請用此 Handle URI 來引用此文件:
http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67621
完整後設資料紀錄
DC 欄位 | 值 | 語言 |
---|---|---|
dc.contributor.advisor | 陳美如 | |
dc.contributor.author | Wei-Yi Hsu | en |
dc.contributor.author | 徐唯逸 | zh_TW |
dc.date.accessioned | 2021-06-17T01:40:40Z | - |
dc.date.available | 2022-09-12 | |
dc.date.copyright | 2017-09-12 | |
dc.date.issued | 2017 | |
dc.date.submitted | 2017-07-28 | |
dc.identifier.citation | References
Alvisi, G., D.A. Jans, D. Camozzi, S. Avanzi, A. Loregian, A. Ripalti, and G. Palù. 2013. Regulated transport into the nucleus of herpesviridae DNA replication core proteins. Viruses. 5:2210-2234. Amon, W., and P.J. Farrell. 2005. Reactivation of Epstein‐Barr virus from latency. Reviews in medical virology. 15:149-156. Andrews, J.F., L.J. Sykora, T.B. Letostak, M.E. Menezes, A. Mitra, S. Barik, L.A. Shevde, and R.S. Samant. 2012. Cellular stress stimulates nuclear localization signal (NLS) independent nuclear transport of MRJ. Experimental cell research. 318:1086-1093. Asai, R., A. Kato, K. Kato, M. Kanamori-Koyama, K. Sugimoto, T. Sairenji, Y. Nishiyama, and Y. Kawaguchi. 2006. Epstein-Barr virus protein kinase BGLF4 is a virion tegument protein that dissociates from virions in a phosphorylation-dependent process and phosphorylates the viral immediate-early protein BZLF1. Journal of virology. 80:5125-5134. Baer, R., A. Bankier, M. Biggin, P. Deininger, P. Farrell, T. Gibson, G. Hatfull, G. Hudson, S. Satchwell, and C. Seguin. 1984. DNA sequence and expression of the B95-8 Epstein—Barr virus genome. Nature. 310:207-211. Bailey, R. 1994. Diagnosis and treatment of infectious mononucleosis. American family physician. 49:879-888. Bukau, B., and A.L. Horwich. 1998. The Hsp70 and Hsp60 chaperone machines. Cell. 92:351-366. Burkitt, D. 1958. A sarcoma involving the jaws in African children. British Journal of Surgery. 46:218-223. Cao, M., C. Wei, L. Zhao, J. Wang, Q. Jia, X. Wang, Q. Jin, and T. Deng. 2014. DnaJA1/Hsp40 is co-opted by influenza A virus to enhance its viral RNA polymerase activity. Journal of virology. 88:14078-14089. Chai, Y., S.L. Koppenhafer, N.M. Bonini, and H.L. Paulson. 1999. Analysis of the role of heat shock protein (Hsp) molecular chaperones in polyglutamine disease. Journal of Neuroscience. 19:10338-10347. Chan, K.C., C.M. Ting, P.S. Chan, M.C. Lo, K.W. Lo, J.E. Curry, T. Smyth, A.W.M. Lee, W.T. Ng, and G.S.W. Tsao. 2013. A novel Hsp90 inhibitor AT13387 induces senescence in EBV-positive nasopharyngeal carcinoma cells and suppresses tumor formation. Molecular cancer. 12:128. Chang, C.-W., C.-P. Lee, Y.-H. Huang, P.-W. Yang, J.-T. Wang, and M.-R. Chen. 2012a. Epstein-Barr virus protein kinase BGLF4 targets the nucleus through interaction with nucleoporins. Journal of virology. 86:8072-8085. Chang, C.-W., C.-P. Lee, M.-T. Su, C.-H. Tsai, and M.-R. Chen. 2015. BGLF4 kinase modulates the structure and transport preference of the nuclear pore complex to facilitate nuclear import of Epstein-Barr virus lytic proteins. Journal of virology. 89:1703-1718. Chang, L.-S., J.-T. Wang, S.-L. Doong, C.-P. Lee, C.-W. Chang, C.-H. Tsai, S.-W. Yeh, C.-Y. Hsieh, and M.-R. Chen. 2012b. Epstein-Barr Virus BGLF4 Kinase Downregulates NF-κB Transactivation through Phosphorylation of Coactivator UXT. Journal of virology. 86:12176-12186. Chang, Y.-H., C.-P. Lee, M.-T. Su, J.-T. Wang, J.-Y. Chen, S.-F. Lin, C.-H. Tsai, M.-J. Hsieh, K. Takada, and M.-R. Chen. 2012c. Epstein-Barr virus BGLF4 kinase retards cellular S-phase progression and induces chromosomal abnormality. PloS one. 7:e39217. Chang, Y., C.-H. Tung, Y.-T. Huang, J. Lu, J.-Y. Chen, and C.-H. Tsai. 1999. Requirement for cell-to-cell contact in Epstein-Barr virus infection of nasopharyngeal carcinoma cells and keratinocytes. Journal of virology. 73:8857-8866. Chee, M., G. Lawrence, and B. Barrell. 1989. Alpha-, beta-and gammaherpesviruses encode a putative phosphotransferase. Journal of General Virology. 70:1151-1160. Chen, M.-R., S.-J. Chang, H. Huang, and J.-Y. Chen. 2000. A protein kinase activity associated with Epstein-Barr virus BGLF4 phosphorylates the viral early antigen EA-D in vitro. Journal of Virology. 74:3093-3104. Cheng, X., M. Belshan, and L. Ratner. 2008. Hsp40 facilitates nuclear import of the human immunodeficiency virus type 2 Vpx-mediated preintegration complex. Journal of virology. 82:1229-1237. Chesnokova, L.S., S.L. Nishimura, and L.M. Hutt-Fletcher. 2009. Fusion of epithelial cells by Epstein–Barr virus proteins is triggered by binding of viral glycoproteins gHgL to integrins αvβ6 or αvβ8. Proceedings of the National Academy of Sciences. 106:20464-20469. Chiang, Y.-P., W.-H. Sheng, P.-L. Shao, Y.-H. Chi, Y.-M.A. Chen, S.-W. Huang, H.-M. Shih, L.-Y. Chang, C.-Y. Lu, and S.-C. Chang. 2014. Large isoform of mammalian relative of DnaJ is a major determinant of human susceptibility to HIV-1 infection. EBioMedicine. 1:126-132. Choi, J.H., D.-K. Choi, K.-C. Sohn, S.S. Kwak, J. Suk, J.-S. Lim, I. Shin, S.-W. Kim, J.-H. Lee, and C.O. Joe. 2012. Absence of a human DnaJ protein hTid-1S correlates with aberrant actin cytoskeleton organization in lesional psoriatic skin. Journal of Biological Chemistry. 287:25954-25963. Comerford, K.M., T.J. Wallace, J. Karhausen, N.A. Louis, M.C. Montalto, and S.P. Colgan. 2002. Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer research. 62:3387-3394. Corpet, F. 1988. Multiple sequence alignment with hierarchical clustering. Nucleic acids research. 16:10881-10890. Delecluse, H., S. Bartnizke, W. Hammerschmidt, J. Bullerdiek, and G. Bornkamm. 1993. Episomal and integrated copies of Epstein-Barr virus coexist in Burkitt lymphoma cell lines. Journal of virology. 67:1292-1299. Dobson, C.M., A. Šali, and M. Karplus. 1998. Protein folding: a perspective from theory and experiment. Angewandte Chemie International Edition. 37:868-893. Epstein, M.A., B.G. Achong, and Y.M. Barr. 1964. Virus particles in cultured lymphoblasts from Burkitt's lymphoma. The Lancet. 283:702-703. Evans, G.J., and A. Morgan. 2002. Phosphorylation-dependent interaction of the synaptic vesicle proteins cysteine string protein and synaptotagmin I. Biochemical Journal. 364:343-347. Evans, G.J., M.C. Wilkinson, M.E. Graham, K.M. Turner, L.H. Chamberlain, R.D. Burgoyne, and A. Morgan. 2001. Phosphorylation of cysteine string protein by protein kinase A Implications for the modulation of exocytosis. Journal of Biological Chemistry. 276:47877-47885. Fixman, E.D., G.S. Hayward, and S.D. Hayward. 1992. trans-acting requirements for replication of Epstein-Barr virus ori-Lyt. Journal of virology. 66:5030-5039. Fixman, E.D., G.S. Hayward, and S.D. Hayward. 1995. Replication of Epstein-Barr virus oriLyt: lack of a dedicated virally encoded origin-binding protein and dependence on Zta in cotransfection assays. Journal of virology. 69:2998-3006. Gao, Z., A. Krithivas, J.E. Finan, O.J. Semmes, S. Zhou, Y. Wang, and S.D. Hayward. 1998. The Epstein-Barr virus lytic transactivator Zta interacts with the helicase-primase replication proteins. Journal of virology. 72:8559-8567. Gillis, J., S. Schipper-Krom, K. Juenemann, A. Gruber, S. Coolen, R. van den Nieuwendijk, H. van Veen, H. Overkleeft, J. Goedhart, and H.H. Kampinga. 2013. The DNAJB6 and DNAJB8 protein chaperones prevent intracellular aggregation of polyglutamine peptides. Journal of Biological Chemistry. 288:17225-17237. Grogan, E., H. Jenson, J. Countryman, L. Heston, L. Gradoville, and G. Miller. 1987. Transfection of a rearranged viral DNA fragment, WZhet, stably converts latent Epstein-Barr viral infection to productive infection in lymphoid cells. Proceedings of the National Academy of Sciences. 84:1332-1336. Hageman, J., M.A. Rujano, M.A. Van Waarde, V. Kakkar, R.P. Dirks, N. Govorukhina, H.M. Oosterveld-Hut, N.H. Lubsen, and H.H. Kampinga. 2010. A DNAJB chaperone subfamily with HDAC-dependent activities suppresses toxic protein aggregation. Molecular cell. 37:355-369. Hanai, R., and K. Mashima. 2003. Characterization of two isoforms of a human DnaJ homologue, HSJ2. Molecular biology reports. 30:149-153. He, Z., Y. He, Y. Kim, L. Chu, C. Ohmstede, K.K. Biron, and D.M. Coen. 1997. The human cytomegalovirus UL97 protein is a protein kinase that autophosphorylates on serines and threonines. Journal of virology. 71:405-411. Henle, G., W. Henle, P. Clifford, V. Diehl, G.W. Kafuko, B.G. Kirya, G. Klein, R.H. Morrow, G.M. Munube, and P. Pike. 1969. Antibodies to epstein-barr virus in burkitt's lymphoma and control groups. Journal of the National Cancer Institute. 43:1147-1157. Hochberg, D., J.M. Middeldorp, M. Catalina, J.L. Sullivan, K. Luzuriaga, and D.A. Thorley-Lawson. 2004. Demonstration of the Burkitt's lymphoma Epstein-Barr virus phenotype in dividing latently infected memory cells in vivo. Proceedings of the National Academy of Sciences. 101:239-244. Hudewentz, J., G. Bornkamm, and H. Zur Hausen. 1980. Effect of the diterpene ester TPA on Epstein-Barr virus antigen-and DNA synthesis in producer and nonproducer cell lines. Virology. 100:175-178. Hurley, E., S. Agger, J. McNeil, J. Lawrence, A. Calendar, G. Lenoir, and D. Thorley-Lawson. 1991. When Epstein-Barr virus persistently infects B-cell lines, it frequently integrates. Journal of virology. 65:1245-1254. Hutt-Fletcher, L.M. 2007. Epstein-Barr virus entry. Journal of virology. 81:7825-7832. Hwang, S., K.S. Kim, E. Flano, T.-T. Wu, L.M. Tong, A.N. Park, M.J. Song, D.J. Sanchez, R.M. O'Connell, and G. Cheng. 2009. Conserved herpesviral kinase promotes viral persistence by inhibiting the IRF-3-mediated type I interferon response. Cell host & microbe. 5:166-178. Jiang, J., E.G. Maes, A.B. Taylor, L. Wang, A.P. Hinck, E.M. Lafer, and R. Sousa. 2007. Structural basis of J cochaperone binding and regulation of Hsp70. Molecular cell. 28:422-433. Johnson, H.M., P.S. Subramaniam, S. Olsnes, and D.A. Jans. 2004. Trafficking and signaling pathways of nuclear localizing protein ligands and their receptors. Bioessays. 26:993-1004. Kalderon, D., W.D. Richardson, A.F. Markham, and A.E. Smith. 1984a. Sequence requirements for nuclear location of simian virus 40 large-T antigen. Kalderon, D., B.L. Roberts, W.D. Richardson, and A.E. Smith. 1984b. A short amino acid sequence able to specify nuclear location. Cell. 39:499-509. Kampinga, H.H., and E.A. Craig. 2010. The HSP70 chaperone machinery: J proteins as drivers of functional specificity. Nature reviews Molecular cell biology. 11:579-592. Kawaguchi, Y., and K. Kato. 2003. Protein kinases conserved in herpesviruses potentially share a function mimicking the cellular protein kinase cdc2. Reviews in Medical Virology. 13:331-340. Kim, S.H., J.G. Kang, C.S. Kim, S.-H. Ihm, M.G. Choi, H.J. Yoo, and S.J. Lee. 2014. The hsp70 inhibitor VER155008 induces paraptosis requiring de novo protein synthesis in anaplastic thyroid carcinoma cells. Biochemical and biophysical research communications. 454:36-41. Klein, E., L. Kis, and G. Klein. 2007. Epstein–Barr virus infection in humans: from harmless to life endangering virus–lymphocyte interactions. Oncogene. 26:1297-1305. Kumar, M., and D. Mitra. 2005. Heat shock protein 40 is necessary for human immunodeficiency virus-1 Nef-mediated enhancement of viral gene expression and replication. Journal of Biological Chemistry. 280:40041-40050. Laufen, T., M.P. Mayer, C. Beisel, D. Klostermeier, A. Mogk, J. Reinstein, and B. Bukau. 1999. Mechanism of regulation of hsp70 chaperones by DnaJ cochaperones. Proceedings of the National Academy of Sciences. 96:5452-5457. Lee, C.-P., J.-Y. Chen, J.-T. Wang, K. Kimura, A. Takemoto, C.-C. Lu, and M.-R. Chen. 2007. Epstein-Barr virus BGLF4 kinase induces premature chromosome condensation through activation of condensin and topoisomerase II. Journal of virology. 81:5166-5180. Lee, C.-P., Y.-H. Huang, S.-F. Lin, Y. Chang, Y.-H. Chang, K. Takada, and M.-R. Chen. 2008. Epstein-Barr virus BGLF4 kinase induces disassembly of the nuclear lamina to facilitate virion production. Journal of virology. 82:11913-11926. Lee, C.-P., P.-T. Liu, H.-N. Kung, M.-T. Su, H.-H. Chua, Y.-H. Chang, C.-W. Chang, C.-H. Tsai, F.-T. Liu, and M.-R. Chen. 2012. The ESCRT machinery is recruited by the viral BFRF1 protein to the nucleus-associated membrane for the maturation of Epstein-Barr Virus. PLoS pathogens. 8:e1002904. Li, R., G. Liao, R.S. Nirujogi, S.M. Pinto, P.G. Shaw, T.-C. Huang, J. Wan, J. Qian, H. Gowda, and X. Wu. 2015. Phosphoproteomic profiling reveals Epstein-Barr virus protein kinase integration of DNA damage response and mitotic signaling. PLoS pathogens. 11:e1005346. Li, R., J. Zhu, Z. Xie, G. Liao, J. Liu, M.-R. Chen, S. Hu, C. Woodard, J. Lin, and S.D. Taverna. 2011. Conserved herpesvirus kinases target the DNA damage response pathway and TIP60 histone acetyltransferase to promote virus replication. Cell host & microbe. 10:390-400. Liao, D., C. Corle, T.N. Seagroves, and R.S. Johnson. 2007. Hypoxia-inducible factor-1α is a key regulator of metastasis in a transgenic model of cancer initiation and progression. Cancer research. 67:563-572. Littler, E., A.D. Stuart, and M.S. Chee. 1992. Human cytomegalovirus UL97 open reading frame encodes. Nature. 358:9. Longnecker, R.M., E. Kieff, and J.I. Cohen. 2013. Epstein-Barr Virus. Fields virology. 2:1898-1959. Luka, J., B. Kallin, and G. Klein. 1979. Induction of the Epstein-Barr virus (EBV) cycle in latently infected cells by n-butyrate. Virology. 94:228-231. Matunis, M.J. 2006. Isolation and fractionation of rat liver nuclear envelopes and nuclear pore complexes. Methods. 39:277-283. Mayer, M., and B. Bukau. 2005. Hsp70 chaperones: cellular functions and molecular mechanism. Cellular and molecular life sciences. 62:670. Mayer, M.P., D. Brehmer, C.S. Gässler, and B. Bukau. 2001. Hsp70 chaperone machines. Advances in protein chemistry. 59:1-44. McCarty, J.S., A. Buchberger, J. Reinstein, and B. Bukau. 1995. The role of ATP in the functional cycle of the DnaK chaperone system. Journal of molecular biology. 249:126-137. Mitra, A., R.A. Fillmore, B.J. Metge, M. Rajesh, Y. Xi, J. King, J. Ju, L. Pannell, L.A. Shevde, and R.S. Samant. 2008. Large isoform of MRJ (DNAJB6) reduces malignant activity of breast cancer. Breast Cancer Research. 10:R22. Mitra, A., M. Menezes, L. Pannell, M. Mulekar, R. Honkanen, L. Shevde, and R. Samant. 2012. DNAJB6 chaperones PP2A mediated dephosphorylation of GSK3β to downregulate β-catenin transcription target, osteopontin. Oncogene. 31:4472-4483. Morimoto, R.I. 2008. Proteotoxic stress and inducible chaperone networks in neurodegenerative disease and aging. Genes & development. 22:1427-1438. Park, J., D. Lee, T. Seo, J. Chung, and J. Choe. 2000. Kaposi’s sarcoma-associated herpesvirus (human herpesvirus-8) open reading frame 36 protein is a serine protein kinase. Journal of General Virology. 81:1067-1071. Patel, P., G.R. Prescott, R.D. Burgoyne, L.-Y. Lian, and A. Morgan. 2016. Phosphorylation of cysteine string protein triggers a major conformational switch. Structure. 24:1380-1386. Pei, Y., W. Fu, E. Yang, A. Shen, Y.-C. Chen, H. Gong, J. Chen, J. Huang, G. Xiao, and F. Liu. 2012. A Hsp40 chaperone protein interacts with and modulates the cellular distribution of the primase protein of human cytomegalovirus. PLoS Pathog. 8:e1002968. Pemberton, L.F., and B.M. Paschal. 2005. Mechanisms of receptor‐mediated nuclear import and nuclear export. Traffic. 6:187-198. Powers, E.T., R.I. Morimoto, A. Dillin, J.W. Kelly, and W.E. Balch. 2009. Biological and chemical approaches to diseases of proteostasis deficiency. Annual review of biochemistry. 78:959-991. Ragoczy, T., L. Heston, and G. Miller. 1998. The Epstein-Barr virus Rta protein activates lytic cycle genes and can disrupt latency in B lymphocytes. Journal of virology. 72:7978-7984. Romaker, D., V. Schregel, K. Maurer, S. Auerochs, A. Marzi, H. Sticht, and M. Marschall. 2006. Analysis of the Structure− Activity Relationship of Four Herpesviral UL97 Subfamily Protein Kinases Reveals Partial but not Full Functional Conservation. Journal of medicinal chemistry. 49:7044-7053. Ryan, H.E., M. Poloni, W. McNulty, D. Elson, M. Gassmann, J.M. Arbeit, and R.S. Johnson. 2000. Hypoxia-inducible factor-1α is a positive factor in solid tumor growth. Cancer research. 60:4010-4015. Sorokin, A., E. Kim, and L. Ovchinnikov. 2007. Nucleocytoplasmic transport of proteins. Biochemistry (Moscow). 72:1439-1457. Sun, X., J.A. Bristol, S. Iwahori, S.R. Hagemeier, Q. Meng, E.A. Barlow, J.D. Fingeroth, V.L. Tarakanova, R.F. Kalejta, and S.C. Kenney. 2013. Hsp90 inhibitor 17-DMAG decreases expression of conserved herpesvirus protein kinases and reduces virus production in Epstein-Barr virus-infected cells. Journal of virology. 87:10126-10138. Szabo, A., T. Langer, H. Schröder, J. Flanagan, B. Bukau, and F.U. Hartl. 1994. The ATP hydrolysis-dependent reaction cycle of the Escherichia coli Hsp70 system DnaK, DnaJ, and GrpE. Proceedings of the National Academy of Sciences. 91:10345-10349. Taguwa, S., K. Maringer, X. Li, D. Bernal-Rubio, J.N. Rauch, J.E. Gestwicki, R. Andino, A. Fernandez-Sesma, and J. Frydman. 2015. Defining Hsp70 subnetworks in dengue virus replication reveals key vulnerability in flavivirus infection. Cell. 163:1108-1123. Takada, K. 1984. Cross‐linking of cell surface immunoglobulins induces epstein‐barr virus in burkitt lymphoma lines. International journal of cancer. 33:27-32. Takada, K., K. Horinouchi, Y. Ono, T. Aya, T. Osato, M. Takahashi, and S. Hayasaka. 1991. An Epstein-Barr virus-producer line Akata: establishment of the cell line and analysis of viral DNA. Virus genes. 5:147-156. Wang, J.-T., S.-L. Doong, S.-C. Teng, C.-P. Lee, C.-H. Tsai, and M.-R. Chen. 2009. Epstein-Barr virus BGLF4 kinase suppresses the interferon regulatory factor 3 signaling pathway. Journal of virology. 83:1856-1869. Wang, J.-T., P.-W. Yang, C.-P. Lee, C.-H. Han, C.-H. Tsai, and M.-R. Chen. 2005. Detection of Epstein–Barr virus BGLF4 protein kinase in virus replication compartments and virus particles. Journal of general virology. 86:3215-3225. Wente, S.R., and M.P. Rout. 2010. The nuclear pore complex and nuclear transport. Cold Spring Harbor perspectives in biology. 2:a000562. Yang, P.-W., S.-S. Chang, C.-H. Tsai, Y.-H. Chao, and M.-R. Chen. 2008. Effect of phosphorylation on the transactivation activity of Epstein–Barr virus BMRF1, a major target of the viral BGLF4 kinase. Journal of General Virology. 89:884-895. Young, L.S., and A.B. Rickinson. 2004. Epstein–Barr virus: 40 years on. Nature Reviews Cancer. 4:757-768. Young, L.S., L.F. Yap, and P.G. Murray. 2016. Epstein-Barr virus: more than 50 years old and still providing surprises. Nature Reviews Cancer. 16:789-802. Yu, V.Z., V.C.-L. Wong, W. Dai, J.M.-Y. Ko, A.K.-Y. Lam, K.W. Chan, R.S. Samant, H.L. Lung, W.H. Shuen, and S. Law. 2015. Nuclear localization of DNAJB6 is associated with survival of patients with esophageal cancer and reduces AKT signaling and proliferation of cancer cells. Gastroenterology. 149:1825-1836. e1825. | |
dc.identifier.uri | http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67621 | - |
dc.description.abstract | EB病毒感染超過九成的全球人口,除了可能造成感染性單核球增多症之外,EB病毒和許多人類惡性腫瘤的發展具有高度的相關。因此,了解病毒如何進到細胞中並複製完成到離開細胞的過程是很重要的。先前的研究指出,在病毒複製期間表現的 EB 病毒蛋白激酶 BGLF4 除了可透過磷酸化細胞內許多蛋白來改變細胞內的環境以利病毒進行複製之外,也會促使沒有進核序列的病毒蛋白,例如病毒複製的過程中需要的引子酶 (BSLF1) ─解旋酶 (BBLF4) 複合體,從細胞質進到細胞核中執行作用。此外最近的研究也發現,細胞分子伴護子 40 (Hsp40s) 中的一員 DNAJB6a、DNAJB6b 會和許多的病毒蛋白有交互作用並且幫助蛋白在細胞質 / 細胞核中傳遞。然而上述這些病毒複製相關因子的作用機制仍有許多未知的部分,因此,本研究探討 (1) BGLF4 造成的病毒蛋白進核的過程是否有 DNAJB6 的參與 (2) DNAJB6 是否會影響 EB 病毒的複製和病毒顆粒的產生。研究結果顯示,利用免疫螢光染色技術在共同轉染 BGLF4、DNAJB6a 和病毒引子酶 BSLF1 的細胞中,發現 BGLF4 和 DNAJB6a 皆會和 BSLF1 共同表現在細胞核中,表示 BGLF4 和 DNAJB6a 都可能幫助 BSLF1 的進核。經由免疫沉澱實驗發現 DNAJB6a 和 DNAJB6b會和 BGLF4、BSLF1 有交互作用。而免疫螢光染色實驗也顯示 BGLF4 的激酶活性對於 BSLF1 的進核有著顯著的影響。此外 DNAJB6a 並不會幫助引子酶相關因子和解旋酶進核。在含有 EB病毒的表皮細胞和 B 細胞中發現,抑制 DNAJB6a 會使病毒複製效率和病毒顆粒產生的總量下降;而抑制 DNAJB6b 則會使病毒的複製速率上升並且產出更多的具感染性粒子。綜合以上實驗結果,我們發現病毒激酶 BGLF4 的激酶活性在引子酶的進核過程中可能扮演相當重要的角色,並且分子伴護子 DNAJB6a 和 DNAJB6b也可以調控病毒引子酶的進核,進而影響病毒複製的速率和病毒顆粒的產生。 | zh_TW |
dc.description.abstract | Epstein-Barr virus, which is a world-spread virus, infects over 90% of mankind and is highly associated with several malignancies. As the only protein kinase encoded by EBV, BGLF4, phosphorylates several viral and cellular proteins to optimize the cellular environment for viral replication and nuclear egress of viral nucleocapsid. Previous findings demonstrated that EBV protein kinase, BGLF4, which expressed in EBV early lytic replication, can help the translocation of viral primase-helicase complex from the cytoplasm into nucleus, but the detailed mechanisms remained unknown. Recent studies revealed that a cellular heat shock protein 40 family member (Hsp40s), DNAJB6, is involved in diverse cellular functions including proteins transport and also implicated in numerous pathologies and infectious virus diseases. In this study, we showed that cytoplasmic EBV BSLF1 (primase) could translocate into the nucleus in the presence of DNAJB6a while BBLF2/3 (primase-associated factor) and BBLF4 (helicase) retained in cytoplasm by immuno-fluorescence assay. BSLF1 and BGLF4 was co-immunoprecipitated by DNAJB6a and DNAJB6b, suggesting that DNAJB6a may promote the translocation of EBV primase through direct interaction. Notably, we found that DNAJB6a and DNAJB6b showed different effects on EBV replication. When DNAJB6a was knockdown in EBV positive NA and Akata B cells, it decreased viral DNA replication and virion secretion; while knocking-down DNAJB6b, it increased both viral replication rate and secretion in Akata B cells. The results may emphasize the ratio of DNAJB6 isoforms in affecting viral replication. Moreover, we found that BGLF4 changed the distribution of DNAJB6b from cytoplasm to nucleus. Taken together, we suggested that DNAJB6 and the kinase activity of BGLF4 are required for the nuclear import of BSLF1 and DNAJB6 isoforms affect the viral DNA replication and virion secretion in NA and B cells. | en |
dc.description.provenance | Made available in DSpace on 2021-06-17T01:40:40Z (GMT). No. of bitstreams: 1 ntu-106-R04445111-1.pdf: 2892907 bytes, checksum: f39a11ee888a82cf53d10dc862269ff5 (MD5) Previous issue date: 2017 | en |
dc.description.tableofcontents | 口試委員會審定書 ……………………………………………………………..I
誌謝 …………………………………………………………………….…...………..II 中文摘要 ..……………………………………………………………….………...III Abstract ……………………………………………………………….………...…IV Contents ………………………………………….…………………………………1 Chapter 1: Introduction …...…………………………………………………4 1.1 Epstein-Barr virus (EBV) ……………………………………………………4 1.1.1. EBV and associated diseases ……………………………………………..4 1.1.2. EBV genome and structure ……………………………………………….4 1.1.3. The life cycle of EBV …………………………………………………….5 1.1.3.1. Infection ……………………………………………………………...5 1.1.3.2. Latent infection ………………………………………………………6 1.1.3.3. Lytic replication ……………………………………………………...6 1.2 Nuclear and Cytoplasmic transport …………………………..……………..8 1.3 Herpesviruses protein kinase …………………………………..…………….8 1.3.1. Characteristics of conserved herpesviruses protein kinase (CHPK) …..…8 1.3.2. Functions of EBV BGLF4 protein kinase ………………………………..9 1.3.3. The nuclear targeting of BGLF4 ………………………………………...10 1.4 Molecular chaperones ……………………………………………………….11 1.4.1. Cellular chaperone-dependent machinery ………………………………11 1.4.2. Characteristics of heat shock protein 40s (Hsp40s) ……………………..12 1.4.3. Characterization of DNAJB6 isoforms ………………………………….13 1.5 Aims of this study ……………...…………………………………………….13 Chapter 2: Materials and Methods…………………………………….15 2.1 Plasmids information ……………………………………………………….15 2.2 Cell culture, transfection, and lentivirus infection ………………………..15 2.3 Immunoblotting assay and antibodies ……………………………………..16 2.4 Indirect Immunofluorescence assay ………………………………………..17 2.5 Fractionation assay ………………………………………………………….17 2.6 Co-immunoprecipitation assay ……………………………………………..18 2.7 shRNA lentivirus package …………………………………………………..19 2.8 Lentivirus infection ………………………………………………………….19 2.9 Genomic DNA extraction and quantitative real-time PCR for EBV copy Number ………………………………………………………………………20 2.10 Quantitation of extracellular EBV DNA copy numbers ………………...21 Chapter 3: Results ………….…………………………………………………22 3.1 Cytopalsmic Myc-BSLF1 is translocated into nucleus in the presence of BGLF4 or DNAJB6a. ……………………………………………………….22 3.2 BSLF1 and BGLF4 interact with DNAJB6 isoforms. …………………….23 3.3 The kinase activity of BGLF4 is important for the nuclear targeting of BSLF1. ……………………………………………………………………….23 3.4 Cytoplasmic Myc-BBLF2/3 and Myc-BBLF4 retained in cytoplasm in the presence of HA-DNAJB6a. ……………………………………………..24 3.5 DNAJB6a and DNAJB6b affect EBV DNA replication in EBV-positive Akata B cells and EBV-positive epithelial NA cells. ………………………..24 3.6 The protein level of DNAJB6 isoforms decreased in TSA-treated NA cells. ………………………………………………………………………………...25 3.7 The protein level of DNAJB6b in nucleus increased in the presence of BGLF4. ………………………………………………………………………26 Chapter 4: Discussion ……..…………………………………………………27 4.1 The mechanisms of nuclear import of EBV lytic replication components. ………………………………………………………………………………...27 4.2 The kinase activity of BGLF4 for DNAJB6 isoforms. …………………….27 4.3 The contribution of DNAJB6 isoforms on EBV lytic replication. ………..28 4.4 The anti-virus roles of DNAJB6 isoforms in other viral pathologies. ……30 4.5 The roles and mechanisms of DNAJB6 in cancers. ……………………….31 Figures and supplements ….………………………………………………..32 Fig. 1. Functional domains of DNAJB6 isoforms. …………………………….32 Fig. 2. Both GFP-BGLF4 and HA-DNAJB6a can promote the nuclear targeting of BSLF1-Myc. ……………………………………………….33 Fig. 3. HA-DNAJB6a and HA-DNAJB6b could interact with BSLF1-Myc and GFP-BGLF4. …………………………………………………………….34 Fig. 4. The kinase activity of GFP-BGLF4 is important for the nuclear import of BSLF1-Myc. …………………………………………………………..35 Fig. 5. HA-DNAJB6a cannot promote the nuclear targeting of Myc-BBLF2/3 and Myc-BBLF4. ………………………………………………………..36 Fig. 6. Knockdown DNAJB6a and DNAJB6b affect EBV replication and virion secretion in TSA-treated EBV positive NA cells. ………………37 Fig. 7. Knockdown DNAJB6a and DNAJB6b affect EBV replication and virions secretion in IgG cross-linked EBV positive Akata B cells. …...38 Fig. 8. The protein expression level decreased in TSA-treated NA cells and distribution of DNAJB6 isoforms changed in the presence of BGLF4. …………………………………………………………………………….39 Fig. S1. Protein sequence alignment of HSV-1 UL52, HCMV UL70, and EBV BSLF1. ………………………………………………………………….40 References ………………………………………………………………………...41 | |
dc.language.iso | en | |
dc.title | EB病毒BGLF4蛋白質激酶急DNAJB6對於病毒DNA引子酶/解旋酶複合體進核調控之探討 | zh_TW |
dc.title | Epstein-Barr Virus BGLF4 kinase and DNAJB6 mediated regulation of nuclear targeting of viral DNA primase-helicase complex | en |
dc.type | Thesis | |
dc.date.schoolyear | 105-2 | |
dc.description.degree | 碩士 | |
dc.contributor.oralexamcommittee | 楊宏志,林素芳,李重霈,黃立民 | |
dc.subject.keyword | EB病毒,進核, | zh_TW |
dc.subject.keyword | EBV,DNAJB6,nuclear targeting, | en |
dc.relation.page | 48 | |
dc.identifier.doi | 10.6342/NTU201702169 | |
dc.rights.note | 有償授權 | |
dc.date.accepted | 2017-07-28 | |
dc.contributor.author-college | 醫學院 | zh_TW |
dc.contributor.author-dept | 微生物學研究所 | zh_TW |
顯示於系所單位: | 微生物學科所 |
文件中的檔案:
檔案 | 大小 | 格式 | |
---|---|---|---|
ntu-106-1.pdf 目前未授權公開取用 | 2.83 MB | Adobe PDF |
系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。