Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 化學工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67699
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor謝之真(Chih-Chen Hsieh)
dc.contributor.authorPo-Hung Wuen
dc.contributor.author吳柏宏zh_TW
dc.date.accessioned2021-06-17T01:44:49Z-
dc.date.available2022-08-14
dc.date.copyright2017-08-14
dc.date.issued2017
dc.date.submitted2017-07-27
dc.identifier.citation1. Kim, J.M. and P.S. Doyle, A Brownian dynamics-finite element method for simulating DNA electrophoresis in nonhomogeneous electric fields. Journal of Chemical Physics, 2006. 125(7).
2. Randall, G.C. and P.S. Doyle, DNA deformation in electric fields: DNA driven past a cylindrical obstruction. Macromolecules, 2005. 38(6): p. 2410-2418.
3. Teraoka, I., Models of Polymer Chains, in Polymer Solutions. 2002, John Wiley & Sons, Inc. p. 1-67.
4. 黃秋德, 以布朗動態法模擬DNA在微流道中受流場拉伸之研究 2013, 國立台灣大學化學工程學系暨研究所.
5. 林宗賢, 以布朗動態法模擬與優化電泳拉伸DNA之策略. 2011, 國立台灣大學化學工程學系暨研究所.
6. Hiemenz, P.C. and T.P. Lodge, Polymer Chemistry, Second Edition. 2007: Taylor & Francis.
7. Jendrejack, R.M., et al., Shear-induced migration in flowing polymer solutions: Simulation of long-chain deoxyribose nucleic acid in microchannels. Journal of Chemical Physics, 2004. 120(5): p. 2513-2529.
8. Tang, J., N. Du, and P.S. Doyle, Compression and self-entanglement of single DNA molecules under uniform electric field. Proceedings of the National Academy of Sciences of the United States of America, 2011. 108(39): p. 16153-16158.
9. Isambert, H., et al., Electrohydrodynamic patterns in charged colloidal solutions. Physical Review Letters, 1997. 78(5): p. 971-974.
10. Isambert, H., et al., Electrohydrodynamic patterns in macroion dispersions under a strong electric field. Physical Review E, 1997. 56(5): p. 5688-5704.
11. Olivera, B.M., P. Baine, and N. Davidson, ELECTROPHORESIS OF THE NUCLEIC ACIDS. Biopolymers, 1964. 2(3): p. 245-257.
12. Stellwagen, N.C., Electrophoresis of DNA in agarose gels, polyacrylamide gels and in free solution. Electrophoresis, 2009. 30: p. S188-S195.
13. Thorne, H.V., ELECTROPHORETIC CHARACTERIZATION AND FRACTIONATION OF POLYOMA VIRUS DNA. Journal of Molecular Biology, 1967. 24(2): p. 203-&.
14. Schwartz, D.C. and C.R. Cantor, SEPARATION OF YEAST CHROMOSOME-SIZED DNAS BY PULSED FIELD GRADIENT GEL-ELECTROPHORESIS. Cell, 1984. 37(1): p. 67-75.
15. Cantor, C.R., C.L. Smith, and M.K. Mathew, PULSED-FIELD GEL-ELECTROPHORESIS OF VERY LARGE DNA-MOLECULES. Annual Review of Biophysics and Biophysical Chemistry, 1988. 17: p. 287-304.
16. Gurrieri, S., et al., IMAGING OF KINKED CONFIGURATIONS OF DNA-MOLECULES UNDERGOING ORTHOGONAL FIELD ALTERNATING GEL-ELECTROPHORESIS BY FLUORESCENCE MICROSCOPY. Biochemistry, 1990. 29(13): p. 3396-3401.
17. Manz, A., N. Graber, and H.M. Widmer, MINIATURIZED TOTAL CHEMICAL-ANALYSIS SYSTEMS - A NOVEL CONCEPT FOR CHEMICAL SENSING. Sensors and Actuators B-Chemical, 1990. 1(1-6): p. 244-248.
18. Volkmuth, W.D. and R.H. Austin, DNA ELECTROPHORESIS IN MICROLITHOGRAPHIC ARRAYS. Nature, 1992. 358(6387): p. 600-602.
19. Han, J. and H.G. Craighead, Separation of long DNA molecules in a microfabricated entropic trap array. Science, 2000. 288(5468): p. 1026-1029.
20. Han, J., S.W. Turner, and H.G. Craighead, Entropic trapping and escape of long DNA molecules at submicron size constriction. Physical Review Letters, 1999. 83(8): p. 1688-1691.
21. Huang, L.R., et al., A DNA prism for high-speed continuous fractionation of large DNA molecules. Nature Biotechnology, 2002. 20(10): p. 1048-1051.
22. Doyle, P.S., et al., Self-assembled magnetic matrices for DNA separation chips. Science, 2002. 295(5563): p. 2237-2237.
23. Baba, M., et al., DNA size separation using artificially nanostructured matrix. Applied Physics Letters, 2003. 83(7): p. 1468-1470.
24. Ajdari, A. and J. Prost, FREE-FLOW ELECTROPHORESIS WITH TRAPPING BY A TRANSVERSE INHOMOGENEOUS FIELD. Proceedings of the National Academy of Sciences of the United States of America, 1991. 88(10): p. 4468-4471.
25. Regtmeier, J., et al., Dielectrophoretic manipulation of DNA: Separation and polarizability. Analytical Chemistry, 2007. 79(10): p. 3925-3932.
26. Cho, J. and K.D. Dorfman, Brownian dynamics simulations of electrophoretic DNA separations in a sparse ordered post array. Journal of Chromatography A, 2010. 1217(34): p. 5522-5528.
27. Ou, J., et al., DNA electrophoresis in a sparse ordered post array. Physical Review E, 2009. 79(6).
28. Ou, J., S.J. Carpenter, and K.D. Dorfman, Onset of channeling during DNA electrophoresis in a sparse ordered post array. Biomicrofluidics, 2010. 4(1).
29. Thomas, J.D.P. and K.D. Dorfman, Tilted post arrays for separating long DNA. Biomicrofluidics, 2014. 8(3).
30. Rahong, S., et al., Ultrafast and Wide Range Analysis of DNA Molecules Using Rigid Network Structure of Solid Nanowires. Scientific Reports, 2014. 4.
31. Rahong, S., et al., Three-dimensional Nanowire Structures for Ultra-Fast Separation of DNA, Protein and RNA Molecules. Scientific Reports, 2015. 5.
32. Rahong, S., et al., Self-assembled Nanowire Arrays as Three-dimensional Nanopores for Filtration of DNA Molecules. Analytical Sciences, 2015. 31(3): p. 153-157.
33. 陳致安, 以布朗動態法模擬DNA於圓柱陣列微流道中之電泳分離. 2015, 國立台灣大學化學工程學系暨研究所.
34. Chen, Z. and K.D. Dorfman, Comparison of microfabricated hexagonal and lamellar post arrays for DNA electrophoresis. Electrophoresis, 2014. 35(5): p. 654-661.
35. Yasui, T., et al., Arrangement of a Nanostructure Array To Control Equilibrium and Nonequilibrium Transports of Macromolecules. Nano Letters, 2015. 15(5): p. 3445-3451.
36. Azuma, N., et al., Separation of large DNA molecules by size exclusion chromatography-based microchip with on-chip concentration structure. Japanese Journal of Applied Physics, 2016. 55(6).
37. Randall, G.C. and P.S. Doyle, Electrophoretic collision of a DNA molecule with an insulating post. Physical Review Letters, 2004. 93(5).
38. Randall, G.C. and P.S. Doyle, Collision of a DNA polymer with a small obstacle. Macromolecules, 2006. 39(22): p. 7734-7745.
39. Minc, N., et al., Motion of single long DNA molecules through arrays of magnetic columns. Electrophoresis, 2005. 26(2): p. 362-375.
40. Olson, D.W., et al., Continuous-time random walk models of DNA electrophoresis in a post array: Part I. Evaluation of existing models. Electrophoresis, 2011. 32(5): p. 573-580.
41. Kim, J.M. and P.S. Doyle, Brownian dynamics simulations of a DNA molecule colliding with a small cylindrical post. Macromolecules, 2007. 40(25): p. 9151-9163.
42. Larson, R.G., The rheology of dilute solutions of flexible polymers: Progress and problems. Journal of Rheology, 2005. 49(1): p. 1-70.
43. Dorfman, K.D., et al., Beyond Gel Electrophoresis: Microfluidic Separations, Fluorescence Burst Analysis, and DNA Stretching. Chemical Reviews, 2013. 113(4): p. 2584-2667.
44. Hsieh, C.C. and T.H. Lin, Simulation of conformational preconditioning strategies for electrophoretic stretching of DNA in a microcontraction. Biomicrofluidics, 2011. 5(4).
45. Huang, C.D., D.Y. Kang, and C.C. Hsieh, Simulations of DNA stretching by flow field in microchannels with complex geometry. Biomicrofluidics, 2014. 8(1).
46. 王子瑜 and 曹恒光, 布朗運動、郎之萬方程式、與布朗動力學 物理雙月刊, 2005. 廿七卷三期.
47. Öttinger, H.C., Stochastic Processes in Polymeric Fluids: Tools and Examples for Developing Simulation Algorithms. 1996: Springer.
48. Marko, J.F. and E.D. Siggia, Stretching DNA. Macromolecules, 1995. 28(26): p. 8759-8770.
49. Jendrejack, R.M., et al., Effect of confinement on DNA dynamics in microfluidic devices. Journal of Chemical Physics, 2003. 119(2): p. 1165-1173.
50. Heyes, D.M. and J.R. Melrose, BROWNIAN DYNAMICS SIMULATIONS OF MODEL HARD-SPHERE SUSPENSIONS. Journal of Non-Newtonian Fluid Mechanics, 1993. 46(1): p. 1-28.
51. Segerlind, L.J., Applied finite element analysis. 1984: Wiley.
52. Gallagher, R.H., Finite element analysis: fundamentals. 1974: Prentice-Hall.
53. Shephard, M.S., S. Dey, and J.E. Flaherty, A straightforward structure to construct shape functions for variable p-order meshes. Computer Methods in Applied Mechanics and Engineering, 1997. 147(3-4): p. 209-233.
54. Underhill, P.T. and P.S. Doyle, On the coarse-graining of polymers into bead-spring chains. Journal of Non-Newtonian Fluid Mechanics, 2004. 122(1-3): p. 3-31.
55. Kim, J.M. and P.S. Doyle, Design and numerical simulation of a DNA electrophoretic stretching device. Lab on a Chip, 2007. 7(2): p. 213-225.
56. Sturges, H.A., The choice of a class interval Case I Computations involving a single. Journal of the American Statistical Association, 1926. 21: p. 65-66.
57. Scott, D.W., Sturges' rule. Wiley Interdisciplinary Reviews: Computational Statistics, 2009. 1(3): p. 303-306.
58. 劉貞汝, 結合圓柱陣列與漸擴微流道以電泳分離DNA之研究. 2017, 國立台灣大學化學工程學系暨研究所.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67699-
dc.description.abstract在具有圓柱陣列的微流道中,若施加電場或流場,溶液中的DNA就被驅動並機率性地與微流道中的圓柱障礙物進行碰撞、上鉤與脫鉤。若利用分子量不同之DNA與圓柱障礙物的碰撞機率與脫鉤時間不相同的特性,便能達到分離之效果。本研究使用電腦模擬,利用布朗動態法(Brownian Dynamics) 連結有限元素法(Finite Element Method)以模擬DNA在微流道中運動之行為,探討透過圓柱陣列分離不同分子量DNA之效果。本研究中提出四大類具有圓柱陣列之微流道設計,用來分離λ-DNA (48.5 kbp) 與T4-DNA (165.6 kbp),每一個模型皆是根據前者發現之問題進行改良,希望找出最佳之分離裝置。
一般來說,在高電場下DNA會受到通道效應(Channeling Effect)影響,大幅降低DNA與圓柱之碰撞機率,導致DNA無法分離。因此我們首先在圓柱陣列中加入漸擴通道,希望藉由在y方向的電場梯度產生預拉伸DNA之效果以增加碰撞機率,並由初步的模擬結果發現此方法確實能夠分離DNA。但引入漸擴通道的設計後, DNA之電泳之路徑較為分散而導致DNA通過每個分離單元之時間大不相同,增加了DNA分布之標準差,反而降低了分離解析度。因此我們改用流場做為驅動力,藉由流體動力作用所產生之空乏層(depletion layer)以限制DNA行經的路徑,有效改善前述問題。接著我們將通道狹窄區之長度縮短,以便在相同長度下置入更多分離單元,進一步增加裝置之分離效率。然而在實驗上,DNA被發現容易卡在通道狹窄區,且DNA之起始分布太廣,導致此設計在實作上無法使用。為了克服上述之問題,我們將漸擴與漸縮通道並聯,藉此增加通道狹窄區之寬度。我們發現本模型中電場會在漸擴區施予DNA一靠牆之合力,使其貼近牆壁電泳,能降低DNA分布的標準差,對高分子量的T4-DNA尤其顯著。此外,我們也分析在不同Pe下脫鉤時間與運動時間對DNA分布之標準差的影響,發現在低Pe時為電泳路徑主導,高Pe則轉變為脫鉤時間所影響。而此模型成功排除在高電場下之通道效應,保有良好的分離解析度,達到在短時間內分離DNA之效果,且隨著通道長度增加,整體裝置的解析度約與通道長度的0.5次方成正比。與實驗相比,雖然仍有相當誤差,但可以相當準確地預測其變化趨勢,並提供一個合理的實驗設計,大幅減少實驗開發的成本。
zh_TW
dc.description.abstractMicrochannel with hexagonal post arrays is one of the novel devices designed for rapid separation of very long DNA by electrophoresis. However, its efficiency is poor at high Peclet number (or electric field) due to the channeling effect which reduces the probability of collision between DNA and posts. To overcome this drawback, we propose four different design of microchannels and test their ability for separating two model DNA, namely λ-DNA (48.5 kbp) and T4-DNA (165.6 kbp), by using Brownian Dynamics simulation in conjunction with finite element method. In the first design, we add a microexpansion in front of the post arrays so that the collision probability between DNA and posts increases due to the pre-stretching of DNA at the microexpansion. However, the separation power was found only increasing marginally due to the increasing variation of the available path for DNA electrophoresis. In the second and the third design, we replace electric field with flow field to reduce the variety of DNA path by a depletion layer caused by hydrodynamic interaction. However, in experiments DNA were found stuck easily at the narrow part of the channel. Moreover, the broad DNA injection band leads to a significant drop in separation resolution. In the last design, we connect the first design in parallel in order to reduce both the width of the injection band and the chance of channel clog. We also found DNA move toward convexed wall due to a normal force, and this phenomenon results in a reduction in DNA path. With this design, we obtain a good separation resolution in short time based on our simulation. We also investigated the factors that contribute to the standard deviation of DNA distribution. We found the variation of DNA path dominates at low Pe but the DNA unhooking time dominates at high Pe. Thus, it is important to control both factors for further improvement of the device. To conclude, we have used simulation to help improving the design of microchannel with post arrays for the purpose of DNA separation.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:44:49Z (GMT). No. of bitstreams: 1
ntu-106-R04524068-1.pdf: 22168351 bytes, checksum: 8c172c15488f556de47a614ee26fa782 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝 I
摘要 II
Abstract IV
目錄 VI
圖目錄 IX
表目錄 XVI
符號表 XVII
希臘符號表 XX
第1章 緒論 1
1.1 前言 1
1.2 研究動機與目的 2
第2章 文獻回顧 3
2.1 DNA的物理性質 3
2.1.1 去氧核糖核苷酸( DNA ) 3
2.1.2 堅韌長度( Persistence Length ) 4
2.1.3 輪廓長度( Contour Length ) 4
2.1.4 鬆弛時間( Relaxation Time ) 4
2.2 線性高分子模型 6
2.2.1 Bead-Stick Model 6
2.2.2 Bead-Spring Model 7
2.2.3 Pear-Necklace Model 7
2.3 高分子鏈 8
2.3.1 理想鏈 8
2.3.2 真實鏈 9
2.3.2.1 體積排斥 ( Excluded Volume) 9
2.3.2.2 Short-Range Interaction 與 Long-Range Interaction 10
2.3.3 蠕蟲鏈 ( Worm-Like Chains) [6] 12
2.4 電場與流場之特殊效應 15
2.4.1 流體動力作用( Hydrodynamic interaction ) 15
2.4.2 DNA於高電場下之自纏繞現象(Self-Entaglement)[8] 17
2.5 電泳分離DNA之文獻回顧 19
2.5.1 傳統凝膠電泳(Gel Electrophoresis) 19
2.5.2 脈衝場凝膠電泳(Pulsed Field Gel Electrophoresis, PFGE) 20
2.5.3 微流道電泳(Electrophoresis in Microchannels) 23
2.5.4 DNA於圓柱陣列微流道電泳之相關參數 33
2.5.4.1 脫鉤時間(Unhooking Time) 33
2.5.4.2 DNA與圓柱碰撞之上鉤型態 36
2.5.4.3 黛博拉數(Deborah number, De) 37
2.5.4.4 匹列數(Peclet number, Pe) 38
2.5.4.5 分離解析度(Separation Resolution, Rs) 38
2.6 微流道設計之改良策略 40
第3章 模擬方法 45
3.1 布朗動態法 ( BD ) 45
3.2 有限元素法 ( FEM) 51
3.3 FEM連結BD 56
3.4 時間步階 58
3.5 參數設定測試 59
3.6 分離解析度之計算方法 61
3.7 分析工具─VMD (Visual Molecular Dynamics) 63
第4章 結果討論 64
4.1 結合漸擴漸縮通道與六角陣列之絕緣圓柱障礙物的電泳分離 64
4.1.1 CaseⅠ之x方向與y方向電場分布 64
4.1.2 CaseⅠ電場下的分離結果 66
4.1.3 經由VMD觀察DNA的運動型態 68
4.2 以改良之漸擴漸縮通道利用流場進行DNA分離 71
4.2.1 CaseⅡ的x方向與y方向之流場速度分布 71
4.2.2 在CaseⅡ中流體動力作用對分離效果之影響 73
4.2.3 比較CaseⅡ中不同通道寬闊區長度對分離效果的影響 75
4.2.4 比較CaseⅢ中圓柱障礙物排列不同的影響 78
4.2.5 真實實驗所遇到的問題 84
4.3 將漸擴漸縮通道平行化之電泳分離 85
4.3.1 CaseⅣ的x方向與y方向之電場分布 85
4.3.2 CaseⅣ在不同Pe下之電場分離結果 87
4.3.3 CaseⅣ在Pe=3.41電場下不同長度之分離結果 97
4.3.4 考慮初始譜帶(band)過寬之影響 100
4.3.5 參照實驗方法使用終點線法求分離解析度 101
4.4 不同裝置下的比較與分析 102
第5章 結論 104
第6章 參考文獻 106
dc.language.isozh-TW
dc.subject布朗動態模擬法zh_TW
dc.subject微流道zh_TW
dc.subject圓柱陣列zh_TW
dc.subjectDNAzh_TW
dc.subject電泳分離zh_TW
dc.subjectpost arraysen
dc.subjectBrownian Dynamics simulationsen
dc.subjectelectrophoresis separationen
dc.subjectDNAen
dc.subjectmicrochannelen
dc.title以電腦模擬改良圓柱陣列微流道應用於DNA分離之研究zh_TW
dc.titleBrownian Dynamics Simulation of DNA Separation in Microchannel with Sparse Post Arraysen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee莊怡哲(Yi-Je Juang),趙玲(Ling Chao),康敦彥(Dun-Yen Kang)
dc.subject.keyword布朗動態模擬法,微流道,圓柱陣列,DNA,電泳分離,zh_TW
dc.subject.keywordBrownian Dynamics simulations,microchannel,post arrays,DNA,electrophoresis separation,en
dc.relation.page109
dc.identifier.doi10.6342/NTU201702085
dc.rights.note有償授權
dc.date.accepted2017-07-27
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept化學工程學研究所zh_TW
顯示於系所單位:化學工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
21.65 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved