請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67662完整後設資料紀錄
| DC 欄位 | 值 | 語言 |
|---|---|---|
| dc.contributor.advisor | 周必泰 | |
| dc.contributor.author | Yu-Min Lin | en |
| dc.contributor.author | 林鈺旻 | zh_TW |
| dc.date.accessioned | 2021-06-17T01:42:49Z | - |
| dc.date.available | 2022-08-14 | |
| dc.date.copyright | 2017-08-14 | |
| dc.date.issued | 2017 | |
| dc.date.submitted | 2017-07-27 | |
| dc.identifier.citation | 1. Alivisatos, A. P. J. Phys. Chem., 1996, 100, 13226-13239.
2. Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. Science, 1998, 281, 2013-2016. 3. Achermann, M., Petruska, M. A., Kos, S., & Smith, D. L. Nature, 2004, 429, 642. 4. Huynh, W. U., Dittmer, J. J., & Alivisatos, A. P. Science, 2002, 295, 2425-2427. 5. Klein, D. L., Roth, R., Lim, A. K., Alivisatos, A. P., & McEuen, P. L. Nature, 1997, 389, 699-701. 6. Li, J. J., Wang, Y. A., Guo, W., Keay, J. C., Mishima, T. D., Johnson, M. B., & Peng, X. J. Am. Chem. Soc., 2003, 125, 12567–12575. 7. Yang, Y., Zheng, Y., Cao, W., Titov, A., Hyvonen, J., Manders, J. R., Xue, J., Holloway, P.H. & Qian, L. Nat. Photon., 2015, 9, 259-266. 8. Bae, W. K., Char, K., Hur, H., & Lee, S. Chem. Mater., 2008, 20, 531–539. 9. Bae, W. K., Nam, M. K., Char, K., & Lee, S. Chem. Mater., 2008, 20, 5307–5313. 10. Lim, J., Jun, S., Jang, E., Baik, H., Kim, H., & Cho, J. Adv. Mater., 2007, 19, 1927–1932. 11. Lee, K. H., Han, C. Y., Kang, H. D., Ko, H., Lee, C., Lee, J., Myoung, N., Yim, S. Y. & Yang, H. ACS Nano, 2015, 9, 10941–10949. 12. Lee, K. H., Lee, J. H., Kang, H. D., Park, B., Kwon, Y., Ko, H., lee, C., Lee, J. & Yang, H. ACS Nano, 2014, 8, 4893-4901. 13. Jun, S., Jang, E., & Chung, Y. Nanotechnology, 2006, 17, 4806. 14. Kwak, J., Bae, W. K., Lee, D., Park, I., Lim, J., Park, M., Cho, H., Woo, H., Yoon, D. Y., Char, K., Lee, S. & Lee, C. Nano Lett., 2012, 12, 2362−2366. 15. Kawa, M., Morii, H., Ioku, A., Saita, S., & Okuyama, K. J. Nanopart. Res., 2003, 5, 81-85 16. Chan, E. M., Mathies, R. A., & Alivisatos, A. P. Nano Lett., 2003, 3, 199–201. 17. He, Y., Lu, H. T., Sai, L. M., Su, Y. Y., Hu, M., Fan, C. H., Huang, W., & Wang, L. H. Adv. Mater., 2008, 20, 3416–3421. 18. Hu, M. Z., & Zhu, T. Nanoscale Res. Lett., 2015, 10, 469 19. Ziegler, J., Xu, S., Kucur, E., Meister, F., Batentschuk, M., Gindele, F. & Nann, T. Adv. Mater., 2008, 20, 4068–4073. 20. Choudhury, K. R., Sahoo, Y., Ohulchanskyy, T. Y., & Prasad, P. N. Appl.Phys. Lett., 2005, 87, 073110. 21. Yaacobi-Gross, N., Soreni-Harari, M., Zimin, M., Kababya, S., Schmidt, A., & Tessler, N. Nat. Mater., 2011, 10, 974-979. 22. Allen, P. M., Liu, W., Chauhan, V. P., Lee, J., Ting, A. Y., Fukumura, D., ... & Bawendi, M. G. J. Am. Chem. Soc., 2010, 132, 470–471. 23. Kim, S., Kim, T., Kang, M., Kwak, S. K., Yoo, T. W., Park, L. S., Yang, I., Hwang, S., Lee, J. E., Kim, S. K., Kim, S. W. J. Am. Chem. Soc., 2012, 134, 3804–3809. 24. Gary, D. C., Glassy, B. A., & Cossairt, B. M. Chem. Mater., 2014, 26, 1734–1744. 25. Lauth, J.; Strupeit, T.; Kornowski, A.; Weller, H. Chem. Mater., 2013, 25, 1377−1383. 26. Liu, Z., Kumbhar, A., Xu, D., Zhang, J., Sun, Z., & Fang, J. Angew. Chem., 2008,47, 3540-3542. 27. Bang, E., Choi, Y., Cho, J., Suh, Y. H., Ban, H. W., Son, J. S., & Park, J. Chem. Mater., 2017, 29, 4236–4243. 28. Li, L., Protière, M., & Reiss, P. Chem. Mater., 2008, 20, 2621–2623 29. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007. 30. Xu, S., Ziegler, J., & Nann, T. J. Mater. Chem., 2008, 18, 2653-2656. 31. Tessier, M. D., Dupont, D., De Nolf, K., De Roo, J., & Hens, Z. Chem. Mater., 2015, 27, 4893–4898. 32. Song, W.-S.; Lee, H.-S.; Lee, J. C.; Jang, D. S.; Choi, Y.; Choi, M.; Yang, H. J. Nanoparticle Res., 2013, 15, 1750. 33. Thuy, U. T. D., Reiss, P., & Liem, N. Q. Appl. Phys. Lett., 2010, 97, 193104. 34. Kim, M. R., Chung, J. H., Lee, M., Lee, S., & Jang, D. J. J. Colloid Interface Sci., 2010, 350, 5-9. 35. Lim, J., Bae, W. K., Lee, D., Nam, M. K., Jung, J., Lee, C., Char, K. & Lee, S. Chem. Mater., 2011, 23, 4459–4463. 36. Park, J. P., Lee, J. J., & Kim, S. W. Sci. Rep, 2016, 6, 30094. 37. Jo, J. H., Kim, J. H., Lee, K. H., Han, C. Y., Jang, E. P., Do, Y. R., & Yang, H. Opt. Lett., 2016, 41, 3984-3897. 38. Battaglia, D., & Peng, X. Nano Letters, 2002, 2, 1027–1030. 39. Anderson, N. C., Hendricks, M. P., Choi, J. J., & Owen, J. S. J. Am. Chem. Soc., 2013, 135, 18536–18548. 40. Querner, C., Benedetto, A., Demadrille, R., Rannou, P., & Reiss, P. Chem. Mater., 2006, 18, 4817–4826. 41. Dubois, F., Mahler, B., Dubertret, B., Doris, E., & Mioskowski, C. J. Am. Chem. Soc., 2007, 129, 482–483 42. Chen, J., Hartlove, J., Hardev, V., Yurek, J., Lee, E. and Gensler, S. (2014), P-119: High Efficiency LCDs using Quantum Dot Enhancement Films. SID Symposium Digest of Technical Papers, 45: 1428–1430. | |
| dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67662 | - |
| dc.description.abstract | We used a single-step synthetic method to synthesize highly luminescent (quantum yield >70%) core/shell quantum dots (QDs) with narrow emission bandwidth. The emission wavelength was finely tuned from violet (440 nm) to red (620 nm) by adjusting the ratio of precursors. The core/shell structure and giant size lead to the stability of QDs by passivating the surface. The giant QDs are obtained by multi-injection of Se-TOP, S-TOP and additional Zn precursors for overcoating thick ZnS shell. As a result, the particle size is increased to 11 nm and 13 nm for blue- and green-emitting, respectively.
InP QDs are nontoxic emitters, which are considered an alternative to Cd-based QDs. Using (DEA)3P as phosphorus precursor, which is less expensive and more stable in ambient condition than the (TMS)3P, the obtained QDs exhibit narrow emission width of ~65 nm with tunable emission wavelength from 500 nm to 620 nm. By using the successive injection of VI-group precursor (like Se, S in TOP) and Zn precursor, we synthesized the InP/ZnSeS/ZnS core/multishell QDs exhibiting high QY of 76% and particle size of 6.6 nm. | en |
| dc.description.provenance | Made available in DSpace on 2021-06-17T01:42:49Z (GMT). No. of bitstreams: 1 ntu-106-R04223103-1.pdf: 4019907 bytes, checksum: 0a2d416157024f5b2677daa434cb5a67 (MD5) Previous issue date: 2017 | en |
| dc.description.tableofcontents | 論文口試委員審定書
謝辭 摘要 i ABSTRACT ii CONTENTS ii LIST OF FIGURES v LIST OF TABLES vii Chapter 1. Preparation of RGB Cadmium-QDs 1 1.1 Introduction 1 1.2 Experimental Section 3 1.2.1 Chemicals 3 1.2.2 Synthesis of CdZnS/ZnS Core/Shell Blue QDs 3 1.2.3 Synthesis of CdSe@ZnS Alloy Green QDs 4 1.2.4 Synthesis of CdSe/CdS/ZnS Core/Multishell Red QDs 4 1.2.5 Characterization 5 1.3 Results and Discussion 6 Chapter 2. Large-Scale Syntheses of QDs and Applications in Display Technologies 13 2.1 Introduction 13 2.2 Reactor Design 15 2.3 Experiments Section 17 2.3.1 Chemicals 17 2.3.2 Large-Scale Synthesis and Characterization of CdSe/ZnS QDs 17 2.3.3 Preparation and Characterization of QD Films 18 2.3.4 Preparation and Characterization of QD On-Chip LED 19 2.4 Results and Discussion 20 2.4.1 Morphology and Structure of Large-Scale CdSe/ZnS QDs 20 2.4.2 Fabrication of QD Devices 22 Chapter 3. Preparation of Indium Phosphine QDs 29 3.1 Introduction 29 3.2 Experimental Section 31 3.2.1 Chemicals 31 3.2.2 Synthesis of InP/ZnS Core/Shell Red QDs using P(DEA)3 31 3.2.3 Synthesis of InP/ZnS Core/Shell Green QDs using P(DEA)3 32 3.2.4 Synthesis of InP/ZnS Core/Shell Blue QDs using P(DEA)3 32 3.2.5 Synthesis of InP/ZnSeS/ZnS Core/MultiShell Red QDs using P(DEA)3 32 3.2.6 Synthesis of InGaP/ZnSeS Core/Shell Red QDs using P(TMS)3 33 3.2.7 Synthesis of InGaP/ZnSeS Core/Shell Green QDs using P(TMS)3 34 3.2.8 Characterization 34 3.3 Results and Discussion 35 3.3.1 P(DEA)3 system 35 3.3.2 P(TMS)3 system 39 References 50 | |
| dc.language.iso | en | |
| dc.subject | 量子點 | zh_TW |
| dc.subject | 硒化鎘 | zh_TW |
| dc.subject | 殼核結構 | zh_TW |
| dc.subject | 磷化銦 | zh_TW |
| dc.subject | 熱注射 | zh_TW |
| dc.subject | InP | en |
| dc.subject | CdSe | en |
| dc.subject | core/shell structure | en |
| dc.subject | hot injection | en |
| dc.subject | quantum dots | en |
| dc.title | 鎘系量子點合成及應用與銦系量子點之合成鑑定 | zh_TW |
| dc.title | Syntheses and Applications of Cd-containing Quantum Dots & Syntheses of Cd-free (InP) Quantum Dots | en |
| dc.type | Thesis | |
| dc.date.schoolyear | 105-2 | |
| dc.description.degree | 碩士 | |
| dc.contributor.oralexamcommittee | 周尚威,何美霖 | |
| dc.subject.keyword | 量子點,硒化鎘,殼核結構,磷化銦,熱注射, | zh_TW |
| dc.subject.keyword | quantum dots,CdSe,core/shell structure,InP,hot injection, | en |
| dc.relation.page | 53 | |
| dc.identifier.doi | 10.6342/NTU201702133 | |
| dc.rights.note | 有償授權 | |
| dc.date.accepted | 2017-07-28 | |
| dc.contributor.author-college | 理學院 | zh_TW |
| dc.contributor.author-dept | 化學研究所 | zh_TW |
| 顯示於系所單位: | 化學系 | |
文件中的檔案:
| 檔案 | 大小 | 格式 | |
|---|---|---|---|
| ntu-106-1.pdf 未授權公開取用 | 3.93 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。
