Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 理學院
  3. 物理學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67619
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor梁啟德(Chi-Te Liang)
dc.contributor.authorYu-Cheng Changen
dc.contributor.author張裕承zh_TW
dc.date.accessioned2021-06-17T01:40:34Z-
dc.date.available2027-02-09
dc.date.copyright2017-08-02
dc.date.issued2017
dc.date.submitted2017-07-28
dc.identifier.citation1. Chen, C.-C., 石墨烯與矽之蕭基接面光電化學元件於產氫之研究. 臺灣大學材料科學與工程學研究所學位論文 2016, 1-73.
2. Kudo, A.; Miseki, Y., Heterogeneous photocatalyst materials for water splitting. Chemical Society Reviews 2009, 38 (1), 253-278.
3. Deng, D.; Novoselov, K.; Fu, Q.; Zheng, N.; Tian, Z.; Bao, X., Catalysis with two-dimensional materials and their heterostructures. Nature nanotechnology 2016, 11 (3), 218-230.
4. Novoselov, K. S.; Geim, A. K.; Morozov, S. V.; Jiang, D.; Zhang, Y.; Dubonos, S. V.; Grigorieva, I. V.; Firsov, A. A., Electric field effect in atomically thin carbon films. Science 2004, 306 (5696), 666-669.
5. Balandin, A. A.; Ghosh, S.; Bao, W.; Calizo, I.; Teweldebrhan, D.; Miao, F.; Lau, C. N., Superior thermal conductivity of single-layer graphene. Nano letters 2008, 8 (3), 902-907.
6. Nair, R. R.; Blake, P.; Grigorenko, A. N.; Novoselov, K. S.; Booth, T. J.; Stauber, T.; Peres, N. M.; Geim, A. K., Fine structure constant defines visual transparency of graphene. Science 2008, 320 (5881), 1308-1308.
7. Yu, Q.; Lian, J.; Siriponglert, S.; Li, H.; Chen, Y. P.; Pei, S.-S., Graphene segregated on Ni surfaces and transferred to insulators. Applied physics letters 2008, 93 (11), 113103.
8. Berger, C.; Song, Z.; Li, X.; Wu, X.; Brown, N.; Naud, C.; Mayou, D.; Li, T.; Hass, J.; Marchenkov, A. N., Electronic confinement and coherence in patterned epitaxial graphene. Science 2006, 312 (5777), 1191-1196.
9. Stankovich, S.; Dikin, D. A.; Dommett, G. H.; Kohlhaas, K. M.; Zimney, E. J.; Stach, E. A.; Piner, R. D.; Nguyen, S. T.; Ruoff, R. S., Graphene-based composite materials. nature 2006, 442 (7100), 282-286.
10. Neto, A. C.; Guinea, F.; Peres, N. M.; Novoselov, K. S.; Geim, A. K., The electronic properties of graphene. Reviews of modern physics 2009, 81 (1), 109.
11. Malik, O.; Zúñiga, C.; Ruiz-T, G., Efficient ITO–Si solar cells and power modules fabricated with a low temperature technology: Results and perspectives. Journal of Non-Crystalline Solids 2008, 354 (19), 2472-2477.
12. Zhang, Y.; Zu, F.; Lee, S. T.; Liao, L.; Zhao, N.; Sun, B., Heterojunction with organic thin layers on silicon for record efficiency hybrid solar cells. Advanced Energy Materials 2014, 4 (2).
13. Yu, H.; Kaneko, Y.; Yoshimura, S.; Otani, S., Photovoltaic cell of carbonaceous film/n‐type silicon. Applied physics letters 1996, 68 (4), 547-549.
14. Ma, Z.; Liu, B., Boron-doped diamond-like amorphous carbon as photovoltaic films in solar cell. Solar energy materials and solar cells 2001, 69 (4), 339-344.
15. Jia, Y.; Wei, J.; Wang, K.; Cao, A.; Shu, Q.; Gui, X.; Zhu, Y.; Zhuang, D.; Zhang, G.; Ma, B., Nanotube–silicon heterojunction solar cells. Advanced Materials 2008, 20 (23), 4594-4598.
16. Shi, E.; Zhang, L.; Li, Z.; Li, P.; Shang, Y.; Jia, Y.; Wei, J.; Wang, K.; Zhu, H.; Wu, D., TiO2-coated carbon nanotube-silicon solar cells with efficiency of 15%. Scientific reports 2012, 2, 884.
17. Shi, Y.; Kim, K. K.; Reina, A.; Hofmann, M.; Li, L.-J.; Kong, J., Work function engineering of graphene electrode via chemical doping. ACS nano 2010, 4 (5), 2689-2694.
