請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6770完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 謝志豪 | |
| dc.contributor.author | Ting-Chun Kuo | en |
| dc.contributor.author | 郭庭君 | zh_TW |
| dc.date.accessioned | 2021-05-17T09:17:47Z | - |
| dc.date.available | 2014-07-27 | |
| dc.date.available | 2021-05-17T09:17:47Z | - |
| dc.date.copyright | 2012-07-27 | |
| dc.date.issued | 2012 | |
| dc.date.submitted | 2012-07-20 | |
| dc.identifier.citation | Anderson, R. M., D. M. Gordon, M. J. Crawley, and M. P. Hassell. 1982. Variability in the abundance of animal and plant-species. Nature 296:245-248.
Ballantyne, F. and A. J. Kerkhoff. 2005. Reproductive correlation and mean-variance scaling of reproductive output for a forest model. Journal of Theoretical Biology 235:373-380. Ballantyne, F. and A. J. Kerkhoff. 2007. The observed range for temporal mean-variance scaling exponents can be explained by reproductive correlation. Oikos 116:174-180. Berkeley, S. A. 2004. Maternal age as a determinant of larval growth and survival in a marine fish, Sebastes melanops. Ecology 85:1258. Blanchard, J. L. 2005. Distribution-abundance relationships for North Sea Atlantic cod (Gadus morhua): observation versus theory. Canadian Journal of Fisheries and Aquatic Sciences 62:2001. Boag, B., C. A. Hackett, and P. B. Topham. 1992. The use of Taylor power law to describe the aggregated distribution of gastrointestinal nematodes of sheep. International Journal for Parasitology 22:267-270. Bohlin, T. 1977. Habitat Selection and Intercohort Competition of Juvenile Sea-Trout Salmo trutta. Oikos 29:112-117. Bowler, D. E. and T. G. Benton. 2005. Causes and consequences of animal dispersal strategies: relating individual behaviour to spatial dynamics. Biological Reviews 80:205-225. Cottingham, K. L., B. L. Brown, and J. T. Lennon. 2001. Biodiversity may regulate the temporal variability of ecological systems. Ecology Letters 4:72-85. Crecco, V. and W. J. Overholtz. 1990. Causes of Density-Dependent Catchability for Georges Bank Haddock Melanogrammus aeglefinus. Canadian Journal of Fisheries and Aquatic Sciences 47:385-394. Downing, J. A. 1986. Spatial heterogeneity: evolved behaviour or mathematical artefact? Nature 323:255. Elliott, J. M. 2004. Contrasting dynamics in two subpopulations of a leech metapopulation over 25 year-classes in a small stream. Journal of Animal Ecology 73:272-282. Engen, S. 2008. A general model for analyzing Taylor's spatial scaling laws. Ecology 89:2612. Hanski, I. 1980. Spatial patterns and movements in coprophagous beetles. Oikos 34:293. Hanski, I. 1982. On patterns of temporal and spatial variation in animal populations. Annales Zoologici Fennici 19:21-37. Hanski, I. 1987. Cross-correlation in population-dynamics and the slope of spatial variancemean regressions. Oikos 50:148-151. Hanski, I. and J. Tiainen. 1989. Bird ecology and Taylor variance-mean regression. Annales Zoologici Fennici 26:213-217. Hanski, I. and I. P. Woiwod. 1993. Mean-related stochasticity and population variability. Oikos 67:29-39. Heino, M. 1998. Management of evolving fish stocks. Canadian Journal of Fisheries and Aquatic Sciences 55:1971. Hsieh, C. 2006. Fishing elevates variability in the abundance of exploited species. Nature 443:859. Hsieh, C. H., C. Reiss, W. Watson, M. J. Allen, J. R. Hunter, R. N. Lea, R. H. Rosenblatt, P. E. Smith, and G. Sugihara. 2005. A comparison of long-term trends and variability in populations of larvae of exploited and unexploited fishes in the Southern California region: A community approach. Progress in Oceanography 67:160-185. Hsieh, C. H., C. S. Reiss, R. P. Hewitt, and G. Sugihara. 2008. Spatial analysis shows that fishing enhances the climatic sensitivity of marine fishes. Canadian Journal of Fisheries and Aquatic Sciences 65:947-961. Hsieh, C. H., A. Yamauchi, T. Nakazawa, and W. F. Wang. 2010. Fishing effects on age and spatial structures undermine population stability of fishes. Aquatic Sciences 72:165-178. Iwao, S. i. 1968. A new regression method for analyzing the aggregation pattern of animal populations. Researches on Population Ecology 10:1-20. Jenkins, D. G., C. R. Brescacin, C. V. Duxbury, J. A. Elliott, J. A. Evans, K. R. Grablow, M. Hillegass, B. N. Lyon, G. A. Metzger, M. L. Olandese, D. Pepe, G. A. Silvers, H. N. Suresch, T. N. Thompson, C. M. Trexler, G. E. Williams, N. C. Williams, and S. E. Williams. 2007. Does size matter for dispersal distance? Global Ecology and Biogeography 16:415-425. Jennings, S. and N. K. Dulvy. 2005. Reference points and reference directions for sizebased indicators of community structure. ICES Journal of Marine Science: Journal du Conseil 62:397-404. Jennings, S. and M. J. Kaiser. 1998. The effects of fishing on marine ecosystems. Pages 201-+ Advances in Marine Biology, Vol 34. Academic Press Ltd, London. Jorgensen, C., B. Ernande, and O. Fiksen. 2009. Size-selective fishing gear and life history evolution in the Northeast Arctic cod. Evolutionary Applications 2:356-370. Kendal, W. S. 2004. Taylor's ecological power law as a consequence of scale invariant exponential dispersion models. Ecological Complexity 1:193-209. Kutner, M. H., C. J. Nachtsheim, J. Neter, and W. Li. 2005. Applied linear statistical models. McGraw Hill International eddition. MacCall, A. D. 1990. Dynamic geography of marine fish populations. University of Washington Press, Seattle, Washington. Marshall, C. T. 1995. Density-dependent habitat selection by juvenile haddock (Melanogrammus aeglefinus) on the southwestern Scotian Shelf. Canadian Journal of Fisheries and Aquatic Sciences 52:1007. Murawski, S. A. 2001. Impacts of demographic variation in spawning characteristics on reference points for fishery management. ICES Journal of Marine Science 58:1002. Nestel, D. 1995. Spatial distribution of scale insects: comparative study using Taylors power law. Environmental Entomology 24:506. Perry, J. N. 1988. SOME MODELS FOR SPATIAL VARIABILITY OF ANIMAL SPECIES. Oikos 51:124-130. Peters, R. 1986. The ecological implications of body size. Cambridge University Press, Cambridge. Pianka, E. R. 1970. On r- and K-Selection. The American Naturalist 104:592-597. Rose, G. A., B. deYoung, D. W. Kulka, S. V. Goddard, and G. L. Fletcher. 2000. Distribution shifts and overfishing the northern cod (Gadus morhua): a view from the ocean. Canadian Journal of Fisheries and Aquatic Sciences 57:644-663. Smith, F. E. 1954. Quantitative aspects of population growth. Dynamics of growth processes:277-294. Stoner, A. W. and A. A. Abookire. 2002. Sediment preferences and size-specific distribution of young-of-the-year Pacific halibut in an Alaska nursery. Journal of Fish Biology 61:540-559. Swain, D. P. and A. F. Sinclair. 1994. Fish Distribution and Catchability: What Is the Appropriate Measure of Distribution? Canadian Journal of Fisheries and Aquatic Sciences 51:1046-1054. Swain, D. P. and E. J. Wade. 1993. Density-Dependent Geographic Distribution of Atlantic Cod (Gadus morhua) in the Southern Gulf of St. Lawrence. Canadian Journal of Fisheries and Aquatic Sciences 50:725-733. Taylor, L. R. 1961. Aggregation, variance and mean. Nature 189:732-&. Taylor, L. R. 1986. Synoptic dynamics, migration and the Rothamsted insect survey: Presidential address to the British Ecological Society, December 1984. Journal of Animal Ecology 55:1. Taylor, L. R., J. N. Perry, I. P. Woiwod, and R. A. J. Taylor. 1988. Specificity of the spatial power-law exponent in ecology and agriculture. Nature 332:721-722. Taylor, L. R. and R. A. Taylor. 1977. Aggregation, migration and population mechanics. Nature 265:415-421. Taylor, L. R., R. A. J. Taylor, I. P. Woiwod, and J. N. Perry. 1983. Behavioural dynamics. Nature 303:801-804. Taylor, L. R., I. P. Woiwod, and J. N. Perry. 1980. Variance and the Large Scale Spatial Stability of Aphids, Moths and Birds. Journal of Animal Ecology 49:831-854. Taylor, R. A. J. 1981a. The Behavioural Basis of Redistribution I. The Delta-Model Concept. Journal of Animal Ecology 50:573. Taylor, R. A. J. 1981b. The Behavioural Basis of Redistribution. II. Simulations of the Delta-Model. Journal of Animal Ecology 50:587. Tilman, D. 1999. The ecological consequences of changes in biodiversity: a search for general principles. Ecology 80:1455. Winters, G. H. and J. P. Wheeler. 1985. Interaction Between Stock Area, Stock Abundance, and Catchability Coefficient. Canadian Journal of Fisheries and Aquatic Sciences 42:989-998. Yamamura, K. 2000. Colony expansion model for describing the spatial distribution of populations. Researches on Population Ecology 42:161. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/6770 | - |
| dc.description.abstract | 前人的研究指出,族群在空間中的豐度平均值(M)與變異度(V)呈現一冪次關係(泰勒冪次定律),意即V=aMb。許多因子可能影響指數b,如聚集程度、生長速率與繁殖率等;然而,係數a 所代表的意義卻尚無定論。本篇研究中,我們估算了一九五一年至二〇〇七年,南加州洋流生態系中二十九種海洋魚類族群豐度的空間平均值與變異度關係。我們並檢驗各物種的泰勒指數(b)是否會受到該物種的生活史特性影響。另外,在考量生活史特性的差異後,我們也藉由一般線性回歸(General Linear Model)比較商業目標魚種與非目標魚種的泰勒指數,檢驗漁業對魚類空間分布的影響。結果顯示,排除平均豐度的影響後,所有的生活史特徵都會與泰勒指數成顯著線性相關。以非目標魚種來說,具有r 生殖策略相關特徵的物種具有較高的泰勒指數; 然而,於漁業目標魚種中此現象卻不顯著。這可能是由於漁業壓力改變了目標魚種的族群平均生活史特徵(如最大體長),使得目標魚種有較高的泰勒指數,亦即分布變得較為密集。我們也建立了一個體基準模型(individual-based model),探討泰勒冪次定律的形成過程,以及改變族群年齡結構後,是否會改變泰勒指數。其結果顯示,透過簡單的族群增減及移動過程即可產生泰勒冪次定律。另外,發生年齡截斷效應(age-truncation)的物種,雖然並未於模型中產生較大的泰勒指數,其平均空間變異度與平均值的比值仍較控制組為高。 | zh_TW |
| dc.description.abstract | A power-law relationship between population variance and mean abundance, V=aMb, is commonly observed in ecology. Many factors have been proposed to influence ‘b’, such as aggregation degree, growth rate, and reproduction, although the interpretation of the intercept ‘a’ remains elusive. In this study, we estimated the spatial variance-mean relationship of 29 fish species collected from the southern California Current Ecosystem spanning from 1951-2007. We investigated whether Taylor’s exponent ‘b’ is related to life
history traits of fishes. In addition, we examined the fishing impacts by comparing exploited versus unexploited species, accounting for life history variation using a general linear model. We found that after removing the influence of mean abundance, all life history traits play a significant role in determining the exponent. Unexploited species with traits related to r-strategy tend to have higher Taylor’s exponent. However, the relationship between the exponents and life history traits of exploited species is much weaker than that of the unexploited species. Our results suggest that fishing may change the exponent of a species through changing their life history traits, such as maximum length and maturation age. Thus, the exploited species exhibited a higher variance in spatial distribution than an unexploited species with the similar abundance and recorded life traits. We also develop an individual-based model to investigate the generating processes of Taylor’s Power Law, and whether age-truncated species have higher Taylor’s exponents. Our model shows that Taylor’s Power Law can be produced through demographic processes. Species with higher directional moving ability behave more aggregated. When reproduction rate increases, our model shows that species have higher average spatial variance but reflecting in Taylor’s intercept instead of exponent. Furthermore, the average spatial variance-mean ratio of exploited species is also reproduced in our model, reflecting the increasing aggregation. Our model suggests species with r-selective traits and suffering age-truncation will have higher spatial variance, but the different mechanisms of change in a and b still needed further studies. | en |
| dc.description.provenance | Made available in DSpace on 2021-05-17T09:17:47Z (GMT). No. of bitstreams: 1 ntu-101-R99241203-1.pdf: 1506269 bytes, checksum: d140c1176e8425dca58434f1fa6234fa (MD5) Previous issue date: 2012 | en |
| dc.description.tableofcontents | 致謝 ................................................................................................................... i
摘要 ................................................................................................................. iv Abstract ............................................................................................................ v 目錄 ................................................................................................................... i Introduction ...................................................................................................... 1 Material and Method ........................................................................................ 6 Data ............................................................................................................... 6 Investigation of the spatial mean-variance relationship ................................ 6 The influence of life history traits and fishing impact on Taylor’s exponent 7 Individual Based Model ................................................................................ 8 Results ............................................................................................................ 13 Spatial mean-variance relationship of CalCOFI data .................................. 13 Individual Based Model .............................................................................. 14 Discussion ...................................................................................................... 16 Spatial mean-variance relationship of CalCOFI data .................................. 16 Individual Based Model .............................................................................. 19 References ...................................................................................................... 23 圖目錄 ...................................................... 29 表目錄 ............................................................................................................ 42 Appendix ........................................................................................................ 47 | |
| dc.language.iso | en | |
| dc.title | 生活史特徵與漁撈壓力對魚類族群空間分布的變異度-平均值關係之影響 | zh_TW |
| dc.title | Influences of life history traits and fishing on the spatial variance-mean relationship of fishes | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 100-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 許建宗,三木健,王慧瑜,沈聖峰 | |
| dc.subject.keyword | 泰勒冪次定律,族群空間分布,個體基準模型,漁撈效應,族群增減過程, | zh_TW |
| dc.subject.keyword | Taylor’s Power Law,spatial distribution,fishing effects,individual-based model,demographic processes, | en |
| dc.relation.page | 49 | |
| dc.rights.note | 同意授權(全球公開) | |
| dc.date.accepted | 2012-07-20 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 海洋研究所 | zh_TW |
| 顯示於系所單位: | 海洋研究所 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-101-1.pdf | 1.47 MB | Adobe PDF | 檢視/開啟 |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
