Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 電機資訊學院
  3. 光電工程學研究所
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67617
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊志忠
dc.contributor.authorJian-He Yu 余建和en
dc.contributor.author余建和zh_TW
dc.date.accessioned2021-06-17T01:40:28Z-
dc.date.available2019-08-01
dc.date.copyright2017-08-01
dc.date.issued2017
dc.date.submitted2017-07-28
dc.identifier.citation[1] K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, 'The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,' J. Phys. Chem. B 107, 668-677 (2003)
[2] C. F. Bohren, and D. R. Huffman, 'Absorption and scattering of light by small particles,' John Wiley & Sons, (2008)
[3] M.-C. Daniel, and D. Astruc, 'Gold nanoparticles: assembly, supramolecular chemistry, quantum-size-related properties, and applications toward biology, catalysis, and nanotechnology,' Chemical reviews 104, 293-346 (2004).
[4] M. Eghtedari, A. V. Liopo, J. A. Copland, A. A. Oraevsky, and M. Motamedi, 'Engineering of hetero-functional gold nanorods for the in vivo molecular targeting of breast cancer cells,' Nano letters 9, 287-291 (2008).
[5] W. I. Choi, J.-Y. Kim, C. Kang, C. C. Byeon, Y. H. Kim, and G. Tae, 'Tumor regression in vivo by photothermal therapy based on gold-nanorod-loaded, functional nanocarriers,' ACS nano 5, 1995-2003 (2011).
[6] G. von Maltzahn, J.-H. Park, A. Agrawal, N. K. Bandaru, S. K. Das, M. J. Sailor, and S. N. Bhatia, 'Computationally guided photothermal tumor therapy using long-circulating gold nanorod antennas,' Cancer research 69, 3892-3900 (2009).
[7] A. M. Gobin, J. J. Moon, and J. L. West, 'EphrinAl-targeted nanoshells for photothermal ablation of prostate cancer cells,' International journal of nanomedicine 3, 351 (2008).
[8] A. M. Gobin, M. H. Lee, N. J. Halas, W. D. James, R. A. Drezek, and J. L. West, 'Near-infrared resonant nanoshells for combined optical imaging and photothermal cancer therapy,' Nano letters 7, 1929-1934 (2007).
[9] L. B. Carpin, L. R. Bickford, G. Agollah, T.-K. Yu, R. Schiff, Y. Li, and R. A. Drezek, 'Immunoconjugated gold nanoshell-mediated photothermal ablation of trastuzumab-resistant breast cancer cells,' Breast cancer research and treatment 125, 27-34 (2011).
[10] A. M. Schwartzberg, T. Y. Olson, C. E. Talley, and J. Z. Zhang, 'Synthesis, characterization, and tunable optical properties of hollow gold nanospheres,' The Journal of Physical Chemistry B 110, 19935-19944 (2006).
[11] J. Z. Zhang, 'Biomedical applications of shape-controlled plasmonic nanostructures: a case study of hollow gold nanospheres for photothermal ablation therapy of cancer,' The Journal of Physical Chemistry Letters 1, 686-695 (2010).
[12] J. Chen, D. Wang, J. Xi, L. Au, A. Siekkinen, A. Warsen, Z.-Y. Li, H. Zhang, Y. Xia, and X. Li, 'Immuno gold nanocages with tailored optical properties for targeted photothermal destruction of cancer cells,' Nano letters 7, 1318-1322 (2007).
[13] J. Chen, F. Saeki, B. J. Wiley, H. Cang, M. J. Cobb, Z.-Y. Li, L. Au, H. Zhang, M. B. Kimmey, and X. Li, 'Gold nanocages: bioconjugation and their potential use as optical imaging contrast agents,' Nano letters 5, 473-477 (2005).
[14] J. Chen, C. Glaus, R. Laforest, Q. Zhang, M. Yang, M. Gidding, M. J. Welch, and Y. Xia, 'Gold nanocages as photothermal transducers for cancer treatment,' Small 6, 811-817 (2010).
[15] M. E. Brezinski, G. J. Tearney, B. E. Bouma, J. A. Izatt, M. R. Hee, E. A. Swanson, J. F. Southern, and J. G. Fujimoto, 'Optical coherence tomography for optical biopsy,' Circulation 93, 1206-1213 (1996).
[16] R. v. Gans, 'Über die form ultramikroskopischer goldteilchen,' Annalen der Physik 342, 881-900 (1912).
[17] F. Kim, J. H. Song, and P. Yang, 'Photochemical synthesis of gold nanorods,' Journal of the American Chemical Society 124, 14316-14317 (2002).
[18] C. R. Martin, 'Membrane-based synthesis of nanomaterials,' Chemistry of Materials 8, 1739-1746 (1996).
[19] S.-S. Chang, C.-W. Shih, C.-D. Chen, W.-C. Lai, and C. C. Wang, 'The shape transition of gold nanorods,' Langmuir 15, 701-709 (1999).
[20] C. J. Murphy, T. K. Sau, A. M. Gole, C. J. Orendorff, J. Gao, L. Gou, S. E. Hunyadi, and T. Li, 'Anisotropic metal nanoparticles: synthesis, assembly, and optical applications,' ACS Publications (2005).
[21] C. Li, C. Wu, J. Zheng, J. Lai, C. Zhang, and Y. Zhao, 'LSPR sensing of molecular biothiols based on noncoupled gold nanorods,' Langmuir 26, 9130-9135 (2010).
[22] B. Jang, J.-Y. Park, C.-H. Tung, I.-H. Kim, and Y. Choi, 'Gold nanorod− photosensitizer complex for near-infrared fluorescence imaging and photodynamic/photothermal therapy in vivo,' ACS nano 5, 1086-1094 (2011).
[23] N. R. Jana, L. Gearheart, and C. J. Murphy, 'Seed-mediated growth approach for shape-controlled synthesis of spheroidal and rod-like gold nanoparticles using a surfactant template,' Advanced Materials 13, 1389 (2001).
[24] S.-Y. Wu, W.-M. Chang, H.-Y. Tseng, C.-K. Lee, T.-T. Chi, J.-Y. Wang, Y.-W. Kiang, and C. Yang, 'Geometry for maximizing localized surface plasmon resonance of Au nanorings with random orientations,' Plasmonics 6, 547-555 (2011).
[25] M. Deserno, and W. M. Gelbart, 'Adhesion and wrapping in colloid− vesicle complexes,' The Journal of Physical Chemistry B 106, 5543-5552 (2002).
[26] G. Bao, and X. R. Bao, 'Shedding light on the dynamics of endocytosis and viral budding,' Proceedings of the National Academy of Sciences of the United States of America 102, 9997-9998 (2005).
[27] B. D. Chithrani, A. A. Ghazani, and W. C. Chan, 'Determining the size and shape dependence of gold nanoparticle uptake into mammalian cells,' Nano lett 6, 662-668 (2006).
[28] S. Yano, S. Hirohara, M. Obata, Y. Hagiya, S.-i. Ogura, A. Ikeda, H. Kataoka, M. Tanaka, and T. Joh, 'Current states and future views in photodynamic therapy,' Journal of Photochemistry and Photobiology C: Photochemistry Reviews 12, 46-67 (2011).
[29] C. M. Moore, D. Pendse, and M. Emberton, 'Photodynamic therapy for prostate cancer—a review of current status and future promise,' Nature Clinical Practice Urology 6, 18-30 (2009).
[30] S. B. Brown, E. A. Brown, and I. Walker, 'The present and future role of photodynamic therapy in cancer treatment,' The lancet oncology 5, 497-508 (2004).
[31] I. J. Macdonald, and T. J. Dougherty, 'Basic principles of photodynamic therapy,' Journal of Porphyrins and Phthalocyanines 5, 105-129 (2001).
[32] J. Figueiró Longo, L. Muehlmann, N. Velloso, A. Simioni, and S. Lozzi, 'Effects of photodynamic therapy mediated by liposomal aluminum-phthalocyanine chloride on chemically induced tongue tumors,' Chemotherapy 1, 2 (2012).
[33] A. Juzeniene, Q. Peng, and J. Moan, 'Milestones in the development of photodynamic therapy and fluorescence diagnosis,' Photochemical & Photobiological Sciences 6, 1234-1245 (2007).
[34] J. Moan, and K. BERG, 'The photodegradation of porphyrins in cells can be used to estimate the lifetime of singlet oxygen,' Photochemistry and photobiology 53, 549-553 (1991).
[35] E. Buytaert, M. Dewaele, and P. Agostinis, 'Molecular effectors of multiple cell death pathways initiated by photodynamic therapy,' Biochimica et Biophysica Acta (BBA)-Reviews on Cancer 1776, 86-107 (2007).
[36] D. E. Dolmans, D. Fukumura, and R. K. Jain, 'Photodynamic therapy for cancer,' Nature reviews cancer 3, 380-387 (2003).
[37] S. Pervaiz, and M. Olivo, 'Art and science of photodynamic therapy,' Clinical and experimental pharmacology and physiology 33, 551-556 (2006).
[38] Z. Shi, W. Ren, A. Gong, X. Zhao, Y. Zou, E. M. B. Brown, X. Chen, and A. Wu, 'Stability enhanced polyelectrolyte-coated gold nanorod-photosensitizer complexes for high/low power density photodynamic therapy,' Biomaterials 35, 7058-7067 (2014).
[39] Y. Hu, Y. Yang, H. Wang, and H. Du, 'Synergistic integration of layer-by-layer assembly of photosensitizer and gold nanorings for enhanced photodynamic therapy in the near infrared,' ACS nano 9, 8744-8754 (2015).
[40] T. Niidome, M. Yamagata, Y. Okamoto, Y. Akiyama, H. Takahashi, T. Kawano, Y. Katayama, and Y. Niidome, 'PEG-modified gold nanorods with a stealth character for in vivo applications,' Journal of Controlled Release 114, 343-347 (2006).
[41] K. Plaetzer, T. Kiesslich, B. Krammer, and P. Hammerl, 'Characterization of the cell death modes and the associated changes in cellular energy supply in response to AlPcS 4-PDT,' Photochemical & Photobiological Sciences 1, 172-177 (2002).
[42] Y. Huang, H. Yu, H. Lv, H. Zhang, D. Ma, H. Yang, S. Xie, and Y. Peng, 'Triblock copolymers encapsulated poly (aryl benzyl ether) dendrimer zinc (II) phthalocyanine nanoparticles for enhancement in vitro photodynamic efficacy,' Photodiagnosis and photodynamic therapy 16, 124-131 (2016).
[43] J. Alzeer, P. J. Roth, and N. W. Luedtke, 'An efficient two-step synthesis of metal-free phthalocyanines using a Zn (II) template,' Chemical Communications, 1970-1971 (2009).
[44] Z. Chen, P. Xu, J. Chen, H. Chen, P. Hu, X. Chen, L. Lin, Y. Huang, K. Zheng, and S. Zhou, 'Zinc phthalocyanine conjugated with the amino-terminal fragment of urokinase for tumor-targeting photodynamic therapy,' Acta biomaterialia 10, 4257-4268 (2014).
[45] D. Sehgal, and I. K. Vijay, 'A method for the high efficiency of water-soluble carbodiimide-mediated amidation,' Analytical biochemistry 218, 87-91 (1994).
[46] B. Nikoobakht, and M. A. El-Sayed, 'Preparation and growth mechanism of gold nanorods (NRs) using seed-mediated growth method,' Chem. Mater 15, 1957-1962 (2003).
[47] B. D. Chithrani, and W. C. Chan, 'Elucidating the mechanism of cellular uptake and removal of protein-coated gold nanoparticles of different sizes and shapes,' Nano lett 7, 1542-1550 (2007).
[48] C. Yao, R. Rahmanzadeh, E. Endl, Z. Zhang, J. Gerdes, and G. Hüttmann, 'Elevation of plasma membrane permeability by laser irradiation of selectively bound nanoparticles,' Journal of biomedical optics 10, 064012-064018 (2005).
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67617-
dc.description.abstract在本論文中,透過羧基以及胺基的脫水縮合反應,我們成功合成一種用共價鍵連結金奈米粒子的新型光敏劑(四氨基鋅酞菁),能夠有效的降低光敏劑從金奈米顆粒脫離的機率。在合成四氨基鋅酞菁完畢後,我們先測試了基本的光敏劑特性,包括吸收頻譜、產生單態氧能力、細胞暗毒性和細胞損害等,接著選用目前廣泛使用的四磺酸鋁酞菁來做為比較對象,我們將光敏劑接在金奈米棒的樣品泡在水中不同時間後,再利用穿透頻譜和細胞損害實驗來比較光敏劑脫落情形。我們發現四氨基鋅酞菁比起四磺酸鋁酞菁,光敏劑較少脫離,四氨基鋅酞菁只有在泡水十分鐘和泡水三十分鐘間有明顯的差距,然而四磺酸鋁酞菁卻隨著泡水時間增長,細胞損害效果隨之降低。這結果證明了比起用凡德瓦力鍵結的四磺酸鋁酞菁,用共價鍵鍵結的四氨基鋅酞菁能夠更穩定地將光敏劑接在金奈米棒上。zh_TW
dc.description.abstractA new type of Pc-series photosensitizer, tetramino-zinc-phthalocyanine (ZnPcN), which can link with alpha-Thio-omega-carboxy poly(ethylene glycol) (HS-PEG-COOH) through covalent bonding, such that its linkage with an Au nanoparticle (NP) becomes stronger for reducing the escape rate is synthesized. After demonstrating its fundamental photosensitizer characteristics, its escape behavior is compared with that of the commonly used PcS-series photosensitizer, tetrasulfonate-aluminum-phthalocyanine (AlPcS), through the measurements of the decreasing trends of absorption and cell damage efficiency with increasing waiting time. It is found that the escape of ZnPcN is indeed slower than that of AlPcS. For ZnPcN, the cell damage efficiency decreases most significantly in the first 10 min of waiting and saturates 30 min after incubation. However, for AlPcS, the cell damage efficiency keeps decreasing with waiting time up to 4 hours after incubation. The stronger chemical bonding between ZnPcN and HS-PEG-COOH leads to less ZnPcN escape and hence a longer waiting time of high cell damage capability, when compared with the electro-static bonding between AlPcS and HS-PEG-NH2.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:40:28Z (GMT). No. of bitstreams: 1
ntu-106-R03941097-1.pdf: 3195768 bytes, checksum: 0f78b954cc6f4f2b0fe26375d375e255 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 II
中文摘要 III
Abstract IV
Content V
Chapter 1 Introduction 1
1.1 Localized Surface Plasmon 1
1.2 Gold Nanorod 3
1.3 Process of Cell Uptake of Au NPs 5
1.4 Photodynamic Therapy 7
1.5 Research Motivations 8
1.6 Structure of the Thesis 9
Chapter 2 Materials and Methods 18
Chapter 3 Basic Characteristics of ZnPcN and AlPcS 25
3.1 Singlet Oxygen Measurement 25
3.2 Cell Experiment Preparation 25
Chapter 4 Comparison of Photosensitizer Escape from Gold Nanorod 33
4.1 Photosensitizer Escape Behaviors 33
4.2 Cell damage experiment 35
Chapter 5 Discussions 45
Chapter 6 Conclusions 50
References 51
dc.language.isoen
dc.subject光動力療法zh_TW
dc.subject四氨基鋅?菁zh_TW
dc.subjectPhotodynamic Therapyen
dc.subjecttetramino-zinc-phthalocyanineen
dc.title一種新型光敏劑(四氨基鋅酞菁)的特性分析與其損害癌細胞之效果zh_TW
dc.titleCharacteristics of a New Photosensitizer (tetramino-zinc-phthalocyanine) and Its Cancer Cell Damage Effectsen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee江衍偉?,蔡孟燦,李翔傑,孫家偉
dc.subject.keyword光動力療法,四氨基鋅?菁,zh_TW
dc.subject.keywordPhotodynamic Therapy,tetramino-zinc-phthalocyanine,en
dc.relation.page54
dc.identifier.doi10.6342/NTU201702142
dc.rights.note有償授權
dc.date.accepted2017-07-28
dc.contributor.author-college電機資訊學院zh_TW
dc.contributor.author-dept光電工程學研究所zh_TW
顯示於系所單位:光電工程學研究所

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
3.12 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved