Skip navigation

DSpace

機構典藏 DSpace 系統致力於保存各式數位資料(如:文字、圖片、PDF)並使其易於取用。

點此認識 DSpace
DSpace logo
English
中文
  • 瀏覽論文
    • 校院系所
    • 出版年
    • 作者
    • 標題
    • 關鍵字
    • 指導教授
  • 搜尋 TDR
  • 授權 Q&A
    • 我的頁面
    • 接受 E-mail 通知
    • 編輯個人資料
  1. NTU Theses and Dissertations Repository
  2. 工學院
  3. 機械工程學系
請用此 Handle URI 來引用此文件: http://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67614
完整後設資料紀錄
DC 欄位值語言
dc.contributor.advisor楊鏡堂
dc.contributor.authorChe-An Leeen
dc.contributor.author李哲安zh_TW
dc.date.accessioned2021-06-17T01:40:19Z-
dc.date.available2022-08-01
dc.date.copyright2017-08-01
dc.date.issued2017
dc.date.submitted2017-07-28
dc.identifier.citationAzuma, A. (2012). The Biokinetics of Flying and Swimming. Springer Science & Business Media. Toyko
Betts, C. R., & Wootton, R. J. (1988). Wing shape and flight behaviour in butterflies (Lepidoptera: Papilionoidea and Hesperioidea): A preliminary analysis. Journal of Experimental Biology, 138, 271-288.
Birch, J. M., & Dickinson, M. H. (2001). Spanwise flow and the attachment of the leading-edge vortex on insect wings. Nature, 412(6848), 729-733.
Combes, S. A., & Daniel, T. L. (2003). Flexural stiffness in insect wings I. Scaling and the influence of wing venation. Journal of Experimental Biology, 206(17), 2979-2987.
Dickinson, M. H. (1996). Unsteady mechanisms of force generation in aquatic and aerial locomotion. American Zoologist, 36(6), 537-554.
Dickinson, M. H., Lehmann, F. O., & Sane, S. P. (1999). Wing rotation and the aerodynamic basis of insect flight. Science, 284(5422), 1954-1960.
Drucker, E. G., & G. V. Lauder (1999). Locomotor forces on a swimming fish: Three-dimensional vortex wake dynamics quantified using digital particle image velocimetry. Journal of Experimental Biology, 202(18), 2393-2412.
Dudley, R. (2000). The Biomechanics of Insect Flight: Form, Function, Evolution. Princeton University Press, New Jersey.
Ellington, C. P. (1984). The aerodynamics of hovering insect flight. II. Morphological parameters. Philosophical Transactions of the Royal Society of London. Series B, Biological Sciences, 305(1122), 17-40.
Ellington, C. P., Van Den Berg, C., Willmott, A. P., & Thomas, A. L. (1996). Leading-edge vortices in insect flight. Nature, 384(6610), 626-630.
Fei, Y. H. J., & Yang, J, T. (2016). Importance of body rotation during the flight of a butterfly. Physical Review E, 93(3), 033124.
Heathcote, S., Wang, Z., & Gursul, I. (2008). Effect of spanwise flexibility on flapping wing propulsion. Journal of Fluids and Structures, 24(2), 183-199.
Lua, K. B., Lee, Y. J., Lim, T. T., & Yeo, K. S. (2016). Aerodynamic effects of elevating motion on hovering rigid hawkmothlike wings. AIAA Journal, 54(8), 2247-2264.
Mountcastle, A. M., & Daniel, T. L. (2009). Aerodynamic and functional consequences of wing compliance. Experiments in Fluids, 46(5), 873-882.
Nakatani, Y., Suzuki, K., & Inamuro, T. (2016). Flight control simulations of a butterfly-like flapping wing-body model by the immersed boundary-lattice Boltzmann method. Computers & Fluids, 133(8), 103-115.
Pines, D. J., & Bohorquez, F. (2006). Challenges facing future micro-air-vehicle development. Journal of Aircraft, 43(2), 290-305.
Phillips, N., & Knowles, K. (2011). Effect of flapping kinematics on the mean lift of an insect-like flapping wing. Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 225(7), 723–736.
Sane, S. P., & Dickinson, M. H. (2001). The control of flight force by a flapping wing: Lift and drag production. Journal of Experimental Biology, 204(15), 2607–2626.
Sane, S. P. (2003). The aerodynamics of insect flight. Journal of Experimental Biology, 206(23), 4191-4208.
Senda, K., Obara, T., Kitamura, M., Yokoyama, N., Hiral, N., & Iima, M. (2012). Effects of structural flexibility of wings in flapping flight of butterfly. Bioinspiration & Biomimetics, 7(2), 1-15.
Shyy, W., Lian, Y., Tang, J., Viieru, D., & Liu, H. (2007). Aerodynamics of Low Reynolds Number Flyers (Vol. 22). Cambridge University Press, New York.
Srygley, R. B., & Dudley, R. (1993). Correlations of the position of center of body mass with butterfly escape tactics. Journal of Experimental Biology, 174, 155-166.
Sunada, S., Kawachi, K., Watanabe, I., & Azuma, A. (1993). Performance of a butterfly in take-off flight. Journal of Experimental Biology, 183, 249-277.
Suzuki, K., Minami, K., & Inamuro, T. (2015). Lift and thrust generation by a butterfly-like flapping wing-body model: immersed boundary-lattice Boltzmann simulations. Journal of Fluid Mechanics, 767(27), 659-695.
Tanaka, H., & Shimoyama, L. (2010). Forward flight of swallowtail butterfly with simple flapping motion. Bioinspiration & Biomimetics, 5(2), 026003.
Taylor, G. K., Nudds, R. L., & Thomas, A. L. (2003). Flying and swimming animals cruise at a Strouhal number tuned for high power efficiency. Nature, 425(6959), 707-711.
Willmott, A. P., & Ellington, C. P. (1997). The mechanics of flight in the hawkmoth Manduca sexta. I. Kinematics of hovering and forward flight. Journal of Experimental Biology, 200, 2705-2722.
Wu, P., Stanford, B. K., Sallstrom, E., Ukeiley, L., & Ifju, P. G. (2011). Structural dynamics and aerodynamics measurements of biologically inspired flexible flapping wings. Bioinspiration & Biomimetics, 6(1), 1-20.
Yokoyama, N., Senda, K., Iima, M., & Hirai, N. (2013). Aerodynamic forces and vertical structures in flapping butterfly’s forward flight. Physics of Fluids, 25(2), 021902.
Young, J., Walker, S. M., Bomphrey, R. J., Taylor, G. K., & Thomas, A. L. (2009). Details of insect wing design and deformation enhance aerodynamic function and flight efficiency. Science, 325(5947), 1549-1552.
Zhao, L., Huang, Q., Deng, X., & Sane, S. P. (2010). Aerodynamic effects of flexibility in flapping wings. Journal of the Royal Society Interface, 7(44), 485-497.
王相博 (2013) 蝴蝶撲翼姿態對飛行影響之研究. 臺灣大學機械工程學系碩士論文.
王彥傑 (2016) 腹部動態對蝴蝶仿生飛行器控制之研究. 臺灣大學機械工程學系碩士論文.
費約翰 (2017) 蝴蝶身體俯仰動態之飛行動力機制與飛行操控研究. 臺灣大學機械工程學系博士論文.
dc.identifier.urihttp://tdr.lib.ntu.edu.tw/jspui/handle/123456789/67614-
dc.description.abstract蝴蝶飛行時,身體會有明顯的俯仰動作,而此動作在先前的研究中被證實可控制空氣作用力的方向而使蝴蝶操控飛行,利用不同的俯仰動作達到不同的飛行模式。然而目前對蝴蝶是如何達成穩定且週期性的俯仰動作,以及控制此動作的方法仍不完整。觀察蝴蝶拍撲飛行時,翅膀除了上下拍撲以外還會有明顯的前後掃掠動作。此動作可偏移拍翅平面,並影響空氣作用力矩的產生,因此被認為是造成身體俯仰以及蝴蝶得以操控飛行的因素之一。
本研究參考青斑蝶的幾何外形與動作參數建構出數值模型,並透過數值方式探討翅膀掃掠動態對蝴蝶身體俯仰動作以及飛行軌跡之影響。在模擬中,模型可達到自由飛行並具有三個自由度,分別為前後、上下移動以及俯仰轉動。研究發現翅膀掃掠動作會改變翅膀上壓力中心(COP)與身體旋轉中心之間的距離,進而影響俯仰力矩之大小與方向。首先模擬翅膀固定在不同掃掠角度的情況。當壓中心固定於旋轉中心前時,可產生與真實蝴蝶相位相同的俯仰動作,達成穩定且週期性的飛行。在此情況下,加大掃掠角度使壓力中心往前移,產生較大之俯仰力矩與俯仰振幅,使垂直方向的位移增加,飛行模式由斜飛轉為趨近於上飛。當壓中心固定於旋轉中心附近或之後時,俯仰動作之相位與真實蝴蝶相反,產生不足之空氣作用力,而無法達成穩定的飛行,最終墜落。接著加入翅膀掃掠動態,並以正弦函數描述,使翼尖移動軌跡呈橢圓形,壓力中心之位置隨著上、下拍不斷改變。加入此動作可大幅降低平均俯仰角度,微幅降低俯仰振幅,使垂直方向位移大幅降低,而達到前飛。加大掃掠振幅可進一步降低平均俯仰角,使蝴蝶呈下降飛行。本研究證實蝴蝶可利用翅膀掃掠動作操控飛行,達到不同的飛行模式,期望研究結果可用於未來微飛行器的設計,提供嶄新的操控方式。
zh_TW
dc.description.abstractButterflies uniquely use the body postures to maneuver their flight directions and speeds, but the method how butterflies utilize to control their body pitching in the air is unclear. Experiment recording the real flight of butterflies indicate that butterflies fly with significant wing lead-lag motion, the wing motion that deviate from the stroke plane. In this research, we create a simulation of butterflies in free flight to investigate how butterflies utilize this motion to achieve different flight modes by controlling their body pitching. The wing lead-lag motion change the distance between the center of pressure (COP) of wing and the center of rotation (COR) of butterflies, and largely affect the direction and magnitude of aerodynamic torque. When the position of COP is fixed ahead of COR, the variations of pitching angle is similar to that of real butterflies in free flight, and the butterfly is able to perform a stable flight in the simulation. Increasing the lead-lag angle further increases the pitching moment and rotational amplitude, and the butterfly performs the flight motion close to vertical take-off. When the position of COP is fixed behind of COR, the variations of pitching angle is completely different from the real butterflies in free flight, and the flight is unstable and the butterfly falls down .When the lead-lag angle is considered as a function, and the trajectory of the wing-tip is an oval similar to that of a real butterfly. The distance between COP and COR is continually changing throughout the downs and upstroke. The average pitching angle decreases while slightly decreasing the pitching amplitude, and butterflies perform the forward flight. The lead-lag motion affects the generation of aerodynamic torque and force and plays an important role in the flight control of a butterfly. Our results might provide a new flight control method for designing high maneuverability aerial vehicle in the future.en
dc.description.provenanceMade available in DSpace on 2021-06-17T01:40:19Z (GMT). No. of bitstreams: 1
ntu-106-R04522110-1.pdf: 6492647 bytes, checksum: 499c3ae5ea6a35230943bc120b69db40 (MD5)
Previous issue date: 2017
en
dc.description.tableofcontents誌謝 ii
摘要 iii
Abstract iv
符號說明 iii
目錄 v
圖表目錄 viii
第一章前言 1
第二章文獻回顧 3
2-1 飛行背景知識 4
2-1.1 名詞介紹 4
2-1.2 升力與阻力 5
2-1.3 壓力中心氣動力中心 6
2-1.4 失速 7
2-1.5 Kutta-Joukowski定理 7
2-1.6 Wagner effect 7
2-2 微飛行器之發展 8
2-2.1 飛行器的種類 9
2-2.2 發展困境 10
2-3 昆蟲飛行之空氣動力學 10
2-3.1 名詞介紹 11
2-3.2 翼前緣渦漩(leading edge vortex) 13
2-3.3 翼尖渦漩 (tip vortex) 14
2-3.4 渦漩環理論 14
2-3.5 尾流捕獲 (wake capture) 15
2-3.6 夾翼與拋翼 16
2-3.7 翅膀旋轉(wing rotation) 17
2-3.8 翅膀撓性(flexibility) 18
2-4 蝴蝶飛行之研究 20
2-4.1 蝴蝶之構造 20
2-4.2 身體俯仰動態 21
2-4.3 俯仰力矩構成 23
2-4.4 俯仰力矩的控制 24
2-5 翅膀掃掠動作之影響 26
2-5.1 動作分析 26
2-5.2 空氣作用力影響 27
第三章 研究方法 30
3-1 實驗對象 31
3-2 實驗參數與因次分析 31
3-3 動作分析 34
3-3.1 實驗架設與設備 34
3-3.2 影像後處理 38
3-4 數值模擬 39
3-4.1 物理模型 39
3-4.2 飛行與翅膀動態 42
3-4.3 統御方程式 45
3-4.4 數值方法 45
3-4.5 網格 47
3-4.6 動網格 49
第四章 結果與討論 51
4-1 動作分析 52
4-2 數值模擬 56
4-2.1 固定飛行、固定掃掠角度 56
4-2.2 自由飛行、固定掃掠角度 58
4-2.3 自由飛行、不同掃掠振幅 67
第五章 結論與未來展望 76
5-1 結論 76
5-2 未來展望 77
5-3 甘梯圖 79
第六章 參考文獻 80
dc.language.isozh-TW
dc.subject蝴蝶飛行zh_TW
dc.subject飛行操控zh_TW
dc.subject翅膀掃掠動作zh_TW
dc.subject胸部俯仰動態zh_TW
dc.subject自由飛行zh_TW
dc.subjectfree flighten
dc.subjectbutterfly flighten
dc.subjectflight controlen
dc.subjectlead-lag motionen
dc.subjectbody pitchingen
dc.title利用翅膀掃掠動態控制蝴蝶拍撲飛行之研究zh_TW
dc.titleFlight Control with Lead-Lag Motion Revealed from Free-Flying Butterflyen
dc.typeThesis
dc.date.schoolyear105-2
dc.description.degree碩士
dc.contributor.oralexamcommittee趙怡欽,楊馥菱,紀凱容,尤懷德
dc.subject.keyword翅膀掃掠動作,蝴蝶飛行,自由飛行,胸部俯仰動態,飛行操控,zh_TW
dc.subject.keywordlead-lag motion,butterfly flight,free flight,body pitching,flight control,en
dc.relation.page83
dc.identifier.doi10.6342/NTU201702214
dc.rights.note有償授權
dc.date.accepted2017-07-28
dc.contributor.author-college工學院zh_TW
dc.contributor.author-dept機械工程學研究所zh_TW
顯示於系所單位:機械工程學系

文件中的檔案:
檔案 大小格式 
ntu-106-1.pdf
  未授權公開取用
6.34 MBAdobe PDF
顯示文件簡單紀錄


系統中的文件,除了特別指名其著作權條款之外,均受到著作權保護,並且保留所有的權利。

社群連結
聯絡資訊
10617臺北市大安區羅斯福路四段1號
No.1 Sec.4, Roosevelt Rd., Taipei, Taiwan, R.O.C. 106
Tel: (02)33662353
Email: ntuetds@ntu.edu.tw
意見箱
相關連結
館藏目錄
國內圖書館整合查詢 MetaCat
臺大學術典藏 NTU Scholars
臺大圖書館數位典藏館
本站聲明
© NTU Library All Rights Reserved