Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67625
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德(Chi-Te Liang)
dc.contributor.authorHong-Ying Huangen
dc.contributor.author黃泓穎zh_TW
dc.date.accessioned2021-06-17T01:40:52Z-
dc.date.available2020-08-03
dc.date.copyright2017-08-03
dc.date.issued2017
dc.date.submitted2017-07-28
dc.identifier.citationChapter 1
1. Lindemann, F. A., The calculation of molecular vibration frequencies. Physikalische Zeitschrift 1910, 11, 609-612.
2. Peierls, R., Quelques propriétés typiques des corps solides. Annales de l'institut Henri Poincaré 1935, 5 (3), 177-222.
3. Landau, L. D., Zur Theorie der phasenumwandlungen II. Phys. Z. Sowjetunion 1937, 11, 26-35.
4. Evans, J. W.; Thiel, P. A.; Bartelt, M. C., Morphological evolution during epitaxial thin film growth: Formation of 2D islands and 3D mounds. Surface Science Reports 2006, 61 (1–2), 1-128.
5. Venables, J. A.; Spiller, G. D. T.; Hanbucken, M., Nucleation and growth of thin films. Reports on Progress in Physics 1984, 47 (4), 399.
6. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric Field Effect in Atomically Thin Carbon Films. Science 2004, 306 (5696), 666.
7. Novoselov, K. S.; Jiang, D.; Schedin, F.; Booth, T. J.; Khotkevich, V. V.; Morozov, S. V.; Geim, A. K., Two-dimensional atomic crystals. Proceedings of the National Academy of Sciences of the United States of America 2005, 102 (30), 10451-10453.
8. Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K., Making graphene visible. Applied Physics Letters 2007, 91 (6), 063124.
9. Castro Neto, A. H.; Guinea, F.; Peres, N. M. R.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Reviews of Modern Physics 2009, 81 (1), 109-162.
10. Tikhonenko, F. V.; Horsell, D. W.; Gorbachev, R. V.; Savchenko, A. K., Weak Localization in Graphene Flakes. Physical Review Letters 2008, 100 (5), 056802.
11. Zhang, Y.; Tan, Y.-W.; Stormer, H. L.; Kim, P., Experimental observation of the quantum Hall effect and Berry's phase in graphene. Nature 2005, 438 (7065), 201-204.
12. Du, X.; Skachko, I.; Duerr, F.; Luican, A.; Andrei, E. Y., Fractional quantum Hall effect and insulating phase of Dirac electrons in graphene. Nature 2009, 462 (7270), 192-195.
13. Zhang, Y.; Jiang, Z.; Small, J. P.; Purewal, M. S.; Tan, Y. W.; Fazlollahi, M.; Chudow, J. D.; Jaszczak, J. A.; Stormer, H. L.; Kim, P., Landau-Level Splitting in Graphene in High Magnetic Fields. Physical Review Letters 2006, 96 (13), 136806.
14. Hwang, E. H.; Adam, S.; Sarma, S. D., Carrier Transport in Two-Dimensional Graphene Layers. Physical Review Letters 2007, 98 (18), 186806.
15. Martin, J.; Akerman, N.; Ulbricht, G.; Lohmann, T.; Smet, J. H.; von Klitzing, K.; Yacoby, A., Observation of electron-hole puddles in graphene using a scanning single-electron transistor. Nat Phys 2008, 4 (2), 144-148.
16. Schwierz, F., Graphene transistors. Nat Nano 2010, 5 (7), 487-496.
17. Schedin, F.; Geim, A. K.; Morozov, S. V.; Hill, E. W.; Blake, P.; Katsnelson, M. I.; Novoselov, K. S., Detection of individual gas molecules adsorbed on graphene. Nat Mater 2007, 6 (9), 652-655.
18. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Ri Kim, H.; Song, Y. I.; Kim, Y.-J.; Kim, K. S.; Ozyilmaz, B.; Ahn, J.-H.; Hong, B. H.; Iijima, S., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nano 2010, 5 (8), 574-578.
19. Liu, C.; Yu, Z.; Neff, D.; Zhamu, A.; Jang, B. Z., Graphene-Based Supercapacitor with an Ultrahigh Energy Density. Nano Letters 2010, 10 (12), 4863-4868.
20. Castro, E. V.; Novoselov, K. S.; Morozov, S. V.; Peres, N. M. R.; dos Santos, J. M. B. L.; Nilsson, J.; Guinea, F.; Geim, A. K.; Neto, A. H. C., Biased Bilayer Graphene: Semiconductor with a Gap Tunable by the Electric Field Effect. Physical Review Letters 2007, 99 (21), 216802.
21. Gava, P.; Lazzeri, M.; Saitta, A. M.; Mauri, F., Ab initio study of gap opening and screening effects in gated bilayer graphene. Physical Review B 2009, 79 (16), 165431.
22. Ohta, T.; Bostwick, A.; Seyller, T.; Horn, K.; Rotenberg, E., Controlling the Electronic Structure of Bilayer Graphene. Science 2006, 313 (5789), 951.
23. Zhang, Y.; Tang, T.-T.; Girit, C.; Hao, Z.; Martin, M. C.; Zettl, A.; Crommie, M. F.; Shen, Y. R.; Wang, F., Direct observation of a widely tunable bandgap in bilayer graphene. Nature 2009, 459 (7248), 820-823.
24. Han, M. Y.; Özyilmaz, B.; Zhang, Y.; Kim, P., Energy Band-Gap Engineering of Graphene Nanoribbons. Physical Review Letters 2007, 98 (20), 206805.
25. Dvorak, M.; Oswald, W.; Wu, Z., Bandgap Opening by Patterning Graphene. Scientific Reports 2013, 3, 2289.
26. Gui, G.; Li, J.; Zhong, J., Band structure engineering of graphene by strain: First-principles calculations. Physical Review B 2008, 78 (7), 075435.
27. Cocco, G.; Cadelano, E.; Colombo, L., Gap opening in graphene by shear strain. Physical Review B 2010, 81 (24), 241412.
28. Meyer, J. C.; Geim, A. K.; Katsnelson, M. I.; Novoselov, K. S.; Booth, T. J.; Roth, S., The structure of suspended graphene sheets. Nature 2007, 446 (7131), 60-63.
29. Bertolazzi, S.; Brivio, J.; Kis, A., Stretching and Breaking of Ultrathin MoS2. ACS Nano 2011, 5 (12), 9703-9709.
30. Chhowalla, M.; Shin, H. S.; Eda, G.; Li, L.-J.; Loh, K. P.; Zhang, H., The chemistry of two-dimensional layered transition metal dichalcogenide nanosheets. Nat Chem 2013, 5 (4), 263-275.
31. Wold, A.; Dwight, K., Solid State Chemistry: Synthesis, Structure, and Properties of Selected Oxides and Sulfides. Springer Netherlands: 1993.
32. McMenamin, J. C.; Spicer, W. E., Photoemission Studies of the Layered Dichalcogenides NbSe2 and MoS2 and a Modification of the Current Band Models. Physical Review Letters 1972, 29 (22), 1501-1504.
33. Mak, K. F.; Lee, C.; Hone, J.; Shan, J.; Heinz, T. F., Atomically Thin MoS2: A New Direct-Gap Semiconductor. Physical Review Letters 2010, 105 (13), 136805.
34. Zhao, W.; Ghorannevis, Z.; Chu, L.; Toh, M.; Kloc, C.; Tan, P.-H.; Eda, G., Evolution of Electronic Structure in Atomically Thin Sheets of WS2 and WSe2. ACS Nano 2013, 7 (1), 791-797.
35. Yun, W. S.; Han, S. W.; Hong, S. C.; Kim, I. G.; Lee, J. D., Thickness and strain effects on electronic structures of transition metal dichalcogenides: 2H-MX2 semiconductors (M = Mo, W; X = S, Se, Te). Physical Review B 2012, 85 (3), 033305.
36. Sun, Y.; Wang, D.; Shuai, Z., Indirect-to-Direct Band Gap Crossover in Few-Layer Transition Metal Dichalcogenides: A Theoretical Prediction. The Journal of Physical Chemistry C 2016, 120 (38), 21866-21870.
37. Liu, Y.; Weiss, N. O.; Duan, X.; Cheng, H.-C.; Huang, Y.; Duan, X., Van der Waals heterostructures and devices. Nature Reviews Materials 2016, 1, 16042.
