Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 應用力學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67702
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor張正憲(Jenng-Shiang Chang)
dc.contributor.authorYing-Chih Liuen
dc.contributor.author劉盈志zh_TW
dc.date.accessioned2021-06-17T01:44:59Z-
dc.date.available2018-07-28
dc.date.copyright2017-07-28
dc.date.issued2017
dc.date.submitted2017-07-27
dc.identifier.citation[1] http://www.moi.gov.tw/stat/index.aspx
[2] Y. H. Huang, J. S. Chang, S. D. Chao, K. C. Wu, and L. S. Huang, “Improving the binding efficiency of quartz crystal microbalance biosensors by applying the electrothermal effect,” Biomicrofluidics, 8(5), 054116, 2014.
[3] 王首勳, 電熱效應式石英晶體微天平應用於免疫球蛋白分子檢測, 碩士論文, 國立台灣大學應用力學研究所, 2016.
[4] C. Ziegler, and W. Gpelt, “Biosensor Development,” Current Opinion in Chemical Biology, 5(2), pp. 585–591, 1998.
[5] S. GS, A. CV, and B. B. Mathew, “Biosensors: A Modern Day Achievement,” Journal of Instrumentation Technology, 2(1), pp. 26-39, 2014
[6] F. Scheller, and F. Schubert, Biosensors, Elsevier Science Publishing Inc., New York, USA, 1992.
[7] A. F. Collings, and & F. Caruso, “Biosensors: Recent Advance,” Reports on Progress in Physics, 60(11), pp. 1397-1445, 1997.
[8] G. Sauerbrey, “Use of Quartz Vibration for Weighing Thin Layers and as a Microbalance,” Zeitschrift Fur Physik, 155(2), pp.206-222, 1959.
[9] P. L. Konash, and G. J. Bastiaans, “Piezoelectric Crystal as Detectors in Liquid Chromatography,” Analytical Chemistry, 52(12), pp. 1929-1931, 1980.
[10] K. K. Kanazawa, and J. G. Gordon, “The Oscillation Frequency of a Quartz Microbalance in Contact with Liquid,” Analytical Chemistry, 175, pp. 99-105, 1985.
[11] C. E. Reed, K. K. Kanazawa, and J. H. Kaufman, “Physical Description of a Viscoelastically Loaded AT-Cut Quartz Resonator,” Applied Physics, 68(5), pp. 1993-2001, 1990.
[12] M. Thompson, C. L. Arthur, and G. K. Dhaliwal, “Liquid-Phase Piezoelectric and Acoustic Transmission Studies of Interfacial Immunochemistry,” Analytical Chemistry, 58(6), pp. 1206-1209, 1986.
[13] S. J. Martin, V. E. Granstaff, and G. C. Frye, “Characterization of a Quartz Crystal Microbalance with Simultaneous Mass and Liquid Loading,” Analytical Chemistry, 63(20), pp. 2272–2281, 1991.
[14] S. H. Lee, D. Stubbs, J. Cairney, and W. Hunt, “Rapid Detection of Bacterial Spores Using a Quartz Crystal Microbalance (QCM) Immunoassay,” IEEE Sensors Journal, 5(4), pp. 737-743, 2005.
[15] A. Ramos, H. Morgan, N. G. Green, and A. Castellanos, “AC Electrokinetics: A Review of Forces in Microelectrode Structures,” J. Phys. D. Appl. Phys, 31(18), pp. 2338–2353, 1999.
[16] D. Wang, Sigurdson, M., and C. D. Meinhart, “Experimental Analysis of Particle and Fluid Motion in AC Electrokinetics,” Experiments in Fluids, 38(1), pp. 1-10, 2005.
[17] M. L. Y. Sin, V. Gau, J. C. Liao, and P. K. Wong, “Electrothermal Fluid Manipulation of High-Conductivity Samples for Laboratory Automation Applications,” JALA - J. Assoc. Lab. Autom, 15(6), pp. 426–432, 2010.
[18] W. Y. Ng, S. Goh, Y. C. Lam, and C. Yang, “DC-Biased AC-Electroosmotic and AC-Electrothermal Flow Mixing in Microchannels,” Lab on a Chip, 9(6), pp. 802–809, 2009.
[19] W. Y. Ng, Y. C. Lam, and I. Rodríguez, “DC-Biased AC-Electrokinetic Mixing: A Mechanistic Investigation,” Advanced Materials Research, 74, pp. 109-112, 2009.
[20] W. Y. Ng, A. Ramos, Y. C. Lam, I. P. M. Wijaya, and I. Rodriguez, “DC-Biased AC-Electrokinetics: A Conductivity Gradient Driven Fluid Flow,” Lab on a Chip, 11(24), pp. 4241-4247, 2011.
[21] H. Zhou, C. Nicholls, T. Kunz, and & H. Schwartz, “Frequency Accuracy and Stability Dependencies of Crystal Oscillators,” Carleton University, Systems and Computer Engineering, Technical Report SCE-08-12, pp. 1-15, 2008.
[22] http://www.gedlm.com/engineers_toolbox.htm
[23] http://www.murata.com/englobal/products/timingdevice/ceralock/basic
[24] W. Parrish, and S. G. Gordon, “Orientation Techniques for The Manufacture of Quartz Oscillator-Plates,” American Mineralogist, 30, pp. 296-322, 1945
[25] https://www.researchgate.net/figure/221744623_fig3_The-drawing-in-the-upper-part-shows-a-QCM-which-resonates-in-the-thickness-shear-mode
[26] http://txccrystal.com/term.html
[27] M. Murastsugu, F. Ohta, T. Hosokawa, S. Kurosawa, N. Kamo, and H. Ikeda, “Quartz-Crystal Microbalance for the Detection of Microgram Quantities of Human Serum-Albumin – Relationship between the Frequency Change and the Mass of Protein Adsorbed,” Analytical Chemistry, 65(20), pp. 2933-2937, 1993.
[28] H. C. Feldman, M. Sigurdson, and C. D. Meinhart, “AC Electrothermal Enhancement of Heterogeneous Assays in Microfluidics,” Lab on a Chip, 7(11), pp. 1553–1559, 2007.
[29] J. C. Love, L. A. Estroff, J. K. Kriebel, R. G. Nuzzo, and G. M. Whitesides, “Self-Assembled Monolayers of Thiolates on Metals as a Form of Nanotechnology,” American Chemical Society, 105(4), pp. 1103-1170, 2005.
[30] G. E. Poirier, and E. D. Pylant, “The Self-Assembly Mechanism of Alkanethiols on Au,” Science, 272, pp. 1145-1148, 1996.
[31] H. Sellers, A. Ulman, Y. Shnidman, and J. E. Eilers, “Structure and Binding of Alkanethiolates on Gold and Silver Surfaces: Implications for Self-Assembled Monolayers,” American Chemical Society, 115(21), pp. 9389-9401, 1993.
[32] http://www.sigmaaldrich.com/technical-documents/articles/biology/antibody-basics.html
[33] http://myplace.frontier.com/~dffix/medmicro/igs.htm
[34] G. Vidarsson, G. Dekkers, & T. Rispens, “IgG Subclasses and Allotypes: From Structure to Effector,” Frontiers in Immunology, 5, 2014.
[35] G. J. Hademenos, Chemical and Physical Foundations of Biological Systems, McGraw Hill Professional, pp.361, 2015.
[36] A. J. Cunningham, Introduction to bioanalytical sensors, Wiley, New York, 1998.
[37] R. Hart, E. Ergezen, R. Lec, and H. M. Noh, “Improved Protein Detection on an AC Electrokinetic Quartz Crystal Microbalance (EKQCM),” Biosens. Bioelectron, 26(8), pp. 3391–3397, 2011.
[38] S. Lin, C. C. Lu, H. F. Chien, and S. M. Hsu, “An On-Line Quantitative Immunoassay System Based on a Quartz Crystal Microbalance,” Journal of Immunological Methods, 239, pp. 121-124, 2000.
[39] S. Hauck, S. Drost, E, Prohaska, H. Wolf, and S. Dübel, Analysis of Protein Interactions Using a Quartz Crystal Microbalance Biosensor, Cold Spring Harbor Laboratory Press, Chapter 15, pp. 273-283, 2002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67702-
dc.description.abstract當今生醫檢技術已蓬勃發展,石英晶體微天平因具有體積小、專一性、高靈敏度等優異特性被廣泛運用於檢測上。關於石英晶體微天平應用於生醫檢測相關實驗中,受限於微流體物理性質影響,使待測物無法充分與反應面辨識分子層結合,導致檢測時間過長且耗費成本。因此,本研究整合微機電製程技術與生物感測器成一優化檢測裝置做即時量測,利用電熱效應在反應槽中產生渦漩擾動微流體,提升待測物與感測器上辨識分子層結合機會,進一步促使鍵結量的增加。
實驗中利用石英晶體微天平來進行人類免疫球蛋白(Anti-Human IgG1)與相對應的抗原(Human IgG1)鍵結產生之質量負載做即時檢測與分析,並施加電壓10 Vpp與頻率10 MHz在微電極上,使電熱效應產生的電熱渦流提升免疫球蛋白原本只靠純自然擴散作用下的鍵結效率。
實驗結果呈現自然擴散環境下,分別在不同濃度抗原施加電熱力擾動反應槽內微流體,結果皆能提升鍵結量。此外我們亦利用螢光標定做定性的驗證,明顯佐證了電熱效應的效果。本文的研究,確實證明電熱效應確實能幫助生物分子提高鍵結機會,代表將電熱效應應用於生醫檢測上能為其效率提供助益。
zh_TW
dc.description.abstractQuartz Crystal Microbalance (QCM) biosensor has several advantages in analyzing the binding interaction among biomolecules, such as tiny size, specific binding and high sensitivity. Therefore it has been widely used as the equipment for biomolecule detection in the past few decades. Conventionally, most of existing studies utilizing QCM as bio-detection sensors have shortcoming with inefficiency, because of the limitation of the physical properties of microfluidics, analytes have difficulty to fully react with the immobilized ligand layer on the QCM sensor chip. An enhanced QCM is introduced in this study. It integrates with microelectromechanical technique and biosensor technique to produce electrothermal vortices flow in the QCM detecting chamber to increase the opportunity and efficiency of the binding of the immobilized ligand and the analytes carried in the fluid flow.
In this study, a specific binding reaction of Human IgG1 - Anti-Human IgG1 protein pair is processed. The QCM chip is modified to integrate with the designed multi-microelectrode pairs, then operated the electrothermal effect, ETE, by 10 Vpp and 10 MHz to produce electrothermal vortices flow in reaction chamber. Ultimately, results of frequency reduction which enhanced by ETE effect were estimated.
In the cases of different concentrations, the results show that there are notable improvenments in the reduction of resonant frequencies by comparing with those based on pure diffusion only, especially for the the case of low concentration. Simultaneously, the ETE effect gets further proved through immunofluorescence marker. Consequently, ETE is functional to enhance the mass-binding and improve the efficiency of detection.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:44:59Z (GMT). No. of bitstreams: 1
ntu-106-R04543055-1.pdf: 3114342 bytes, checksum: df43b7bfdd446a3bb24c0c081628113c (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 II
ABSTRACT III
目錄 IV
圖目錄 VII
表目錄 IX
第1章 導論 1
1.1 前言 1
1.2 生物感測器 2
1.2.1 生物感測器之原理 2
1.3 文獻回顧 4
1.3.1 石英晶體微天平 4
1.3.2 交流電動力 6
1.4 研究動機 7
1.5 論文架構 8
第2章 理論簡介 9
2.1 石英晶體微天平 9
2.1.1 簡介 9
2.1.2 理想質量負載於石英晶體表面 13
2.1.3 液體負載於石英晶體表面 13
2.1.4 理想質量與液體負仔於石英晶體表面 14
2.1.5 解決液體狀態改變產生干擾方法 14
2.2 電熱效應 16
2.3 生物分子親合及解離反應 17
第3章 實驗架構 19
3.1 石英晶片表面修飾方法 19
3.2 實驗試樣 20
3.2.1 人體免疫球蛋白 20
3.2.2 免疫球蛋白G 22
3.3 電極製程 23
3.3.1 金屬蒸鍍 24
3.3.2 光學微影 25
3.3.3 後處理 26
3.4 實驗設備 27
3.5 實驗藥品 28
3.6 藥品配置 29
3.7 實驗步驟 30
3.7.1 前置工作 30
3.7.2 實驗架構 31
3.7.3 人類免疫球蛋白抗體及抗原鍵結實驗 32
3.7.4 電熱效應影響抗體及抗原鍵結之實驗 33
3.7.5 螢光標定實驗 35
第4章 結果與討論 36
4.1 人體免疫球蛋白抗體與抗原鍵結實驗 36
4.2 電熱效應 40
4.2.1 電熱力對鍵結量之影響 40
4.2.2 電熱力作用時間對鍵結之影響 41
4.3 螢光標定 44
第5章 結論與未來展望 46
5.1 結論 46
5.2 未來展望 47
參考文獻 48
附錄 53
dc.language.isozh-TW
dc.subject電熱效應zh_TW
dc.subject石英晶體微天平zh_TW
dc.subject人類免疫球蛋白zh_TW
dc.subjectQuartz Crystal Microbalanceen
dc.subjectElectrothermal Effecten
dc.subjectHuman IgG1en
dc.title電熱效應式石英晶體微天平應用於即時免疫球蛋白檢測zh_TW
dc.titleReal-Time Detection of Immunoglobulin Molecules
by Using an Improved ETE Quartz Crystal Microbalance
en
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee吳光鐘(Kuang-Chong Wu),沈弘俊(Horn-Jiunn Sheen),陳世豪(Shih-Hao Chen),黃冠榮(Kuan-Jung Huang)
dc.subject.keyword石英晶體微天平,電熱效應,人類免疫球蛋白,zh_TW
dc.subject.keywordQuartz Crystal Microbalance,Electrothermal Effect,Human IgG1,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201702066
dc.rights.note有償授權
dc.date.accepted2017-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept應用力學研究所zh_TW
顯示於系所單位:應用力學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.04 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved