請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67741完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊志忠(Chih-Chung Yang) | |
| dc.contributor.author | Hao-Tsung Chen | en |
| dc.contributor.author | 陳浩宗 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:47:11Z | - |
| dc.date.available | 2018-07-27 | |
| dc.date.copyright | 2017-07-27 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-26 | |
| dc.identifier.citation | References
[1] U. Kaufmann, P. Schlotter, H. Obloh, K. Köhler, and M. Maier, “Hole conductivity and compensation in epitaxial GaN:Mg layers,” Phys. Rev. B, 62, 10867, (2000). [2] I. P. Smorchkova, E. Haus, B. Heying, P. Kozodoy, P. Fini, J. P. Ibbetson, S. Keller, S. P. DenBaars, J. S. Speck, and U. K. Mishra, “Mg doping of GaN layers grown by plasma-assisted molecular-beam epitaxy,” Appl. Phys. Lett., 76, 718, (2000). [3] S. D. Burnham, G. Namkoong, D. C. Look, B. Clafin, and W. A. Doolittle, “Reproducible increased Mg incorporation and large hole concentration in GaN using metal modulated epitaxy,” J. Appl. Phys, 104, 024902, (2008). [4] G. Namkoong, E. Trybus, K. K. Lee, M. Moseley, W. A. Doolittle, and D. C. Look, “Metal modulation epitaxy growth for extremely high hole concentrations above 1019 cm-3 in GaN,” Appl. Phys. Lett., 93, 172112, (2008). [5] X. Guo and E. F. Schubert, “Current crowding and optical saturation effects in GaInN/GaN light-emitting diodes grown on insulating substrates,” Appl. Phys. Lett., 78, 3337, (2001). [6] M. Zhang, P. Bhattacharya, W. Guo, and A. Banerjee, “Mg doping of GaN grown by plasma-assisted molecular beam epitaxy under nitrogen-rich conditions,” Appl. Phys. Lett., 96, 132103, (2010). [7] Y. I. Alivov, J. E. Van Nostrand, D. C. Look, M. V. Chukichev, and B. M. Ataev, “Observation of 430 nm electroluminescence from ZnO/GaN heterojunction light-emitting diodes,” Appl. Phys. Lett., 83, 2943, (2003). [8] S.J. Chung, E.-K. Suh, H.J. Lee, H.B. Mao, S.J. Park “Photoluminescence and photocurrent studies of p-type GaN with various thermal treatments” J. of Crystal Growth, 235, 49, (2002) [9] H. S. Chen, C. F. Chen, Y. Kuo, W. H. Chou, C. H. Shen, Y. L. Jung, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupled light-emitting diode with metal protrusions into p-GaN,” Appl. Phys. Lett., 102, 041108, (2013). [10] Y. Kuo, C. Y. Su, C. Hsieh, W. Y. Chang, C. A. Huang, Y. W. Kiang, C. C. Yang, “Surface plasmon coupling for suppressing p-GaN absorption and TM-polarized emission in a deep-UV light-emitting diode” Opt. Lett., 40, 4429, (2015). [11] A. Bhattacharyya, W. Li, J. Cabalu, T. D. Moustakas, D. J. Smith, and R. L. Hervig, “Efficient p-type doping of GaN films by plasma-assisted molecular beam epitaxy,” Appl. Phys. Lett., 85, 4956, (2004). [12] W. Götz, N. M. Johnson, J. Walker, D. P. Bour, and R. A. Street, “Activation of acceptors in Mg‐doped GaN grown by metalorganic chemical vapor deposition,” Appl. Phys. Lett., 68, 667, (1996). [13] D. J. Kima) and D. Y. Ryu N. A. Bojarczuk, J. Karasinski, and S. Guha S. H. Lee and J. H. Lee, “Thermal activation energies of Mg in GaN:Mg measured by the Hall effect and admittance spectroscopy” J. Appl. Phys., 88, 2564, (2000). [14] J. S. Cabalu, A. Williams, T. C. P. Chen, R. France, and T. D. Moustakas, “Visible light-emitting diodes grown by plasma assisted molecular beam epitaxy on hydride vapor-phase epitaxy GaN templates and the development of dichromatic (phosphorless) white LEDs,” Mat. Res. Soc. Symp. Proc., 892, (2011). [15] M. Zhong, J. Roberts, W. Kong, A. S. Brown, and A. J. Steckl, “p-type GaN grown by phase shift epitaxy,” Appl. Phys. Lett., 104, 012108, (2014). [16] M. L. Nakarmi, K. H. Kim, J. Li, J. Y. Lin, and H. X. Jiang, “Enhanced p-type conduction in GaN and AlGaN by Mg-δ-doping,” Appl. Phys. Lett., 82, 3041, (2003). [17] Y. Chen, H. Wu, E. Han, G. Yue, Z. Chen, Z. Wu, G. Wang, and H. Jiang, “High hole concentration in p-type AlGaN by indium-surfactant-assisted Mg-delta doping,” Appl. Phys. Lett., 106, 162102, (2015). [18] C. Bayram, J. L. Pau, R. McClintock, and M. Razeghi, “Delta-doping optimization for high quality p-type GaN,” J. Appl. Phys., 104, 083512, (2008). [19] C. Yingda, W. Hualong, Y. Guanglong, C. Zimin, Z. Zhiyuan, W. Zhisheng, W. Gang, and J. Hao, “Enhanced Mg doping efficiency in p-Type GaN by indium-surfactant- assisted delta doping method,” Appl. Phys. Express, 6, 041001, (2013). [20] E. C. H. Kyle, S. W. Kaun, E. C. Young, and J. S. Speck, “Increased p-type conductivity through use of an indium surfactant in the growth of Mg-doped GaN,” Appl. Phys. Lett., 106, 222103, (2015). [21] P. Kozodoy, Y. P. Smorchkova, M. Hansen, H. Xing, S. P. DenBaars, U. K. Mishra, A. W. Saxler, R. Perrin, and W. C. Mitchel, “Polarization-enhanced Mg doping of AlGaN/GaN superlattices,” Appl. Phys. Lett., 75, 2444, (1999). [22] E. L. Waldron, J. W. Graff, and E. F. Schubert, “Improved mobilities and resistivities in modulation-doped p-type AlGaN/GaN superlattices,” Appl. Phys. Lett., 79, 2737, (2001). [23] J. Hertkorn, S. B. Thapa, T. Wunderer, F. Scholz, Z. H. Wu, Q. Y. Wei, F. A. Ponce, M. A. Moram, C. J. Humphreys, C. Vierheilig, and U. T. Schwarz, “Highly conductive modulation doped composition graded p-AlGaN/(AlN)/GaN multiheterostructures grown by metalorganic vapor phase epitaxy,” J. Appl. Phys., 106, 013720, (2009). [24] D. C. Look, E. R. Heller, Y. F. Yao, and C. C. Yang, “Significant mobility enhancement in extremely thin highly doped ZnO films,” Appl. Phys. Lett., 106, 152102, (2015). [25] Y. F. Yao, H. T. Chen, C. Y. Su, C. Hsieh, C. H. Lin, Y. W. Kiang, and C. C. Yang, “Phosphor-free, white-light LED under alternating-current operation,” Opt. Lett. 39, 6371 (2014). [26] Sentaurus Device User Manual, version E-2010.12, Synopsys, Inc., Mountain View, California, (2010). [27] D. C. Look and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,” Appl. Phys. Lett. 70, 3377 (1997). [28] Fernando Rinaldi, “Basics of Molecular Beam Epitaxy (MBE),” Annual Report, Optoelectronics Department, University of Ulm, (2002) [29] A. Agarwal, M. Tahhan, Tom Mates, S. Keller, and U. Mishra, “Suppression of Mg propagation into subsequent layers grown by MOCVD,” J. Appl. Phys., 121, 025106 (2017); [30] G. Koblmüller, J. Brown, R. Averbeck, H. Riechert, P. Pongratz and J. S. Speck “Ga Adlayer Governed Surface Defect Evolution of (0001)GaN Films Grown by Plasma-Assisted Molecular Beam Epitaxy,” J. J. of Appl. Phys., 44, L906, (2005). [31] A. Botchkarev, A. Salvador, B. Sverdlov, J. Myoung, and H. Morkoç, “Properties of GaN films grown under Ga and N rich conditions with plasma enhanced molecular beam epitaxy,” J. Appl. Phys., 77, 4455 (1995). [32] H. Xing, D. S. Green, H. Yu, T. Mates, P. Kozodoy, S. Keller, S. P. Denbaars and U. K. Mishra, “Memory Effect and Redistribution of Mg into Sequentially Regrown GaN Layer by Metalorganic Chemical Vapor Deposition,” Jpn. J. Appl. Phys. 42, 50, (2003). [33] Y. R. Wu, M. Singh, and J. Singh, “Gate leakage suppression and contact engineering in nitride heterostructures,” J. Appl. Phys., 94, 5826, (2003). [34] D. K. Gaskill, L. B. Rowland, and K. Doverspike, “Electrical transport properties of A1N, GaN and AlGaN,” in Properties of Group III Nitrides, J. Edgar, ed. EMIS Datareviews Series, no. 11, pp. 101-116, (1995). [35] E. Monroy, T. Andreev, P. Holliger, E. Bellet-Amalric, T. Shibata, M. Tanaka, and B. Daudin, “Modification of GaN(0001) growth kinetics by Mg doping,” Appl. Phys. Lett., (84), 2554, (2004). [36] D. C. Look and R. J. Molnar, “Degenerate layer at GaN/sapphire interface: Influence on Hall-effect measurements,” Appl. Phys. Lett., 70, 3377, (1997). [37] C. P. Wang and Y. R. Wu, “Study of optical anisotropy in nonpolar and semipolar AlGaN quantum well deep ultraviolet light emission diode,” J. Appl. Phys., 112, 033104, (2012). [38] Y. N. Xu and W. Y. Ching, “Electronic, optical, and structural properties of some wurtzite crystals,” Phys. Rev. B, 48, 4335, (1993). [39] J. Singh, “Electronic and Optoelectronic Properties of Semiconductor Structures,” Cambridge University Press, Chapter 6, (2003). [40] J. I. Pankove, S. Bloom, G. Harbeke, “Optical properties of GaN,” RCA Rev., 36 , 163, (1975). [41] Y. Ohba and A. Hatano, “A study on strong memory effects for Mg doping in GaN metalorganic chemical vapor deposition,” J. Cryst. Growth, 145, 214, (1994). [42] H. Xing, D. S. Green, H. Yu, T. Mates, P. Kozodoy, S. Keller, S. P. DenBaars, and U. K. Mishra, “Memory effect and redistribution of Mg into sequentially regrown GaN layer by metalorganic chemical vapor deposition,” Jpn. J. Appl. Phys., 42, 50, (2003). [43] Y. L. Chang, M. Ludowise, D. Lefforge, and B. Perez, “Study of Mg diffusion during metalorganic chemical vapor deposition of GaN and AlGaN,” Appl. Phys. Lett., 74, 688, (1999). | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67741 | - |
| dc.description.abstract | 我們使用分子束磊晶法成長p摻雜與未摻雜氮化鎵多層奈米結構,達到超低電阻率 0.038 ohm-m,低電阻率之原理是靠著p型氮化鎵層的電洞擴散至兩側未摻雜氮化鎵奈米層,藉由未摻雜層的高電洞遷移率特性,使用未摻雜氮化鎵層為通道,大幅提高整體導電率。我們也進行模擬研發基於於Brooks-Herring理論建立受離子化後雜子散射的電洞遷移率分布和隨深度變化的電洞濃度分布,藉由此分布我們也可以瞭解電流流經的區域,進而計算與實驗結果吻合的等效電洞濃度、等效遷移率與等效電阻率。
為瞭解在量測電流與電壓關係時,電流在多層p摻雜與未摻雜氮化鎵之交替層結構中的分布,我們建立了一個模型。在這模型中,於較低等效導電率的多層結構內,我們假設側向電流隨深度指數下降,而在高導電率多層結構內的側向電流隨深度均勻分布。藉由改變上部分低導電結構的厚度和下部分高導電結構的厚度比例,我們可以量測多組樣品的片導電率,然後用我們建立的模型對此實驗量測數據以獲得出最佳擬合曲線,由此可得到上部分低導電結構的導電率與電流穿透深度。我們發現降低電流穿透深度的重要因素是低導電結構中未摻雜氮化鎵層的厚度太大,此厚度太大使得附近p摻雜氮化鎵層的電洞無法擴散至未摻雜層的中間,以致於在未摻雜層中間形成一高電阻的薄層。 | zh_TW |
| dc.description.abstract | p-GaN/u-GaN alternating-layer nanostructures are grown with molecular beam epitaxy to show a low p-type resistivity level of 0.038 Ohm-cm. The obtained low resistivity is due to the high hole mobility in the u-GaN layers, which serve as effective transport channels of holes diffused from the neighboring p-GaN layers. The Mg doping in a thin p-GaN layer can lead to a high Mg-doping concentration for supplying holes to the neighboring u-GaN layers. Simulations based on a one-dimensional drift diffusion charge control model and the Brooks-Herring theory of ionized impurity scattering are undertaken to first obtain the depth-dependent distributions of hole concentration, mobility, and hence resistivity. Then, weighted averaging processes are used for evaluating the effective hole concentration, mobility, and resistivity of a p-GaN/u-GaN alternating-layer nanostructure to give consistent results with the measured data.
A model for estimating the current penetration behavior in a p-GaN/u-GaN alternating-layer structure when its I-V characteristics is to be measured is proposed. In this model, an exponential decay with a characteristic penetration depth is assumed for a layered structure of low effective conductivity. In a high-conductivity structure, this penetration depth is regarded as infinity such that the depth-dependent current distribution is uniform. By growing p-type structures with an upper portion of a layered structure of unknown effective conductivity and a lower portion of high conductivity, which can be a layered or a uniform structure, of different individual thicknesses, we can have a sequence of sheet conductance data for best-fitting with the proposed model to simultaneously obtain the characteristic penetration depth and effective conductivity of the upper layered structure. Simulation studies are performed to provide the results supporting the proposed model. From the simulation results, it is found that the key factor hindering the current penetration is the low conductivity and finite thickness of a sub-layer around the middle of a u-GaN layer, which is not covered by the hole diffusion range from the neighboring p-GaN layers. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:47:11Z (GMT). No. of bitstreams: 1 ntu-106-F98941074-1.pdf: 2337074 bytes, checksum: 633b13c77d04b74cfc9728d978d055a1 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | Contents
致謝 i 摘要 iii Abstract v Contents vii List of Figure ix List of Table xi Chapter 1 Introductions 1 1.1 High conductive p-type GaN 1 1.2 Carrier mobility enhanced by undoped layer 3 1.3 Undoped GaN grown by MBE and dopant region control mechanism 6 1.4 Research motivations 8 1.5 Theses organization 11 Chapter 2 Combining High Hole Concentration in p-GaN and High Mobility in u-GaN for High p-type Conductivity in a p-GaN/u-GaN Alternating-layer 12 2.1 Sample structures and growth conditions 12 2.2 Hall measurement results 14 2.3 Simulation study 15 2.4 Discussions 19 Chapter 3 Current Penetration Depth and Effective Conductivity of a Layered p-type Structure 32 3.1 Sample growth conditions and simulation method 32 3.2 Simulation results 37 3.3 Measurement and fitting results of sheet conductance 40 3.4 Discussions 43 Chapter 4 Conclusions 56 References 58 Publication List 65 | |
| dc.language.iso | en | |
| dc.subject | p型 | zh_TW |
| dc.subject | 氮化鎵 | zh_TW |
| dc.subject | 分子束磊晶 | zh_TW |
| dc.subject | 奈米結構 | zh_TW |
| dc.subject | GaN | en |
| dc.subject | p-type | en |
| dc.subject | nanostructure | en |
| dc.subject | MBE | en |
| dc.subject | Molecular beam epitaxy | en |
| dc.title | 奈米尺寸層狀p-型氮化鎵的高導電率與其等效導電率量測方法 | zh_TW |
| dc.title | High Conductivity of a Nano-scale Layered p-GaN Structure and the Measurement Method of Its Effective Conductivity | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 博士 | |
| dc.contributor.oralexamcommittee | 黃建璋(Jian-Jang Huang),吳肇欣(Chao-Hsin Wu),陳奕君(I-Chun Cheng),江衍偉(Yean-Woei Kiang),張守進(Shoou-Jinn Chang) | |
| dc.subject.keyword | 氮化鎵,p型,奈米結構,分子束磊晶, | zh_TW |
| dc.subject.keyword | GaN,p-type,nanostructure,MBE,Molecular beam epitaxy, | en |
| dc.relation.page | 86 | |
| dc.identifier.doi | 10.6342/NTU201701886 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-26 | |
| dc.contributor.author-college | 電機資訊學院 | zh_TW |
| dc.contributor.author-dept | 光電工程學研究所 | zh_TW |
| 顯示於系所單位: | 光電工程學研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 2.28 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