18. Shi, E.; Li, H.; Yang, L.; Zhang, L.; Li, Z.; Li, P.; Shang, Y.; Wu, S.; Li, X.; Wei, J., Colloidal antireflection coating improves graphene–silicon solar cells. Nano letters 2013, 13 (4), 1776-1781.
19. Xie, C.; Zhang, X.; Wu, Y.; Zhang, X.; Zhang, X.; Wang, Y.; Zhang, W.; Gao, P.; Han, Y.; Jie, J., Surface passivation and band engineering: a way toward high efficiency graphene–planar Si solar cells. Journal of Materials Chemistry A 2013, 1 (30), 8567-8574.
20. Fujishima, A.; Honda, K., Electrochemical photolysis of water at a semiconductor electrode. nature 1972, 238 (5358), 37-38.
21. Hisatomi, T.; Kubota, J.; Domen, K., Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chemical Society Reviews 2014, 43 (22), 7520-7535.
22. Walter, M. G.; Warren, E. L.; McKone, J. R.; Boettcher, S. W.; Mi, Q.; Santori, E. A.; Lewis, N. S., Solar water splitting cells. Chemical reviews 2010, 110 (11), 6446-6473.
23. Liu, C.; Dasgupta, N. P.; Yang, P., Semiconductor nanowires for artificial photosynthesis. Chemistry of Materials 2013, 26 (1), 415-422.
24. Bae, S.; Kim, H.; Lee, Y.; Xu, X.; Park, J.-S.; Zheng, Y.; Balakrishnan, J.; Lei, T.; Kim, H. R.; Song, Y. I., Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nature nanotechnology 2010, 5 (8), 574-578.
25. Li, X.; Zhu, Y.; Cai, W.; Borysiak, M.; Han, B.; Chen, D.; Piner, R. D.; Colombo, L.; Ruoff, R. S., Transfer of large-area graphene films for high-performance transparent conductive electrodes. Nano letters 2009, 9 (12), 4359-4363.
26. Wang, D. Y.; Huang, I.; Ho, P. H.; Li, S. S.; Yeh, Y. C.; Wang, D. W.; Chen, W. L.; Lee, Y. Y.; Chang, Y. M.; Chen, C. C., Clean‐Lifting Transfer of Large‐area Residual‐Free Graphene Films. Advanced Materials 2013, 25 (32), 4521-4526.
27. Wang, Y.; Zheng, Y.; Xu, X.; Dubuisson, E.; Bao, Q.; Lu, J.; Loh, K. P., Electrochemical delamination of CVD-grown graphene film: toward the recyclable use of copper catalyst. ACS nano 2011, 5 (12), 9927-9933.
28. Hong, J. Y.; Shin, Y. C.; Zubair, A.; Mao, Y.; Palacios, T.; Dresselhaus, M. S.; Kim, S. H.; Kong, J., A rational strategy for graphene transfer on substrates with rough features. Advanced Materials 2016.
29. Ferrari, A. C.; Meyer, J.; Scardaci, V.; Casiraghi, C.; Lazzeri, M.; Mauri, F.; Piscanec, S.; Jiang, D.; Novoselov, K.; Roth, S., Raman spectrum of graphene and graphene layers. Physical review letters 2006, 97 (18), 187401.
30. Li, X.; Lv, Z.; Zhu, H., Carbon/silicon heterojunction solar cells: state of the art and prospects. Advanced Materials 2015, 27 (42), 6549-6574.
31. Ho, P. H.; Liou, Y. T.; Chuang, C. H.; Lin, S. W.; Tseng, C. Y.; Wang, D. Y.; Chen, C. C.; Hung, W. Y.; Wen, C. Y.; Chen, C. W., Self‐crack‐filled graphene films by metallic nanoparticles for high‐performance graphene heterojunction solar cells. Advanced Materials 2015, 27 (10), 1724-1729.
32. Yoon, T.; Kim, J.-H.; Choi, J. H.; Jung, D. Y.; Park, I.-J.; Choi, S.-Y.; Cho, N. S.; Lee, J.-I.; Kwon, Y.-D.; Cho, S., Healing Graphene Defects Using Selective Electrochemical Deposition: Toward Flexible and Stretchable Devices. ACS nano 2016, 10 (1), 1539-1545.
33. Hong, J.; Lee, J.-B.; Lee, S.; Seo, J.; Lee, H.; Park, J. Y.; Ahn, J.-H.; Seo, T. I.; Lee, T., A facile method for the selective decoration of graphene defects based on a galvanic displacement reaction. NPG Asia Materials 2016, 8 (4), e262.
34. Kim, K.; Johnson, R. W.; Tanskanen, J. T.; Liu, N.; Kim, M.-G.; Pang, C.; Ahn, C.; Bent, S. F.; Bao, Z., Selective metal deposition at graphene line defects by atomic layer deposition. Nature communications 2014, 5.
35. Ohno, T.; Sarukawa, K.; Matsumura, M., Crystal faces of rutile and anatase TiO 2 particles and their roles in photocatalytic reactions. New journal of chemistry 2002, 26 (9), 1167-1170.
36. Deng, D.; Yu, L.; Pan, X.; Wang, S.; Chen, X.; Hu, P.; Sun, L.; Bao, X., Size effect of graphene on electrocatalytic activation of oxygen. Chemical Communications 2011, 47 (36), 10016-10018.
37. Deng, D.; Pan, X.; Yu, L.; Cui, Y.; Jiang, Y.; Qi, J.; Li, W.-X.; Fu, Q.; Ma, X.; Xue, Q., Toward N-doped graphene via solvothermal synthesis. Chemistry of Materials 2011, 23 (5), 1188-1193.
38. Hummers Jr, W. S.; Offeman, R. E., Preparation of graphitic oxide. Journal of the American Chemical Society 1958, 80 (6), 1339-1339.
39. Sofo, J. O.; Chaudhari, A. S.; Barber, G. D., Graphane: A two-dimensional hydrocarbon. Physical Review B 2007, 75 (15), 153401.
40. (a) Poh, H. L.; Šimek, P.; Sofer, Z.; Pumera, M., Halogenation of graphene with chlorine, bromine, or iodine by exfoliation in a halogen atmosphere. Chemistry–A European Journal 2013, 19 (8), 2655-2662; (b) Wu, M.; Cao, C.; Jiang, J. Z., Light non-metallic atom (B, N, O and F)-doped graphene: a first-principles study. Nanotechnology 2010, 21 (50), 505202.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67619-
dc.description.abstract石墨烯是由六角型格子狀的碳原子所組成的單層二維材料,因特殊的能帶結構與原子排列,讓它有著許多優異的特性,例如可調變的功函數、高穿透度、高載子遷移率、易被化學修飾等,這些性質使得石墨烯大量應用於光電元件領域中,而近幾年再生能源的重要性日益漸增,我們除了可以利用矽基板與石墨烯的結合製作出太陽能電池發電外,也可以將它應用於電化學能源領域中。
本文將研究利用石墨烯與矽形成的蕭基接面來增加水分解產氫效率。首先,我們利用高分子EVA 進行石墨烯轉印,使其能夠伏貼於金字塔狀的抗反射矽基板上,可從PEC 效率量測圖中發現,其飽和電流值與起始電位有著顯著地提升。之後,我們利用此蕭基接面進行光沉積反應,讓奈米鉑粒子修飾於石墨烯表面,而這些奈米金屬粒子具有催化作用,使水分解反應更容易發生,並且表現在起始電位上。
zh_TW
dc.description.abstractGraphene,a two-dimensional material, is a single-atom thick sheet of carbon atomsarranged in a 2D network of ring structures (a honeycomb lattice). graphene has a lot of promising properties such as high transparency, high thermal conductivity, high carrier mobility, tunable work function, and hence graphene has been considered as an
outstanding candidate electrode material for Schottky junction solar cell .Besides,hydrogen energy has gained attention as the next generation form of clean energy,
therefore we want to utilize graphene/silicon Schottky junction as a device of hydrogen production for photoelectrochemical (PEC) water splitting.
In the first part of this thesis, we successfully transferred EVA/graphene noto antireflective silicon surfaces for forming a Schottky junction for PEC water splitting .Because of silicon nanostructures, the device reaches a high photocurrent density of 43 mA/cm2. In the second part, we use graphene/silicon Schottky junction to decor-ate the graphene sheet with Pt particles through photo-deposition method.On account of Pt catalysts, the optimized device has significant anodic shift of onset. In the final part, We study about photo-deposition in 2D material for understanding charge transfer in graphene-silicon Schottky junction and MoS2/WSe2 heterojunction.
en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:40:34Z (GMT). No. of bitstreams: 1
ntu-106-R04222067-1.pdf: 4338029 bytes, checksum: de181dee86bdf04dd5bbf56c0880348f (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents口試委員會審定書 #
中文摘要 i
ABSTRACT ii
CONTENTS iii
LIST OF FIGURES vi
Chapter 1 簡介 1
1.1 研究動機 1
1.2 石墨烯 4
1.2.1 石墨烯結構 4
1.2.2 石墨烯光電學特性 5
1.2.3 石墨烯力學特性 6
1.2.4 石墨烯能帶結構 6
1.2.5 石墨烯的應用 7
1.3 蕭基接面 8
1.3.1 蕭基接面背景 8
1.3.2 半導體-金屬蕭基位障 8
1.4 矽晶蕭基太陽能電池 10
1.4.1 半導體-金屬蕭基太陽能電池 10
1.4.2 透明電極之蕭基太陽能電池 11
1.4.3 石墨烯-矽晶蕭基太陽能電池 11
Chapter 2 文獻回顧 13
2.1 晶蕭基太陽能電池 13
2.1.1 氧化銦錫 13
2.1.2 有機導電高分子 13
2.1.3 碳材與奈米碳管 14
2.1.4 石墨烯與矽蕭基太陽能電池 15
2.2 光電化學 16
2.2.1 光電化學的發展 16
2.2.2 材料需求 17
2.2.3 運用於光觸媒水分解材料的需求 20
Chapter 3 實驗方法 22
3.1 抗反射矽基板製作 22
3.2 化學氣相沉積(CVD)石墨烯 22
3.2.1 成長石墨烯流程 22
3.2.2 轉印銅箔上的石墨烯 24
3.3 材料特性與分析 27
3.3.1 石烯的拉墨曼光譜 27
3.4 量測儀器與分析 28
3.4.1 電化學量測儀器 28
3.4.2 光沉積法還原奈米金屬觸媒 29
3.4.3 平面三極式反應器 30
3.4.4 線性掃描伏安法(Linear sweep voltammetry,LSV) 30
3.4.5 掃描式電子顯微鏡(SEM) 31
3.4.6 歐傑電子能譜(Auger electron spectroscopy) 31
3.4.7 原子力顯微鏡(Atomic Force Microscope, AFM) 32
3.4.8 反射率量測儀(Reflectance Measurement) 32
3.4.9 太陽能譜介紹 33
3.5 製作石墨烯-抗反射矽基板之蕭基光電化學元件 36
Chapter 4 石墨烯/矽蕭基接面分析 37
4.1 研究動機 37
4.2 氣泡對矽基材料量測之影響 39
4.3 奈米抗反射結構 39
4.4 石墨烯與矽接面水分解 40
Chapter 5 蕭基接面沉積白金觸媒於光陰極之水分解 42
5.1 研究動機 42
5.2 光沉積法形成共觸媒系統 44
5.3 透過蕭基接面增益光沉積白金觸媒於石墨烯與矽 46
5.4 蕭基接面於光沉積白金特性 48
5.5 透過蕭基接面光沉積白金觸媒於石墨烯與矽光陰極水分解產氫應用 51
5.6 二維材料的光沉積分析 52
Chapter 6 利用島狀石墨烯與鉑共觸媒於電化學催化實驗 55
6.1 研究動機 55
6.2 利用光沉積法輔助鉑粒子沉積於島狀石墨烯 57
6.2.1 歐傑電子顯微鏡 57
6.2.2 分析鉑粒子修飾過後的石墨烯催化性質 59
Reference 60
dc.language.isozh-TW
dc.subject石墨烯zh_TW
dc.subject二維材料zh_TW
dc.subject鉑粒子zh_TW
dc.subject光沉積zh_TW
dc.subject電化學zh_TW
dc.subject蕭基接面zh_TW
dc.subject抗反射矽基板zh_TW
dc.subjectSchottky junctionen
dc.subject2-D materialen
dc.subjectgrapheneen
dc.subjectPt particlesen
dc.subjectphoto-depositionen
dc.subjectphotoelectrochemical (PEC)en
dc.subjectantireflective siliconen
dc.title石墨烯與矽之蕭基接面應用於光陰極水分解產氫研究zh_TW
dc.titleGraphene/Si Schottky junction platform as a high performance photocathode for water splittingen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.coadvisor陳俊維(Chun-Wei Chen)
dc.contributor.oralexamcommittee溫政彥(Cheng-Yen Wen),王迪彥(Di-Yan Wang)
dc.subject.keyword石墨烯,抗反射矽基板,蕭基接面,電化學,光沉積,鉑粒子,二維材料,zh_TW
dc.subject.keywordgraphene,antireflective silicon,Schottky junction,photoelectrochemical (PEC),photo-deposition,Pt particles,2-D material,en
dc.relation.page62
dc.identifier.doi10.6342/NTU201702054
dc.rights.note有償授權
dc.date.accepted2017-07-28
dc.contributor.author-college理學院zh_TW
dc.contributor.author-dept物理學研究所zh_TW
顯示於系所單位:物理學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
4.24 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved