Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 化學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67662
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor周必泰
dc.contributor.authorYu-Min Linen
dc.contributor.author林鈺旻zh_TW
dc.date.accessioned2021-06-17T01:42:49Z-
dc.date.available2022-08-14
dc.date.copyright2017-08-14
dc.date.issued2017
dc.date.submitted2017-07-27
dc.identifier.citation1. Alivisatos, A. P. J. Phys. Chem., 1996, 100, 13226-13239.
2. Bruchez, M., Moronne, M., Gin, P., Weiss, S., & Alivisatos, A. P. Science, 1998, 281, 2013-2016.
3. Achermann, M., Petruska, M. A., Kos, S., & Smith, D. L. Nature, 2004, 429, 642.
4. Huynh, W. U., Dittmer, J. J., & Alivisatos, A. P. Science, 2002, 295, 2425-2427.
5. Klein, D. L., Roth, R., Lim, A. K., Alivisatos, A. P., & McEuen, P. L. Nature, 1997, 389, 699-701.
6. Li, J. J., Wang, Y. A., Guo, W., Keay, J. C., Mishima, T. D., Johnson, M. B., & Peng, X. J. Am. Chem. Soc., 2003, 125, 12567–12575.
7. Yang, Y., Zheng, Y., Cao, W., Titov, A., Hyvonen, J., Manders, J. R., Xue, J., Holloway, P.H. & Qian, L. Nat. Photon., 2015, 9, 259-266.
8. Bae, W. K., Char, K., Hur, H., & Lee, S. Chem. Mater., 2008, 20, 531–539.
9. Bae, W. K., Nam, M. K., Char, K., & Lee, S. Chem. Mater., 2008, 20, 5307–5313.
10. Lim, J., Jun, S., Jang, E., Baik, H., Kim, H., & Cho, J. Adv. Mater., 2007, 19, 1927–1932.
11. Lee, K. H., Han, C. Y., Kang, H. D., Ko, H., Lee, C., Lee, J., Myoung, N., Yim, S. Y. & Yang, H. ACS Nano, 2015, 9, 10941–10949.
12. Lee, K. H., Lee, J. H., Kang, H. D., Park, B., Kwon, Y., Ko, H., lee, C., Lee, J. & Yang, H. ACS Nano, 2014, 8, 4893-4901.
13. Jun, S., Jang, E., & Chung, Y. Nanotechnology, 2006, 17, 4806.
14. Kwak, J., Bae, W. K., Lee, D., Park, I., Lim, J., Park, M., Cho, H., Woo, H., Yoon, D. Y., Char, K., Lee, S. & Lee, C. Nano Lett., 2012, 12, 2362−2366.
15. Kawa, M., Morii, H., Ioku, A., Saita, S., & Okuyama, K. J. Nanopart. Res., 2003, 5, 81-85
16. Chan, E. M., Mathies, R. A., & Alivisatos, A. P. Nano Lett., 2003, 3, 199–201.
17. He, Y., Lu, H. T., Sai, L. M., Su, Y. Y., Hu, M., Fan, C. H., Huang, W., & Wang, L. H. Adv. Mater., 2008, 20, 3416–3421.
18. Hu, M. Z., & Zhu, T. Nanoscale Res. Lett., 2015, 10, 469
19. Ziegler, J., Xu, S., Kucur, E., Meister, F., Batentschuk, M., Gindele, F. & Nann, T. Adv. Mater., 2008, 20, 4068–4073.
20. Choudhury, K. R., Sahoo, Y., Ohulchanskyy, T. Y., & Prasad, P. N. Appl.Phys. Lett., 2005, 87, 073110.
21. Yaacobi-Gross, N., Soreni-Harari, M., Zimin, M., Kababya, S., Schmidt, A., & Tessler, N. Nat. Mater., 2011, 10, 974-979.
22. Allen, P. M., Liu, W., Chauhan, V. P., Lee, J., Ting, A. Y., Fukumura, D., ... & Bawendi, M. G. J. Am. Chem. Soc., 2010, 132, 470–471.
23. Kim, S., Kim, T., Kang, M., Kwak, S. K., Yoo, T. W., Park, L. S., Yang, I., Hwang, S., Lee, J. E., Kim, S. K., Kim, S. W. J. Am. Chem. Soc., 2012, 134, 3804–3809.
24. Gary, D. C., Glassy, B. A., & Cossairt, B. M. Chem. Mater., 2014, 26, 1734–1744.
25. Lauth, J.; Strupeit, T.; Kornowski, A.; Weller, H. Chem. Mater., 2013, 25, 1377−1383.
26. Liu, Z., Kumbhar, A., Xu, D., Zhang, J., Sun, Z., & Fang, J. Angew. Chem., 2008,47, 3540-3542.
27. Bang, E., Choi, Y., Cho, J., Suh, Y. H., Ban, H. W., Son, J. S., & Park, J. Chem. Mater., 2017, 29, 4236–4243.
28. Li, L., Protière, M., & Reiss, P. Chem. Mater., 2008, 20, 2621–2623
29. Luo, Y.-R. Comprehensive Handbook of Chemical Bond Energies; CRC Press: Boca Raton, FL, USA, 2007.
30. Xu, S., Ziegler, J., & Nann, T. J. Mater. Chem., 2008, 18, 2653-2656.
31. Tessier, M. D., Dupont, D., De Nolf, K., De Roo, J., & Hens, Z. Chem. Mater., 2015, 27, 4893–4898.
32. Song, W.-S.; Lee, H.-S.; Lee, J. C.; Jang, D. S.; Choi, Y.; Choi, M.; Yang, H. J. Nanoparticle Res., 2013, 15, 1750.
33. Thuy, U. T. D., Reiss, P., & Liem, N. Q. Appl. Phys. Lett., 2010, 97, 193104.
34. Kim, M. R., Chung, J. H., Lee, M., Lee, S., & Jang, D. J. J. Colloid Interface Sci., 2010, 350, 5-9.
35. Lim, J., Bae, W. K., Lee, D., Nam, M. K., Jung, J., Lee, C., Char, K. & Lee, S. Chem. Mater., 2011, 23, 4459–4463.
36. Park, J. P., Lee, J. J., & Kim, S. W. Sci. Rep, 2016, 6, 30094.
37. Jo, J. H., Kim, J. H., Lee, K. H., Han, C. Y., Jang, E. P., Do, Y. R., & Yang, H. Opt. Lett., 2016, 41, 3984-3897.
38. Battaglia, D., & Peng, X. Nano Letters, 2002, 2, 1027–1030.
39. Anderson, N. C., Hendricks, M. P., Choi, J. J., & Owen, J. S. J. Am. Chem. Soc., 2013, 135, 18536–18548.
40. Querner, C., Benedetto, A., Demadrille, R., Rannou, P., & Reiss, P. Chem. Mater., 2006, 18, 4817–4826.
41. Dubois, F., Mahler, B., Dubertret, B., Doris, E., & Mioskowski, C. J. Am. Chem. Soc., 2007, 129, 482–483
42. Chen, J., Hartlove, J., Hardev, V., Yurek, J., Lee, E. and Gensler, S. (2014), P-119: High Efficiency LCDs using Quantum Dot Enhancement Films. SID Symposium Digest of Technical Papers, 45: 1428–1430.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67662-
dc.description.abstractWe used a single-step synthetic method to synthesize highly luminescent (quantum yield >70%) core/shell quantum dots (QDs) with narrow emission bandwidth. The emission wavelength was finely tuned from violet (440 nm) to red (620 nm) by adjusting the ratio of precursors. The core/shell structure and giant size lead to the stability of QDs by passivating the surface. The giant QDs are obtained by multi-injection of Se-TOP, S-TOP and additional Zn precursors for overcoating thick ZnS shell. As a result, the particle size is increased to 11 nm and 13 nm for blue- and green-emitting, respectively.
InP QDs are nontoxic emitters, which are considered an alternative to Cd-based QDs. Using (DEA)3P as phosphorus precursor, which is less expensive and more stable in ambient condition than the (TMS)3P, the obtained QDs exhibit narrow emission width of ~65 nm with tunable emission wavelength from 500 nm to 620 nm. By using the successive injection of VI-group precursor (like Se, S in TOP) and Zn precursor, we synthesized the InP/ZnSeS/ZnS core/multishell QDs exhibiting high QY of 76% and particle size of 6.6 nm.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:42:49Z (GMT). No. of bitstreams: 1
ntu-106-R04223103-1.pdf: 4019907 bytes, checksum: 0a2d416157024f5b2677daa434cb5a67 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents論文口試委員審定書
謝辭
摘要 i
ABSTRACT ii
CONTENTS ii
LIST OF FIGURES v
LIST OF TABLES vii
Chapter 1. Preparation of RGB Cadmium-QDs 1
1.1 Introduction 1
1.2 Experimental Section 3
1.2.1 Chemicals 3
1.2.2 Synthesis of CdZnS/ZnS Core/Shell Blue QDs 3
1.2.3 Synthesis of CdSe@ZnS Alloy Green QDs 4
1.2.4 Synthesis of CdSe/CdS/ZnS Core/Multishell Red QDs 4
1.2.5 Characterization 5
1.3 Results and Discussion 6
Chapter 2. Large-Scale Syntheses of QDs and Applications in Display Technologies 13
2.1 Introduction 13
2.2 Reactor Design 15
2.3 Experiments Section 17
2.3.1 Chemicals 17
2.3.2 Large-Scale Synthesis and Characterization of CdSe/ZnS QDs 17
2.3.3 Preparation and Characterization of QD Films 18
2.3.4 Preparation and Characterization of QD On-Chip LED 19
2.4 Results and Discussion 20
2.4.1 Morphology and Structure of Large-Scale CdSe/ZnS QDs 20
2.4.2 Fabrication of QD Devices 22
Chapter 3. Preparation of Indium Phosphine QDs 29
3.1 Introduction 29
3.2 Experimental Section 31
3.2.1 Chemicals 31
3.2.2 Synthesis of InP/ZnS Core/Shell Red QDs using P(DEA)3 31
3.2.3 Synthesis of InP/ZnS Core/Shell Green QDs using P(DEA)3 32
3.2.4 Synthesis of InP/ZnS Core/Shell Blue QDs using P(DEA)3 32
3.2.5 Synthesis of InP/ZnSeS/ZnS Core/MultiShell Red QDs using P(DEA)3 32
3.2.6 Synthesis of InGaP/ZnSeS Core/Shell Red QDs using P(TMS)3 33
3.2.7 Synthesis of InGaP/ZnSeS Core/Shell Green QDs using P(TMS)3 34
3.2.8 Characterization 34
3.3 Results and Discussion 35
3.3.1 P(DEA)3 system 35
3.3.2 P(TMS)3 system 39
References 50
dc.language.isoen
dc.subject量子點zh_TW
dc.subject硒化鎘zh_TW
dc.subject殼核結構zh_TW
dc.subject磷化銦zh_TW
dc.subject熱注射zh_TW
dc.subjectInPen
dc.subjectCdSeen
dc.subjectcore/shell structureen
dc.subjecthot injectionen
dc.subjectquantum dotsen
dc.title鎘系量子點合成及應用與銦系量子點之合成鑑定zh_TW
dc.titleSyntheses and Applications of Cd-containing Quantum Dots & Syntheses of Cd-free (InP) Quantum Dotsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee周尚威,何美霖
dc.subject.keyword量子點,硒化鎘,殼核結構,磷化銦,熱注射,zh_TW
dc.subject.keywordquantum dots,CdSe,core/shell structure,InP,hot injection,en
dc.relation.page53
dc.identifier.doi10.6342/NTU201702133
dc.rights.note有償授權
dc.date.accepted2017-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept化學研究所zh_TW
顯示於系所單位:化學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.93 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved