請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67738完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 楊雅倩(Ya-Chien Yang) | |
| dc.contributor.author | Hung-Jen Chen | en |
| dc.contributor.author | 陳泓仁 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:47:01Z | - |
| dc.date.available | 2020-08-26 | |
| dc.date.copyright | 2020-08-26 | |
| dc.date.issued | 2020 | |
| dc.date.submitted | 2020-08-18 | |
| dc.identifier.citation | 1. Beziat V, Hilton HG, Norman PJ, et al. Deciphering the killer-cell immunoglobulin-like receptor system at super-resolution for natural killer and T-cell biology. Immunology 2017;150:248-264. 2. Trowsdale J. Genetic and functional relationships between MHC and NK receptor genes. Immunity 2001;15:363-74. 3. Farag SS, Fehniger TA, Ruggeri L, et al. Natural killer cell receptors: new biology and insights into the graft-versus-leukemia effect. Blood 2002;100:1935-47. 4. Thielens A, Vivier E, Romagne F. NK cell MHC class I specific receptors (KIR): from biology to clinical intervention. Curr Opin Immunol 2012;24:239-45. 5. http://sciscogenetics.com/technology/killer-cell-ig-like-receptors/. 6. Martin AM, Freitas EM, Witt CS, et al. The genomic organization and evolution of the natural killer immunoglobulin-like receptor (KIR) gene cluster. Immunogenetics 2000;51:268-280. 7. Martin AM, Kulski JK, Gaudieri S, et al. Comparative genomic analysis, diversity and evolution of two KIR haplotypes A and B. Gene 2004;335:121-31. 8. Uhrberg M, Valiante NM, Shum BP, et al. Human diversity in killer cell inhibitory receptor genes. Immunity 1997;7:753-63. 9. Uhrberg M, Parham P, Wernet P. Definition of gene content for nine common group B haplotypes of the Caucasoid population: KIR haplotypes contain between seven and eleven KIR genes. Immunogenetics 2002;54:221-9. 10. Maxwell LD, Wallace A, Middleton D, et al. A common KIR2DS4 deletion variant in the human that predicts a soluble KIR molecule analogous to the KIR1D molecule observed in the rhesus monkey. Tissue Antigens 2002;60:254-258. 11. Middleton D, Gonzalez A, Gilmore PM. Studies on the Expression of the Deleted KIR2DS4*003 Gene Product and Distribution of KIR2DS4 Deleted and Nondeleted Versions in Different Populations. Human Immunology 2007;68:128-134. 12. Pando MJ, Gardiner CM, Gleimer M, et al. The protein made from a common allele of KIR3DL1 (3DL1*004) is poorly expressed at cell surfaces due to substitution at positions 86 in Ig domain 0 and 182 in Ig domain 1. Journal of immunology (Baltimore, Md. : 1950) 2003;171:6640-6649. 13. Bono M, Pende D, Bertaina A, et al. Analysis of KIR3DP1 Polymorphism Provides Relevant Information on Centromeric KIR Gene Content. J Immunol 2018;201:1460-1467. 14. Campbell KS, Purdy AK. Structure/function of human killer cell immunoglobulin-like receptors: lessons from polymorphisms, evolution, crystal structures and mutations. Immunology 2011;132:315-25. 15. Crum KA, Logue SE, Curran MD, et al. Development of a PCR-SSOP approach capable of defining the natural killer cell inhibitory receptor (KIR) gene sequence repertoires. Tissue antigens 2000;56:313-326. 16. Kulkarni S, Martin MP, Carrington M. KIR genotyping by multiplex PCR-SSP. Methods Mol Biol 2010;612:365-75. 17. Jiang W, Johnson C, Jayaraman J, et al. Copy number variation leads to considerable diversity for B but not A haplotypes of the human KIR genes encoding NK cell receptors. Genome Res 2012;22:1845-54. 18. Vendelbosch S, de Boer M, Gouw RA, et al. Extensive variation in gene copy number at the killer immunoglobulin-like receptor locus in humans. PLoS One 2013;8:e67619. 19. Maniangou B, Legrand N, Alizadeh M, et al. Killer Immunoglobulin-Like Receptor Allele Determination Using Next-Generation Sequencing Technology. Front Immunol 2017;8:547. 20. Closa L, Vidal F, Herrero MJ, et al. Design and Validation of a Multiplex KIR and HLA Class I Genotyping Method Using Next Generation Sequencing. Front Immunol 2018;9:2991. 21. Norman PJ, Hollenbach JA, Nemat-Gorgani N, et al. Defining KIR and HLA Class I Genotypes at Highest Resolution via High-Throughput Sequencing. Am J Hum Genet 2016;99:375-91. 22. Whang DH, Park H, Yoon JA, et al. Haplotype analysis of killer cell immunoglobulin-like receptor genes in 77 Korean families. Hum Immunol 2005;66:146-54. 23. Yawata M, Yawata N, McQueen KL, et al. Predominance of group A KIR haplotypes in Japanese associated with diverse NK cell repertoires of KIR expression. Immunogenetics 2002;54:543-50. 24. Wu GQ, Zhao YM, Lai XY, et al. Distribution of killer-cell immunoglobulin-like receptor genes in Eastern mainland Chinese Han and Taiwanese Han populations. Tissue Antigens 2009;74:499-507. 25. Norman PJ, Stephens HA, Verity DH, et al. Distribution of natural killer cell immunoglobulin-like receptor sequences in three ethnic groups. Immunogenetics 2001;52:195-205. 26. Augusto DG. The Impact of KIR Polymorphism on the Risk of Developing Cancer: Not as Strong as Imagined? Front Genet 2016;7:121. 27. Tu MM, Mahmoud AB, Makrigiannis AP. Licensed and Unlicensed NK Cells: Differential Roles in Cancer and Viral Control. Front Immunol 2016;7:166. 28. Ullah MA, Hill GR, Tey SK. Functional Reconstitution of Natural Killer Cells in Allogeneic Hematopoietic Stem Cell Transplantation. Front Immunol 2016;7:144. 29. AJCC Cancer Staging Form supplement. 2018. 30. Weiser MR. AJCC 8th Edition: Colorectal Cancer. Annals of Surgical Oncology 2018;25:1454-1455. 31. Takeshita LYC, Gonzalez-Galarza FF, Santos EJMd, et al. A database for curating the associations between killer cell immunoglobulin-like receptors and diseases in worldwide populations. Database 2013;2013. 32. https://www.ebi.ac.uk/ipd/kir/genotypes.html. 33. Norman PJ, Abi-Rached L, Gendzekhadze K, et al. Meiotic recombination generates rich diversity in NK cell receptor genes, alleles, and haplotypes. Genome Res 2009;19:757-69. 34. Vukcevic D, Traherne JA, Naess S, et al. Imputation of KIR Types from SNP Variation Data. Am J Hum Genet 2015;97:593-607. 35. Pyke RM, Genolet R, Harari A, et al. Computational KIR copy number discovery reveals interaction between inhibitory receptor burden and survival. Pac Symp Biocomput 2019;24:148-159. 36. Wang CM, Wang SH, Jan Wu YJ, et al. Human Leukocyte Antigen C*12:02:02 and Killer Immunoglobulin-Like Receptor 2DL5 are Distinctly Associated with Ankylosing Spondylitis in the Taiwanese. Int J Mol Sci 2017;18. 37. Benson DM, Jr., Caligiuri MA. Killer immunoglobulin-like receptors and tumor immunity. Cancer Immunol Res 2014;2:99-104. 38. Morvan MG, Lanier LL. NK cells and cancer: you can teach innate cells new tricks. Nat Rev Cancer 2016;16:7-19. 39. Sim MJW, Rajagopalan S, Altmann DM, et al. Human NK cell receptor KIR2DS4 detects a conserved bacterial epitope presented by HLA-C. Proc Natl Acad Sci U S A 2019;116:12964-12973. 40. Barani S, Hosseini SV, Ghaderi A. Activating and inhibitory killer cell immunoglobulin like receptors (KIR) genes are involved in an increased susceptibility to colorectal adenocarcinoma and protection against invasion and metastasis. Immunobiology 2019;224:681-686. 41. Borrero-Palacios A, Cebrian A, Gomez Del Pulgar MT, et al. Combination of KIR2DS4 and FcgammaRIIa polymorphisms predicts the response to cetuximab in KRAS mutant metastatic colorectal cancer. Sci Rep 2019;9:2589. 42. Trefny MP, Rothschild SI, Uhlenbrock F, et al. A Variant of a Killer Cell Immunoglobulin-like Receptor Is Associated with Resistance to PD-1 Blockade in Lung Cancer. Clin Cancer Res 2019;25:3026-3034. 43. González-Galarza Faviel F, Takeshita Louise YC, Santos Eduardo JM, et al. Allele frequency net 2015 update: new features for HLA epitopes, KIR and disease and HLA adverse drug reaction associations. Nucleic Acids Research 2014;43:D784-D788. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67738 | - |
| dc.description.abstract | 殺手細胞免疫球蛋白樣受體 (KIRs) 表現於NK細胞表面能與第一類人類白血球抗原 (HLA class I) 結合並調控NK 細胞活化與抑制。本論文先利用PCR-SSP搭配毛細管電泳建立KIR基因的檢測平台。接著建立以探針捕獲為基礎的次世代定序方法應用在KIR基因型別鑑定。針對KIR的15個基因與2個偽基因的外顯子(exon)共設計233個不同的探針。利用購自國際組織相容協會(International Histocompatibility Working Group, IHWG)的56個DNA標準品進行測試,定序結果使用2016年發表之PING (Pushing Immunogenetics to the Next Generation)進行基因型及等位基因(allele)分析。結果顯示:於基因層級的分析除KIR2DL5A與KIR2DL5B,其餘的KIR基因正確率皆為100%。針對等位基因的分析,排除軟體無法分析的KIR2DS1、KIR2DS2及KIR3DP1, KIR等位基因的單一輸出結果正確率除KIR2DL4、KIR2DL5A、KIR2DL5B低於60%外,其餘KIR基因正確率皆超過80%,其中KIR2DL2、KIR2DS3、KIR2DS5與KIR3DS1的正確率達100%。最後NGS平臺所分析之56個國際標準品序列回貼至自主建立的KIR參考基因,結果顯示所設計的探針能夠完整捕獲KIR基因的外顯子區域,然而仍需要對探針進行縮減或選擇更具特異性的區域,以減少探針捕獲到內含子(intron)重複序列的區域,進而增加軟體過濾後的比例。 大腸直腸癌在世界癌症死亡率排名位於前三名,顯示需要更多研究了解此疾病。自然殺手細胞 (NK細胞) 於人體內監控與清除腫瘤細胞扮演重要角色。為了研究KIR基因型與大腸直腸癌的相關性,本論文第二部分以PCR-SSP平臺分析119例大腸直腸癌病患的KIR基因型,將之與2009年分析97例慈濟骨髓庫的KIR基因型進行比對。結果顯示:在大腸直腸癌(CRC)組別之KIR2DL5B和KIR3DL1頻率比慈濟組顯著較低( KIR2DL5B : P= 0.023, KIR3DL1 : P=0.041)。KIR2DS4F在CRC組別也有較低的趨勢但未達統計的顯著差異(P=0.069)。CRC組別之KIR2DL5A、KIR2DS1、KIR2DS5、KIR3DS1和KIR3DP1var的頻率皆較慈濟組高,但僅有KIR3DP1var (P=0.042)達顯著差異。此外在慈濟組有29種KIR基因型 (genotypes),而CRC組別有23種KIR基因型,兩個組別總共包含42種KIR基因型。而慈濟組別與CRC組別的染色體單倍型比例相似,兩組之染色體屬於A單倍型(haplotype A) 與B單倍型(haplotype B) 的比例都接近3 : 1 (慈濟組haplotype A : haplotype B =76.3 : 23.7;CRC組haplotype A : haplotype B=75.9 : 24.1);兩組之同型合子haplotype A/A的比例也相似,慈濟組為52.5%而CRC組為53.8%。針對KIR3DL1基因有無,於CRC組進行單變項臨床相關性分析與存活分析,皆未達統計顯著差異。再針對KIR2DS4F基因有無進行臨床相關性分析與存活分析,皆未達統計顯著差異。將CRC組別分成haplotype A/A組與haplotype B/X組進行分析,CRC屬於haplotype B/X組之KIR2DS4F基因頻率顯著低於慈濟組別(P=0.030) 。針對KIR2DS4F基因有無,於B單倍型CRC組別進行單變項臨床相關性分析與存活分析皆未達統計顯著差異;然而CRC病患不具KIR2DS4F基因其存活月數有較好的趨勢。 大腸直腸癌在世界癌症死亡率排名位於前三名,顯示需要更多研究了解此疾病。自然殺手細胞 (NK細胞) 於人體內監控與清除腫瘤細胞扮演重要角色。為了研究KIR基因型與大腸直腸癌的相關性,本論文第二部分以PCR-SSP平臺分析119例大腸直腸癌病患的KIR基因型,將之與2009年分析97例慈濟骨髓庫的KIR基因型進行比對。結果顯示:在大腸直腸癌(CRC)組別之KIR2DL5B和KIR3DL1頻率比慈濟組顯著較低( KIR2DL5B : P= 0.023, KIR3DL1 : P=0.041)。KIR2DS4F在CRC組別也有較低的趨勢但未達統計的顯著差異(P=0.069)。CRC組別之KIR2DL5A、KIR2DS1、KIR2DS5、KIR3DS1和KIR3DP1var的頻率皆較慈濟組高,但僅有KIR3DP1var (P=0.042)達顯著差異。此外在慈濟組有29種KIR基因型 (genotypes),而CRC組別有23種KIR基因型,兩個組別總共包含42種KIR基因型。而慈濟組別與CRC組別的染色體單倍型比例相似,兩組之染色體屬於A單倍型(haplotype A) 與B單倍型(haplotype B) 的比例都接近3 : 1 (慈濟組haplotype A : haplotype B =76.3 : 23.7;CRC組haplotype A : haplotype B=75.9 : 24.1);兩組之同型合子haplotype A/A的比例也相似,慈濟組為52.5%而CRC組為53.8%。針對KIR3DL1基因有無,於CRC組進行單變項臨床相關性分析與存活分析,皆未達統計顯著差異。再針對KIR2DS4F基因有無進行臨床相關性分析與存活分析,皆未達統計顯著差異。將CRC組別分成haplotype A/A組與haplotype B/X組進行分析,CRC屬於haplotype B/X組之KIR2DS4F基因頻率顯著低於慈濟組別(P=0.030) 。針對KIR2DS4F基因有無,於B單倍型CRC組別進行單變項臨床相關性分析與存活分析皆未達統計顯著差異;然而CRC病患不具KIR2DS4F基因其存活月數有較好的趨勢。 | zh_TW |
| dc.description.abstract | Nature killer (NK) cells play important roles in surveillance and prevention of cancer initiation and development. Killer cell immunoglobulin-like receptors (KIRs) binding to HLA class I ligands can regulate the activation and inhibition of NK cells by signal transduction. To study KIR genes, we established a KIR genotyping platform by using a commercial PCR-SSP kit which can distinguish all of 17 KIR genes and the variants of KIR2DS4 and KIR3DP1. Second, we established probe capture-based next-generation sequencing platform of KIR genotyping, the KIR panel was consist of 233 different probes which were located in intron beside exons of KIR genes. We verified the probe design with 56 international histocompatibility working group (IHWG) standard DNAs and performed KIR genotype and allelotype analysis by Pushing Immunogenetics to the Next Generation (PING) software. The sequence coverage of the 56 IHWG standard samples concentrated at exon regions of 17 KIR genes. Comparing KIR gene result to allele frequency net database (AFND), the gene level accuracies of 17 KIR genes analyzed by PING were 100% except for KIR2DL5A and KIR2DL5B. We defined the KIR allelotype results as three different categories and then compared the single output results to AFND. The accuracies of single output results of all KIR genes by PING were larger than 60% except KIR2DL4, KIR2DL5A, and KIR2DL5B. We mapped the 56 standard DNA sequences to 17 KIR genes respectively and simultaneously. The mapping coverage patterns of all KIR genes are similar. However, the coverage patterns were better after filtration with PING KIR filter, which read depth patterns were more related to KIR genotypes and copy numbers. According to our results, the KIR probe panel was able to capture all exon of 17 KIR genes, however, the panel might have better efficiencies after the deletion of some probes. Colorectal cancer (CRC) is one of the most common types of human cancers. To study the CRC-associated KIR genes, 119 patients were recruited and DNA samples were prepared from their peripheral blood. KIR genotyping was performed by using a PCR-SSP platform we established. KIR gene frequencies and genotypes of the CRC group were compared with 97 Han Taiwanese from the Buddhist Tzu Chi Taiwan Marrow Donor Registry (Tzu Chi group) by the Chi-square test or Fisher’s exact test. The frequencies of KIR2DL5B and KIR3DL1 were significantly descended in the CRC patients compared to the Tzu Chi group (KIR2DL5B, P=0.023;KIR3DL1, P=0.041). The frequency of full-length KIR2DS4 alleles (KIR2DS4F) in the CRC patients was lower than that of the Tzu Chi group but not statistically significant yet(P=0.069). In contrast, KIR2DL5A, KIR2DS1, KIR2DS5, KIR3DS1, and KIR3DP1 variant with higher frequencies were observed in the CRC group, but only KIR3DP1 variant with statistical significance (P=0.042). In total, 23 genotypes were identified among the 119 CRC patients tested, and 29 genotypes among in the Tzu Chi group. The frequencies of individuals who were homozygous for group A haplotype (haplotype A/A) in the Tzu Chi group and the CRC group were 52.5% and 53.8%, respectively. Consequently, haplotype A (75.9%) outnumbered haplotype B (24.1%) in CRC group, and the same phenomenon (haplotype A and haplotype B, 76.3% and 23.7%, respectively) was observed in the Tzu Chi group. As for the clinical relevance of KIR gene polymorphism in CRC, the genotypes of KIR3DL1/S1 were not associated with clinical characteristics and overall survival of patients. Besides, the presence of KIR2DS4F did not show a clinical association, either. The frequency of KIR2DS4F in the CRC patients with haplotype B/X was significantly lower than that of the Tzu Chi group (P=0.03). Among CRC patients with 55 haplotype B/X, the presence of KIR2DS4F was not associated with overall survival. However, there was a trend that CRC patients without KIR2DS4F had longer survival time. Colorectal cancer (CRC) is one of the most common types of human cancers. To study the CRC-associated KIR genes, 119 patients were recruited and DNA samples were prepared from their peripheral blood. KIR genotyping was performed by using a PCR-SSP platform we established. KIR gene frequencies and genotypes of the CRC group were compared with 97 Han Taiwanese from the Buddhist Tzu Chi Taiwan Marrow Donor Registry (Tzu Chi group) by the Chi-square test or Fisher’s exact test. The frequencies of KIR2DL5B and KIR3DL1 were significantly descended in the CRC patients compared to the Tzu Chi group (KIR2DL5B, P=0.023;KIR3DL1, P=0.041). The frequency of full-length KIR2DS4 alleles (KIR2DS4F) in the CRC patients was lower than that of the Tzu Chi group but not statistically significant yet(P=0.069). In contrast, KIR2DL5A, KIR2DS1, KIR2DS5, KIR3DS1, and KIR3DP1 variant with higher frequencies were observed in the CRC group, but only KIR3DP1 variant with statistical significance (P=0.042). In total, 23 genotypes were identified among the 119 CRC patients tested, and 29 genotypes among in the Tzu Chi group. The frequencies of individuals who were homozygous for group A haplotype (haplotype A/A) in the Tzu Chi group and the CRC group were 52.5% and 53.8%, respectively. Consequently, haplotype A (75.9%) outnumbered haplotype B (24.1%) in CRC group, and the same phenomenon (haplotype A and haplotype B, 76.3% and 23.7%, respectively) was observed in the Tzu Chi group. As for the clinical relevance of KIR gene polymorphism in CRC, the genotypes of KIR3DL1/S1 were not associated with clinical characteristics and overall survival of patients. Besides, the presence of KIR2DS4F did not show a clinical association, either. The frequency of KIR2DS4F in the CRC patients with haplotype B/X was significantly lower than that of the Tzu Chi group (P=0.03). Among CRC patients with 55 haplotype B/X, the presence of KIR2DS4F was not associated with overall survival. However, there was a trend that CRC patients without KIR2DS4F had longer survival time. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:47:01Z (GMT). No. of bitstreams: 1 U0001-1408202021462200.pdf: 6766668 bytes, checksum: 2a3deb118492d3d328ac8301810e7f9b (MD5) Previous issue date: 2020 | en |
| dc.description.tableofcontents | 致謝 i 中文摘要 ii 英文摘要 iv 縮寫對照表 vi 圖目錄 xi 表目錄 xiii 一、緒論 1 1. Killer cell immunoglobulin-like receptor (KIR) 1 1.1 KIR簡介 1 1.2 KIR分子結構 1 1.3 KIR基因結構與單倍體 2 1.4 KIR分子與HLA class I之配對關係 3 1.5 KIR的檢驗法 3 1.5.1 PCR-SSOP 3 1.5.2 PCR-SSP 4 1.5.3 qPCR 4 1.5.4 MLPA 5 1.5.5 NGS 5 1.6 KIR等位基因命名 5 1.7 KIR功能及應用 5 2. 大腸直腸癌癌症分期 6 2.1 TNM分期系統 6 2.2 AJCC/UICC分期系統 7 二、研究目標 9 三、材料與方法 10 1.大腸直腸癌病患之周邊血液 10 2. DNA 萃取 10 3. KIR基因型鑑定 11 3.1 PCR-SSP 11 3.2毛細管電泳 12 4. 探針設計 12 5. 次世代定序平台 13 6. 檢體庫製備 13 6.1 DNA fragmentation 13 6.2 Clean up 13 6.3 End repair 14 6.4 Clean Up and Size Selection 1—Remove Large DNA Fragments 14 6.5 Clean Up and Size Selection 2—Remove Small DNA Fragments 14 6.6 Adenylate 3' Ends (A-tailing) 15 6.7 Adapter Ligation 15 6.8 Clean Up 15 6.9 探針捕獲 16 6.10 Washing and recovering captured multiplex DNA sample 17 6.11 Amplifying captured multiplex DNA sample by LM-PCR 18 6.12 Clean up 19 7. 實驗標準品 19 8. 定序分析 20 8.1 Pushing Immunogenetics to the Next Generation (PING) 20 8.2 Integrative Genomics Viewers ( IGV ) 22 8.3 序列回貼流程 22 8.3.1 KIR參考資料庫建立 22 8.3.2 TAIgenomics平台運算 23 8.3.3 Picard 回貼覆蓋率分析 23 9. 統計 23 四、研究結果 24 1. IHWG國際標準品確效KIR PCR-SSP試劑組及實驗流程 24 2. 次世代定序平台KIR基因型鑑定序列產出 24 3. 次世代定序平台讀值深度及覆蓋率與軟體適用性 24 4. KIR拷貝數測定及閾值設定 25 5. KIR基因型與等位基因正確率 26 6. 不吻合型別 27 7. 大腸直腸癌病患與慈濟組別KIR基因型比較 27 8. 大腸直腸癌病患與慈濟組別KIR單倍型分組比較 28 9. KIR單倍型與臨床資料之單變相統計分析 29 10. KIR3DL1/S1與臨床資料之單變相統計分析 29 11. KIR2DS4與臨床資料之單變項統計分析 30 12. Haplotype B/X組別中表現KIR2DS4F與否之總存活分析 30 五、討論與未來展望 32 1. KIR基因定序結果探針捕獲效率 32 2. 與慈濟組別KIR基因型比較 33 3. KIR基因及單倍型與大腸直腸癌之相關性 34 圖 35 表 56 參考文獻 64 附錄 67 | |
| dc.language.iso | zh-TW | |
| dc.subject | 殺手細胞免疫球蛋白樣受體 | zh_TW |
| dc.subject | PCR-SSP | zh_TW |
| dc.subject | 大腸直腸癌 | zh_TW |
| dc.subject | 次世代定序 | zh_TW |
| dc.subject | 探針捕獲方式 | zh_TW |
| dc.subject | killer-cell immunoglobulin-like receptor | en |
| dc.subject | PCR-SSP | en |
| dc.subject | capture-based next generation sequencing | en |
| dc.subject | colorectal cancer | en |
| dc.title | 建立殺手細胞免疫球蛋白樣受體(KIR)基因鑑定平臺以及大腸直腸癌患者之KIR基因型分析 | zh_TW |
| dc.title | Establishment of killer-cell immunoglobulin-like receptor (KIR) genotyping platforms and genetic profiling of KIR genotypes in colorectal cancer | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 108-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 陳沛隆(Pei-Lung Chen),黃聖懿(Shang-Yi Huang),蘇剛毅(Kang-Yi Su),許書睿(Shu-Jui Hsu) | |
| dc.subject.keyword | 殺手細胞免疫球蛋白樣受體,PCR-SSP,探針捕獲方式,次世代定序,大腸直腸癌, | zh_TW |
| dc.subject.keyword | killer-cell immunoglobulin-like receptor,PCR-SSP,capture-based next generation sequencing,colorectal cancer, | en |
| dc.relation.page | 94 | |
| dc.identifier.doi | 10.6342/NTU202003490 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2020-08-19 | |
| dc.contributor.author-college | 醫學院 | zh_TW |
| dc.contributor.author-dept | 醫學檢驗暨生物技術學研究所 | zh_TW |
| 顯示於系所單位: | 醫學檢驗暨生物技術學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| U0001-1408202021462200.pdf 未授權公開取用 | 6.61 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