38. Gong, Y.; Lin, J.; Wang, X.; Shi, G.; Lei, S.; Lin, Z.; Zou, X.; Ye, G.; Vajtai, R.; Yakobson, B. I.; Terrones, H.; Terrones, M.; Tay, Beng K.; Lou, J.; Pantelides, S. T.; Liu, Z.; Zhou, W.; Ajayan, P. M., Vertical and in-plane heterostructures from WS2/MoS2 monolayers. Nat Mater 2014, 13 (12), 1135-1142.
39. Horacio Coy, D.; Redhouane, C.; Yujing, M.; Matthias, B., Molecular beam epitaxy of the van der Waals heterostructure MoTe2 on MoS2 : phase, thermal, and chemical stability. 2D Materials 2015, 2 (4), 044010.
40. Miwa, J. A.; Dendzik, M.; Grønborg, S. S.; Bianchi, M.; Lauritsen, J. V.; Hofmann, P.; Ulstrup, S., Van der Waals Epitaxy of Two-Dimensional MoS2–Graphene Heterostructures in Ultrahigh Vacuum. ACS Nano 2015, 9 (6), 6502-6510.
41. Shi, Y.; Zhou, W.; Lu, A.-Y.; Fang, W.; Lee, Y.-H.; Hsu, A. L.; Kim, S. M.; Kim, K. K.; Yang, H. Y.; Li, L.-J.; Idrobo, J.-C.; Kong, J., van der Waals Epitaxy of MoS2 Layers Using Graphene As Growth Templates. Nano Letters 2012, 12 (6), 2784-2791.
Chapter 2
1. Dean, C. R.; Young, A. F.; Meric, I.; Lee, C.; Wang, L.; Sorgenfrei, S.; Watanabe, K.; Taniguchi, T.; Kim, P.; Shepard, K. L.; Hone, J., Boron nitride substrates for high-quality graphene electronics. Nat Nano 2010, 5 (10), 722-726.
2. Chiu, M.-H.; Li, M.-Y.; Zhang, W.; Hsu, W.-T.; Chang, W.-H.; Terrones, M.; Terrones, H.; Li, L.-J., Spectroscopic Signatures for Interlayer Coupling in MoS2–WSe2 van der Waals Stacking. ACS Nano 2014, 8 (9), 9649-9656.
3. Wang, F.; Wang, J.; Guo, S.; Zhang, J.; Hu, Z.; Chu, J., Tuning Coupling Behavior of Stacked Heterostructures Based on MoS2, WS2, and WSe2. 2017, 7, 44712.
4. Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J.; Sinclair, R.; Wu, J., Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers. Nano Letters 2014, 14 (6), 3185-3190.
5. Ponomarenko, L. A.; Geim, A. K.; Zhukov, A. A.; Jalil, R.; Morozov, S. V.; Novoselov, K. S.; Grigorieva, I. V.; Hill, E. H.; Cheianov, V. V.; Fal/'ko, V. I.; Watanabe, K.; Taniguchi, T.; Gorbachev, R. V., Tunable metal-insulator transition in double-layer graphene heterostructures. Nat Phys 2011, 7 (12), 958-961.
6. Fang, H.; Battaglia, C.; Carraro, C.; Nemsak, S.; Ozdol, B.; Kang, J. S.; Bechtel, H. A.; Desai, S. B.; Kronast, F.; Unal, A. A.; Conti, G.; Conlon, C.; Palsson, G. K.; Martin, M. C.; Minor, A. M.; Fadley, C. S.; Yablonovitch, E.; Maboudian, R.; Javey, A., Strong interlayer coupling in van der Waals heterostructures built from single-layer chalcogenides. Proceedings of the National Academy of Sciences 2014, 111 (17), 6198-6202.
7. Liu, K.; Zhang, L.; Cao, T.; Jin, C.; Qiu, D.; Zhou, Q.; Zettl, A.; Yang, P.; Louie, S. G.; Wang, F., Evolution of interlayer coupling in twisted molybdenum disulfide bilayers. 2014, 5, 4966.
8. Nayak, P. K.; Horbatenko, Y.; Ahn, S.; Kim, G.; Lee, J.-U.; Ma, K. Y.; Jang, A. R.; Lim, H.; Kim, D.; Ryu, S.; Cheong, H.; Park, N.; Shin, H. S., Probing Evolution of Twist-Angle-Dependent Interlayer Excitons in MoSe2/WSe2 van der Waals Heterostructures. ACS Nano 2017, 11 (4), 4041-4050.
9. Schneider, G. F.; Calado, V. E.; Zandbergen, H.; Vandersypen, L. M. K.; Dekker, C., Wedging Transfer of Nanostructures. Nano Letters 2010, 10 (5), 1912-1916.
10. Dean, C. R.; Young, A. F.; MericI; LeeC; WangL; SorgenfreiS; WatanabeK; TaniguchiT; KimP; Shepard, K. L.; HoneJ, Boron nitride substrates for high-quality graphene electronics. Nat Nano 2010, 5 (10), 722-726.
11. Zomer, P. J.; Dash, S. P.; Tombros, N.; van Wees, B. J., A transfer technique for high mobility graphene devices on commercially available hexagonal boron nitride. Applied Physics Letters 2011, 99 (23), 232104.
Chapter 3
1. Roddaro, S.; Pingue, P.; Piazza, V.; Pellegrini, V.; Beltram, F., The Optical Visibility of Graphene:  Interference Colors of Ultrathin Graphite on SiO2. Nano Letters 2007, 7 (9), 2707-2710.
2. Blake, P.; Hill, E. W.; Castro Neto, A. H.; Novoselov, K. S.; Jiang, D.; Yang, R.; Booth, T. J.; Geim, A. K., Making graphene visible. Applied Physics Letters 2007, 91 (6), 063124.
3. Ferrari, A. C., Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects. Solid State Communications 2007, 143 (1), 47-57.
4. Ferrari, A. C.; Robertson, J., Raman spectroscopy of amorphous, nanostructured, diamond–like carbon, and nanodiamond. Philosophical Transactions of the Royal Society of London. Series A: Mathematical, Physical and Engineering Sciences 2004, 362 (1824), 2477.
5. Ferrari, A. C.; Meyer, J. C.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K. S.; Roth, S.; Geim, A. K., Raman Spectrum of Graphene and Graphene Layers. Physical Review Letters 2006, 97 (18), 187401.
6. Jorio, A.; Saito, R.; Dresselhaus, G.; Dresselhaus, M. S., Raman Spectroscopy in Graphene Related Systems. Wiley-VCH Verlag GmbH & Co. KGaA: 2011.
7. Mangipudi, V. S.; Tirrell, M., Contact-Mechanics-Based Studies of Adhesion between Polymers. Rubber Chemistry and Technology 1998, 71 (3), 407-448.
8. Packham, D. E., Work of adhesion: contact angles and contact mechanics. International Journal of Adhesion and Adhesives 1996, 16 (2), 121-128.
9. Meitl, M. A.; Zhu, Z.-T.; Kumar, V.; Lee, K. J.; Feng, X.; Huang, Y. Y.; Adesida, I.; Nuzzo, R. G.; Rogers, J. A., Transfer printing by kinetic control of adhesion to an elastomeric stamp. Nat Mater 2006, 5 (1), 33-38.
10. Shull, K. R.; Ahn, D.; Chen, W.-L.; Flanigan, C. M.; Crosby, A. J., Axisymmetric adhesion tests of soft materials. Macromolecular Chemistry and Physics 1998, (4), 489-511.
11. Feng, X.; Meitl, M. A.; Bowen, A. M.; Huang, Y.; Nuzzo, R. G.; Rogers, J. A., Competing Fracture in Kinetically Controlled Transfer Printing. Langmuir 2007, 23 (25), 12555-12560.
Chapter 5
1. Zhang, X.; Han, W. P.; Wu, J. B.; Milana, S.; Lu, Y.; Li, Q. Q.; Ferrari, A. C.; Tan, P. H., Raman spectroscopy of shear and layer breathing modes in multilayer MoS2. Physical Review B 2013, 87 (11), 115413.
2. Luo, X.; Zhao, Y.; Zhang, J.; Toh, M.; Kloc, C.; Xiong, Q.; Quek, S. Y., Effects of lower symmetry and dimensionality on Raman spectra in two-dimensional WSe2. Physical Review B 2013, 88 (19), 195313.
3. Martin, R. M.; Damen, T. C., Breakdown of Selection Rules in Resonance Raman Scattering. Physical Review Letters 1971, 26 (2), 86-88.
4. Tongay, S.; Fan, W.; Kang, J.; Park, J.; Koldemir, U.; Suh, J.; Narang, D. S.; Liu, K.; Ji, J.; Li, J.; Sinclair, R.; Wu, J., Tuning Interlayer Coupling in Large-Area Heterostructures with CVD-Grown MoS2 and WS2 Monolayers. Nano Letters 2014, 14 (6), 3185-3190.
5. Lee, C.; Yan, H.; Brus, L. E.; Heinz, T. F.; Hone, J.; Ryu, S., Anomalous Lattice Vibrations of Single- and Few-Layer MoS2. ACS Nano 2010, 4 (5), 2695-2700.
6. Hong, X.; Kim, J.; Shi, S.-F.; Zhang, Y.; Jin, C.; Sun, Y.; Tongay, S.; Wu, J.; Zhang, Y.; Wang, F., Ultrafast charge transfer in atomically thin MoS2/WS2 heterostructures. Nat Nano 2014, 9 (9), 682-686.
Chapter 6
1. Jaramillo, T. F.; Jørgensen, K. P.; Bonde, J.; Nielsen, J. H.; Horch, S.; Chorkendorff, I., Identification of Active Edge Sites for Electrochemical H2 Evolution from MoS2 Nanocatalysts. Science 2007, 317 (5834), 100.
2. Bonde, J.; Moses, P. G.; Jaramillo, T. F.; Nørskov, J. K.; Chorkendorff, I., Hydrogen evolution on nano-particulate transition metal sulfides. Faraday Discussions 2008, 140, 219-231.
3. Antonio Di, B.; Luca, G.; Tobias, F.; Filippo, G.; Giuseppe, L.; Luca, C.; Shi-Jun, L.; Ang, L. K.; Marika, S., Electrical transport and persistent photoconductivity in monolayer MoS2 phototransistors. Nanotechnology 2017, 28 (21), 214002.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67625-
dc.description.abstract二維材料領域自成功製得石墨烯起便蓬勃發展,近年來除研究單種二維材料之性質及應用外,由二維材料層狀堆疊而成的原子級薄異質結構亦極受關注。藉由不同二維材料疊層以自由調變光電性質,可提供探索新現象及開發新元件。
我們發展了自上而下的轉印堆疊技術,將從塊材上機械剝離而得的原子級薄二維晶體,重新堆疊組裝成異質結構。此技術以黏彈性高分子膜作為轉印支持層,利用黏彈性體於表面處能量耗散之速率相依性,控制高分子膜上二維晶體之附著與脫附,取代多數文獻中以有機溶劑去除高分子支持層的製程。除了乾式製程之優點外,藉此技術我們可由隨機雜亂分布於基板上的機械剝離之晶體中,選擇性地挑出欲進行後續製程的晶體,將其轉至支持層後,轉印至另一乾淨或經前處理之基板。
於第四章中,我們以少數層石墨烯為例,可將原子層薄的二維晶體從基板上轉至支持層,而後轉印至基板上選定之位置。而後我們更進一步,先於基板上作出石墨烯電極,再將硒化銦與二硫化鉬晶體自支持層轉印至其上,製作成場效電晶體並量測其電性。在第五章中,我們選用兩二維半導體作為異質堆疊的原料,以二硫化鉬及二硒化鎢製備垂直異質結構。異質結構製得後,層間存在交互作用與否相當關鍵,我們以拉曼和光致螢光光譜探討其層間耦合對振動模態與電子結構之影響。在第六章裡,我們應用此異質結構於電化學催化。由於二硫化鉬及二硒化鎢垂直堆疊之異質接面形成第二型能帶排列,當層間交互作用足夠強時,於雷射激發下激態電荷進行層間電荷轉移,可增進二硫化鉬在產氫反應的催化效果。於光沉積實驗中,由金原子沉積量的多寡,可得知相同時間內異質接面處催化了較多的金離子還原於其上,相較於二硫化鉬展現了更高的催化能力。
zh_TW
dc.description.abstractThe research on two-dimensional materials rises since the successful isolation and identification of graphene. Recently, van der Waals heterostructures have emerged as a new field that draws extensive interest. The richness of two-dimensional material library provides us with a large possibility for electronic properties manipulation to design new classes of devices with novel properties and functionalities.
We developed a top-down transfer method for fabricating vertical heterostructures based on distinct atomically thin crystals from mechanical exfoliation. With the assistance of an elastomeric stamp, we are able to pick up a particular flake from randomly distributed ones on the substrate, or drop it down to a chosen location on another substrate. The controlled transfer is monitored under optical microscope and is achieved by the viscoelastic nature of the stamp.
In Chapter 4, we demonstrate the kinetic control of flake transfer, and print a semiconducting flake on pre-patterned few-layered graphene electrodes to fabricate a field effect transistor. In Chapter 5, we further use this technique to stack a MoS2 flake and a WSe2 flake on one another, forming a vertical heterojunction. In such a van der Waals heterostructure, interlayer interaction is the prime issue. In order to ensure that the as-fabricated device is a heterostructure but not two additive bilayers, we investigate the structural and electronic evolution before and after thermal annealing. In Chapter 6, as we verify the existence of interlayer coupling in the vertical heterojunction, we wonder if the type-II band alignment enhances the catalytic ability in hydrogen evolution reaction. We compare the performance of basal MoS2 and a MoS2/WSe2 heterostructure, with similar thickness of MoS2. The MoS2/WSe2 heterostructure shows higher current density under laser illumination, indicating that photoexcited electrons transfer and accumulate in MoS2 layer and participate in the hydrogen reduction. In the photodeposition of Au particles experiment, the photoexcited electrons transfer to the top layer MoS2, and then reduce the platinum cations to Au particles at the heterojunction. The apparent difference of deposited Au particles in amount between heterojunction and other places also indicates the better catalytic activity.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:40:52Z (GMT). No. of bitstreams: 1
ntu-106-R04222079-1.pdf: 3252255 bytes, checksum: 9a3cb1e902e517b9899961ac47dde769 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 i
誌謝 ii
中文摘要 iii
ABSTRACT iv
CONTENTS vi
LIST OF FIGURES ix
LIST OF TABLES xii
Chapter 1 Introduction 1
1.1 Graphene 1
1.2 Transition metal dichalcogenide 2
1.2.1 Crystal structure 2
1.2.2 Electronic structure 3
1.2.3 Indirect-to-direct band gap transition 5
1.3 Motivation 6
References 7
Chapter 2 Literature review 12
2.1 Van der Waals heterostructure 12
2.2 Transfer techniques 13
2.2.1 Wedging method 13
2.2.2 PVA method 14
2.2.3 Evalcite method 15
2.2.4 Summary 17
References 17
Chapter 3 Method and experimental setup 19
3.1 Sample preparation and characterization 19
3.1.1 Mechanical exfoliation of two-dimensional layered materials 19
3.1.2 Optical microscopy 20
3.1.3 Photoluminescence 20
3.1.4 Raman spectroscopy 21
3.2 Kinetic control of flakes transfer 24
3.3 Step-by-step guide 27
3.4 Thermal annealing 32
References 33
Chapter 4 Transfer printing by kinetic control 35
4.1 Pickup and reprinting of 2DLMs 35
4.2 Printing 2DLMs on pre-patterned electrodes 37
4.2.1 Few-layered graphene electrodes 37
4.2.2 Resist-free method for metal deposition 38
4.2.3 Electrical characteristics of field-effect transistor 39
Chapter 5 Vertical heterostructure based on MoS2 and WSe2 42
5.1 Introduction 42
5.2 Raman spectrum of heterostructure 42
5.3 Photoluminescence of heterostructure 47
References 49
Chapter 6 Photoelectrochemistry of van der Waals heterostructures 50
6.1 Introduction 50
6.2 Device fabrication 50
6.3 Measurement system 51
6.4 Catalytic activity in hydrogen evolution reaction 52
6.5 Photodeposition of Au particles 54
6.6 Summary 56
References 56
Chapter 7 Conclusion 57
dc.language.isoen
dc.title二維材料堆疊異質結構之製備與應用zh_TW
dc.titleDevelopment of Two-dimensional Atomic Stacking Heterostructure Fabrication Technique and Its Applicationsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor陳俊維(Chun-Wei Chen)
dc.contributor.oralexamcommittee王偉華(Wei-Hui Wang)
dc.subject.keyword二維材料,轉印,黏彈性體,垂直異質結構,層間耦合,產氫反應,光沉積,zh_TW
dc.subject.keywordTwo-dimensional material,Transfer printing,Viscoelastic body,Vertical heterostructure,Interlayer coupling,Hydrogen evolution reaction,Photodeposition,en
dc.relation.page57
dc.identifier.doi10.6342/NTU201702059
dc.rights.note有償授權
dc.date.accepted2017-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  目前未授權公開取用
3.18 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved