Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67664
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorMeng-Che Tsaien
dc.contributor.author蔡孟哲zh_TW
dc.date.accessioned2021-06-17T01:42:56Z-
dc.date.available2020-07-31
dc.date.copyright2017-07-31
dc.date.issued2017
dc.date.submitted2017-07-27
dc.identifier.citation1. S. Nakamura, M. Senoh, and T. Mukai, “High-power InGaN/GaN double-heterostructure violet light emitting diodes,” Appl. Phys. Lett. 62, 2390 (1993).
2. F. Yun, M. A. Reshchikov, L. He, T. King, H. Morkoc, S. W. Novak, and L.Wei, “Energy band bowing parameter in AlxGa1–xN alloys,” J. Appl. Phys. 92, 4837 (2002).
3. J. Wu, W. Walukiewicz, W. Shan, K. M. Yu, J. W. Ager III, S. X. Li, E. E. Haller, H. Lu, and W. J. Schaff, “Universal bandgap bowing in group-III nitride alloys,” Solid State Commun. 127, 411 (2003).
4. D. A. Steigerwald, J. C. Bhat, D. Collins, R. M. Fletcher, M. O. Holcomb, M. J. Ludowise, P. S. Martin, and S. Rudaz, “Illumination with solid state lighting technology,” IEEE J. Sel. Top. Quantum Electron. 8, 310 (2002).
5. E. F. Schubert and J. K. Kim, “Solid-state light sources getting smart,” Science 308, 1274 (2005).
6. T. Nishida, H. Saito, and N. Kobayashi, “Efficient and high-power AlGaN-based ultraviolet light-emitting diode grown on bulk GaN,” Appl. Phys. Lett. 79, 711 (2001).
7. S. Nakamura and G. Fasol, The Blue Laser Diode. Springer, Berlin, 1997.
8. C. Y. Liu, C. C. Lai, J. H. Liao, L. C. Cheng, H. H. Liu, C. C. Chang, G. Y. Lee, J.-I. Chyi, L. K. Yeh, J. H. He, T. Y. Chung, L. C. Huang, and K. Y. Lai, “Nitride-based concentrator solar cells grown on Si substrates,” Solar Energy Mater. Solar Cells 117, 54-58 (2013).
9. J. K. Sheu, P.-C. Chen, C.-L. Shin, M.-L. Lee, P.-H. Liao, and W.-C. Lai “Manganese-doped AlGaN/GaN heterojunction solar cells with intermediate band absorption,” Solar Energy Mater. Solar Cells 157, 727-732 (2016).
10. M. Kneissl, T. Kolbe, C. Chua, V. Kueller, N. Lobo, J. Stellmach, A. Knauer, H. Rodriguez, S. Einfeldt, and Z. Yang, “Advances in group III-nitride-based deep UV light-emitting diode technology,” Semicond. Sci. Technol. 26(1), 014036 (2011).
11. T. F. Kent, S. D. Carnevale, A. T. M. Sarwar, P. J. Phillips, R. F. Klie, and R. C. Myers, “Deep ultraviolet emitting polarization induced nanowire light emitting diodes with AlxGa1-xN active regions,” Nanotechnology 25(45), 455201 (2014).
12. M. Shatalov, W. Sun, A. Lunev, X. Hu, A. Dobrinsky, Y. Bilenko, J. Yang, M. Shur, R. Gaska, C. Moe, G. Garrett, and M. Wraback, “AlGaN deep-ultraviolet light-emitting diodes with external quantum efficiency above 10%,” Appl. Phys. Exp. 5(8), 082101 (2012).
13. T. Takano, T. Mino, J. Sakai, N. Noguchi, K. Tsubaki, and H. Hirayama, “Deep-ultraviolet light-emitting diodes with external quantum efficiency higher than 20% at 275 nm achieved by improving light-extraction efficiency,” Appl. Phys. Exp. 10(3), 031002 (2017).
14. H. Hirayama, Y. Tsukada, T. Maeda, and N. Kamata, “Marked enhancement in the efficiency of deep-ultraviolet AlGaN light-emitting diodes by using a multiquantum-barrier electron blocking layer,” Appl. Phys. Exp. 3(3), 031002 (2010).
15. K. B. Nam, J. Li, M. L. Nakarmi, J. Y. Lin, and H. X. Jiang, “Unique optical properties of AlGaN alloys and related ultraviolet emitters,” Appl. Phys. Lett. 84(25), 5264-5266 (2004).
16. T. Kolbe, A. Knauer, C. Chua, Z. Yang, S. Einfeldt, P. Vogt, N. M. Johnson, M. Weyers, and M. Kneissl, “Optical polarization characteristics of ultraviolet (In)(Al)GaN multiple quantum well light emitting diodes,” Appl. Phys. Lett. 97(17), 171105 (2010).
17. H. Kawanishia, M. Senuma, and T. Nukui, “Anisotropic polarization characteristics of lasing and spontaneous surface and edge emissions from deep-ultraviolet (λ≈240nm) AlGaN multiple-quantum-well lasers,” Appl. Phy. Lett. 89(4), 041126 (2006).
18. J. E. Northrup, C. L. Chua, Z. Yang, T. Wunderer, M. Kneissl, N. M. Johnson, and T. Kolbe, “Effect of strain and barrier composition on the polarization of light emission from AlGaN/AlN quantum wells,” Appl. Phys. Lett. 100(2), 021101 (2012)
19. S. Fan, Z. Qin, C. He, X. Wang, B. Shen, and G. Zhang, “Strain effect on the optical polarization properties of c-plane Al0.26Ga0.74N/GaN superlattices,” OPTICS EXPRESS 22(6), 6322-6328 (2014).
20. S. L. Chuang and C. S. Chang, “k·p method for strained wurtzite semiconductors,” Phys. Rev. B 54(4), 2491– 2504 (1996).
21. S. L. Chuang and C. S. Chang, “A band-structure model of strained quantum-well wurtzite semiconductors,” Semicond. Sci. Technol. 12(3), 252– 263 (1997).
22. I. Vurgaftman and J. R. Meyer, “Band parameters for nitrogen-containing semiconductors,” J. Appl. Phys. 94(6), 3675– 3696 (2003).
23. C. Reich, M. Guttmann, M. Feneberg, T. Wernicke, F. Mehnke, C. Kuhn, H. Rass, M Lapeyrade, S. Einfeldt, A. Knauer, V. Kuller, M. Weyers, R. Goldhahn, and M. Kneissl, “Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes,” Appl. Phys. Lett. 107(14), 142101 (2015).
24. M. Imura, K. Nakano, G. Narita, N. Fujimoto, N. Okada, K. Balakrishnan, M. Iwaya, S. Kamiyama, H. Amano, I. Akasaki, T. Noro, T. Takagi, and A. Bandoh, “Epitaxial lateral overgrowth of AlN on trench-patterned AlN layers,” J. Cryst. Growth 298, 257-260 (2007).
25. H. Hirayama, S. Fujikawa, J. Norimatsu, T. Takano, K. Tsubaki, and N. Kamata, “Fabrication of a low threading dislocation density ELO-AlN template for application to deep-UV LEDs,” Phys. Status Solidi C, 6(S2), S356-S359 (2009).
26. H. Hirayama, N. Maeda, S. Fujikawa, S. Toyoda, and N. Kamata, “Recent progress and future prospects of AlGaN-based high-efficiency deep-ultraviolet light-emitting diodes,” Jpn. J. Appl. Phys. 53(10), 100209 (2014).
27. H. Lu, T. Yu, G. Yuan, X. Chen, Z. Chen, G. Chen, and G. Zhang, “Enhancement of surface emission in deep ultraviolet AlGaN-based light emitting diodes with staggered quantum wells,” Opt. Lett. 37(17), 3693-3695 (2012).
28. J. Zhang, H. P. Zhao, and N. Tansu, “Large optical gain AlGaN-Delta-GaN quantum wells laser active regions in mid- and deep-ultraviolet spectral regimes,” Appl. Phys. Lett. 98(17), 171111 (2011).
29. X. J. Chen, T. J. Yu, H. M. Lu, G. C. Yuan, B. Shen, and G. Y. Zhang, “Modulating optical polarization properties of Al-rich AlGaN/AlN quantum well by controlling wavefunction overlap,” Appl. Phys. Lett. 103(18), 181117 (2013).
30. D. Y. Kim, J. H. Park, J. W. Lee, S. Hwang, S. J. Oh, J. Kim, C. Sone, E. F. Schubert, and J. K. Kim, “Overcoming the fundamental light-extraction efficiency limitations of deep ultraviolet light-emitting diodes by utilizing transverse-magnetic-dominant emission,” Light: Sci. Appl. 4, e263 (2015).
31. N. Gao, K. Huang, J. Li, S. Li, X. Yang, and J. Kang, “Surface-plasmon-enhanced deep-UV light emitting diodes based on AlGaN multi-quantum wells,” Scientific Reports 2(816), 00816 (2012).
32. C. Y. Su, W. H. Chen, Y. Kuo, C. H. Lin, M. Y. Su, M. C. Tsai, W. Y. Chang, C. Hsieh, C. G. Tu, Y. F. Yao, H. T. Chen, Y. W. Kiang, and C. C. Yang, “Enhancement of emission efficiency of deep-ultraviolet AlGaN quantum wells through surface plasmon coupling with an Al nanograting structure,” Plasmonics 1–10 (2017).
33. Y. Kuo, C. Y. Su, C. Hsieh, W. Y. Chang, C. A. Huang, Y. W. Kiang, and C. C. Yang, “Surface plasmon coupling for suppressing p-GaN absorption and TM-polarized emission in a deep-UV light-emitting diode,” Opt. Lett. 40(18), 4229-4232 (2015).
34. C. Reich, M. Guttmann, M. Feneberg, T. Wernicke, F. Mehnke, C. Kuhn, J. Rass, M. Lapeyrade, S. Einfeldt, A. Knauer, V. Kueller, M. Weyers, R. Goldhahn, and M. Kneissl, “Strongly transverse-electric-polarized emission from deep ultraviolet AlGaN quantum well light emitting diodes,” Appl. Phys. Lett. 107(14), 142101 (2015).
35. M.J. Hÿtch, E. Snoeck, and R. Kilaas, “Quantitative measurement of displacement and strain fields from HREM micrographs,” Ultramicroscopy 74(3), 131-146. (1998).
36. D. L. Misell, “Image analysis, enhancement and interpretation,” Cell 17(2), 463-464 (1979).
37. B. D. Cullity and S. R. Stock, Elements of X-ray Diffraction (Addison-Wesley, Reading, Mass., 1959).
38. M. Birkholz, F. F. Fewster, and C. Genzel, Thin Film Analysis by X-ray Scattering. Weinheim, Germany: Wiley, 2006.
39. B. Poust, B. Heying, S. Hayashi, R. Ho, K. Matney, R. Sandhu, and M. Goorsky, “Scans along arbitrary directions in reciprocal space and the analysis of GaN films on SiC,” J. Phys. D 38(10A), A93 (2005).
40. P. F. Fewster and N. L. Andrew, “Absolute lattice-parameter measurement,” J. Appl. Crystallogr. 28(4), 451-458 (1995).
41. M. Feneberg, R. A. R. Leute, B. Neuschl, K. Thonke, and M. Bickermann, “High-excitation and high-resolution photoluminescence spectra of bulk AlN,” Phys. Rev. B 82(7), 075208 (2010).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67664-
dc.description.abstract在本論文中,我們先透過穿透式電子顯微鏡的觀察、X-射線繞射的倒晶格空間分布量測及 ω-2θ 掃描和幾何相位分析,初步判定三種不同深紫外光發光波長樣品內的量子井兩側存在高鋁含量障礙薄層。接著,經由穿透及光激螢光量測,特別是沿著樣品c軸方向施加壓力的光激螢光量測,我們瞭解樣品中高鋁含量層對能帶結構以及發光偏振行為的影響。我們也進行模擬研究獲得數值結果來和實驗數據比對。基本上,高鋁含量層對量子井層提供了c平面上額外的壓縮應變,讓重電洞能帶降低,且降低的幅度較分裂能帶者還大,造成重電洞能帶較分裂能帶低,因此導電帶與重電洞能帶間的電子躍遷能量較導電帶與分裂能帶間者小,發光偏振變成由垂直電場發光偏振主導。因此有此種高鋁含量障礙薄層的深紫外發光二極體之光萃取效率可以提高。zh_TW
dc.description.abstractThe material characterization techniques of transmission electron microscopy observation, reciprocal space mapping and ω-2θ scan in X-ray diffraction measurement, and geometric phase analysis are used for first identifying the existence of the high-aluminum layers (HALs) on both sides of a quantum well (QW) in three 3-period AlxGa1-xN/AlyGa1-yN (x < y) QW structures of different deep-ultraviolet (UV) emission wavelengths. Then, optical analyses, including transmission and photoluminescence (PL) measurements, particularly the PL measurements under an applied stress along the sample c-axis, are undertaken for understanding the effects of such HALs on the band structures and hence the polarized emission behaviors of the samples. Simulation studies are also performed for providing the favorable comparisons with the experimental data. Basically, the HALs produce an extra compressive strain in the c-plane for lowering the heavy-hole (HH) band edge (lower than the edge of the split-off band) such that the transverse-electric-polarized emission through the electron transition between the conduction and HH band becomes dominating. In this situation, the light extraction efficiency of such a deep-UV light-emitting diode can be enhanced.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:42:56Z (GMT). No. of bitstreams: 1
ntu-106-R03941011-1.pdf: 2689106 bytes, checksum: add010c5f9f7c7939270589d84b5a772 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents致謝i
摘要ii
Abstract iii
Contents iv
List of Figure vi
List of Table x
Chapter 1 Introduction 1
1.1 Nitride-based Semiconductors for Optoelectronics 1
1.1.1 Application of Nitride-based Device 1
1.1.2 Deep-ultraviolet Light-emitting Diodes 2
1.2 Anisotropic Polarization Characteristics of AlGaN-based Deep-UV LED Structures 3
1.3 Approaches for the Enhancement of Light Extraction Efficiency in AlGaN-based Deep-UV LED Structures 5
1.4 Geometric Phase Analysis 6
1.5 Principle of X-ray Diffraction 8
1.5.1 Diffraction and Reciprocal Space 8
1.5.2 Elements of High-resolution X-ray Diffraction 11
1.5.3 Scan Types and Related Issues 15
1.6 Research Motivations 17
1.7 Thesis Structure 18
Chapter 2 Conditions for Sample Growths and Methods of Characterization and Analysis 35
2.1 Conditions for Sample Growths 35
2.2 Characterization and Analysis Procedures 36
2.3 Optical Measurements 38
Chapter 3 Material Characterization Results 44
3.1 Thicknesses Measurements 44
3.2 Characterization of the AlGaN Template 45
3.3 Al contents and Thicknesses in a Sample Structure 46
3.4 Geometric Phase Analysis Result 47
Chapter 4 Optical Analysis Results 60
4.1 Optical Analysis and Simulation Results 60
4.2 Pressure-dependent PL Measurement and Simulation Results 61
Chapter 5 Conlusions 70
References 71
dc.language.isoen
dc.subject氮化鋁鎵量子井zh_TW
dc.subject深紫外光zh_TW
dc.subject偏極化zh_TW
dc.subjectAlGaN Quantum Wellsen
dc.subjectDeep-ultravioleten
dc.subjectPolarizationen
dc.title具有高鋁成份薄位障層深紫外光氮化鋁鎵量子井的量測與分析研究zh_TW
dc.titleCharacterizations and Analyses of Deep-ultraviolet AlxGa1-xN/AlyGa1-yN (x < y) Quantum Wells with Thin Barriers of Elevated Aluminum Contentsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉,黃建璋,陳奕君,吳肇欣
dc.subject.keyword氮化鋁鎵量子井,深紫外光,偏極化,zh_TW
dc.subject.keywordAlGaN Quantum Wells,Deep-ultraviolet,Polarization,en
dc.relation.page77
dc.identifier.doi10.6342/NTU201702011
dc.rights.note有償授權
dc.date.accepted2017-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
2.63 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved