temperature and clay cation exchange capacity. Microporous and Mesoporous Materials 2, 28 (1998) 447-459.
79. E. F. Vansant;, P. V. D. Voort; and K. C. Vrancken, Characterization and Chemical Modification of the Silica Surface. Elsevier, 1995, Chapter 3, p. 42-43.
80. W. Wang, S. Wang, X. Ma and J. Gong, Recent advances in catalytic hydrogenation of carbon dioxide. Chem Soc Rev, 40 (2011) 3703-27.
81. Z. Navrtilov and R. Marlek, Application of Electrochemistry for Studying Sorption Properties of Montmorillonite. (2012)
82. Y. H. Shih, W. S. Liu and Y. F. Su, Aggregation of stabilized TiO2 nanoparticle suspensions in the presence of inorganic ions. Environ Toxicol Chem, 31 (2012) 1693-8.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67754-
dc.description.abstract面臨日趨嚴重的全球暖化與能源議題。利用近乎無限的太陽能,光催化二氧化碳是目前受到科學家大量重視,同時能解決此兩大議題的辦法。經由熱力學計算,使用氫氣作為氫源的光催化二氧化碳氫化反應與傳統的二氧化碳與水的還原反應相比在熱力學上有利、促進碳氫化合物的生成。
有鑑於在二氧化碳光還原反應中,二氧化碳在和水競爭活性位上的不利將導致還原效率的降低。本研究旨在藉由提高觸媒的疏水性,以改善二氧化碳還原光觸媒上二氧化碳與水氣競爭吸附的問題。本研究中之光觸媒以溶膠凝膠法配合陽離子交換法製備鈦柱撐蒙脫土觸媒,並透過吸附不同劑量之界面活性劑CTAB增加觸媒之疏水性。為了釐清觸媒之結構性質,研究裡進行了UV-vis、XRD、TG-DTA、ICP-MS、FE-SEM、EDS、FE-TEM、接觸角等觸媒鑑定。
本研究以8W之UVB筆燈作為燈源,透過單胞批次式反應器測試觸媒在光催化二氧化碳氫化反應照光四小時之光催化活性。實驗結果顯示50PtTiMt的光催化活性最佳、光量子效率也最高,光照四小時後,於45°C產率為:CO:18.59μmol/gcat、CH4:22.74μmol/gcat、光量子效率0.04221%、CH4之選擇性最好。和商用的二氧化鈦Degussa P25相比提升了二倍的還原產物產率。根據實驗結果以及觸媒鑑定所得的資訊,在鈦柱撐蒙脫土後,觸媒之形貌、物理吸附特性發生改變、二氧化鈦之結晶顆粒越小。隨著CTA+吸附的增加,觸媒之疏水性也隨之增加。然而,當CTA+吸附增加,我們推測部分CTA+會吸附於反應活性位上,反而影響到光催化活性。因此,CTA+之吸附於50%陽離子交換能力時達到最適量,疏水的效果最好。研究中詳細探討蒙脫土、界面活性劑等所扮演的角色。
zh_TW
dc.description.abstractFacing the serious global warming and energy crisis problem, photocatalytic reduction of carbon dioxide is one of the most promising solutions to solve both problems simultaneously. Previous studies show that the hydrogenation of carbon dioxide photoreduction process can make the reaction more thermodynamically favorable, therefore promoting the hydrocarbon yield.
In this research we prepared a set of photocatalysts with different hydrophobic properties, on the basis that the inferior ability of carbon dioxide to compete the active sites with water vapor during the carbon dioxide photoreduction process. Montmorillonite with excellent cation exchange ability were combined with titanium dioxide sol gel for the preparation of titanium pillared montmorillonite. With simple cation exchange process, the catalysts were obtained with different hydrophobicity by the control of surfactant addition. To clarify the structural, textural and thermal properties, series of characterizations, including UV-vis, XRD, TGA, TG-DTA, FE-SEM, EDS, FE-TEM, ICP-MS were performed.
Using 8W UVB pen ray lamp as the light source, the photocatalytic carbon dioxide reduction activity of the catalysts were studied in a single batch reactor. After 4 hours irradiation under a mixture of carbon dioxide, water vapor, and hydrogen system at 45°C, 50PtTiMt showed the best photoactivity, generating CO:18.59μmol/gcat and CH4:22.74μmol/gcat, quantum efficiency 0.04221% and the highest CH4 selectivity. In comparison with commercial titanium dioxide P25 catalyst, a two-fold enhancement was achieved. Based on the experiment and characterization information, titanium pillared montmorillonite showed significant difference in morphology, adsorption properties compared with original clay, and smaller crystallite size compared with titanium dioxide without montmorillonite. The hydrophobicity of the catalyst increase along with the increase of CTA+ addition. However, we postulate that when the CTA+ addition amount is very high, part of the CTA+ may adsorb on the active sites and affect the photoactivity. In this study, the optimal CTA+ addition amount at 50% cationic exchange ability. Finally, the roles of titanium dioxide, surfactant, and montmorillonite are also well discussed.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:47:55Z (GMT). No. of bitstreams: 1
ntu-106-R04524031-1.pdf: 6487991 bytes, checksum: e815e3af4aedb25216b165068210c734 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書
誌謝 ii
中文摘要 iv
ABSTRACT v
CONTENTS vi
LIST OF FIGURES x
LIST OF TABLES xiv
Chapter 1 緒論 1
Chapter 2 文獻回顧 3
2.1 光觸媒 3
2.2 光觸媒的反應原理 3
2.3 二氧化鈦 5
2.4 觸媒的製備方法 6
2.4.1 溶膠凝膠法 6
2.5 二氧化碳 9
2.5.1 簡介 9
2.5.2 固定二氧化碳 11
2.5.3 二氧化碳還原 13
2.6 二氧化碳的氫化反應 19
2.7 蒙脫土 22
2.8 二氧化鈦柱撐蒙脫土 23
2.9 疏水化光觸媒 24
Chapter 3 實驗方法 28
3.1 實驗藥品與儀器設備 28
3.1.1 藥品 28
3.1.2 儀器 29
3.2 觸媒的製備流程 29
3.3 觸媒特性分析與儀器分析原理 31
3.3.1 儀器型號與規格 31
3.3.2 紫外光-可見光光譜儀(UV-Visible Spectrometer, UV-Vis) 31
3.3.3 場發射掃描式電子顯微鏡(Field Emission Scanning Electron Microscope, FE-SEM) 33
3.3.4 能量散佈光譜儀(Energy Dispersive Spectrometer, EDS) 35
3.3.5 200kV場發射槍穿透式電子顯微鏡(Field Emission Gun Trasmission Electron Spectroscopy, FEG-TEM) 36
3.3.6 感應耦合電漿質譜儀(Inductively Coupled Plasma Mass Spectrometry, ICP-MS) 37
3.3.7 比表面積分析(Specific Surface Area Analyzer, BET) 40
3.3.8 X光繞射儀(X-Ray Diffractometer, XRD) 41
3.3.9 熱重示差同步掃描分析儀(Thermogravimetry/Differential Thermal Analysis Thermoanalyzer, TG-DTA) 45
3.3.10 接觸角量測儀(Contact Angle Meter) 45
3.3.11 氣相管柱層析儀(Gas Chromatograph, GC) 46
3.4 單胞批式反應器 (Single batch photoreactor) 49
3.5 反應產量檢測 51
3.5.1 氫氣檢量線製作 51
3.5.2 一氧化碳檢量線製作 52
3.5.3 甲烷檢量線製作 53
Chapter 4 觸媒特性分析與結果討論 55
4.1.1 X光繞射分析 55
4.1.2 紫外可見光譜分析 57
4.1.3 TG-DTA分析 58
4.1.4 ICP-MS分析光觸媒與鉑金屬含量 61
4.1.5 接觸角實驗 62
4.1.6 水吸附實驗 63
4.1.7 BET比表面積測定與材料之孔隙性質 65
4.1.8 掃描式電子顯微鏡 70
4.1.9 穿透式電子顯微鏡 76
Chapter 5 光觸媒反應結果與討論 80
5.1 空白實驗 80
5.2 穩定性測試 81
5.3 45°C光催化反應 82
5.3.1 光催化二氧化碳氫化還原反應 82
5.3.2 觸媒於氮氣環境下之產物貢獻 83
5.3.3 相同光觸媒量下之產物分布比較 86
5.3.4 蒙脫土所扮演的角色 86
5.4 65°C光催化反應 88
5.5 光量子效率 91
Chapter 6 結論 93
Reference 95
附錄 100
個人小傳 105
dc.language.isozh-TW
dc.subject二氧化碳光催化還原zh_TW
dc.subject光觸媒zh_TW
dc.subject疏水性zh_TW
dc.subject蒙脫土zh_TW
dc.subjectCO2 photocatalytic reductionen
dc.subjectphotocatalysten
dc.subjectmontmorilloniteen
dc.subjecthydrophobicen
dc.title疏水性奈米複合光觸媒行光催氫化二氧化碳zh_TW
dc.titleHydrophobic Nanocomposite Photocatalyst for
Photocatalytic Carbon Dioxide Hydrogenation
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee曾怡享,呂宗昕
dc.subject.keyword光觸媒,二氧化碳光催化還原,疏水性,蒙脫土,zh_TW
dc.subject.keywordphotocatalyst,CO2 photocatalytic reduction,hydrophobic,montmorillonite,en
dc.relation.page105
dc.identifier.doi10.6342/NTU201701703
dc.rights.note有償授權
dc.date.accepted2017-07-26
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved